JP3953724B2 - How to remove phosphorus - Google Patents

How to remove phosphorus Download PDF

Info

Publication number
JP3953724B2
JP3953724B2 JP2000278354A JP2000278354A JP3953724B2 JP 3953724 B2 JP3953724 B2 JP 3953724B2 JP 2000278354 A JP2000278354 A JP 2000278354A JP 2000278354 A JP2000278354 A JP 2000278354A JP 3953724 B2 JP3953724 B2 JP 3953724B2
Authority
JP
Japan
Prior art keywords
treated water
metal
phosphorus
iron
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000278354A
Other languages
Japanese (ja)
Other versions
JP2002086151A (en
Inventor
道夫 永坂
Original Assignee
有限会社水辺環境研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社水辺環境研究所 filed Critical 有限会社水辺環境研究所
Priority to JP2000278354A priority Critical patent/JP3953724B2/en
Publication of JP2002086151A publication Critical patent/JP2002086151A/en
Application granted granted Critical
Publication of JP3953724B2 publication Critical patent/JP3953724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は河川や湖沼、内湾域、あるいは各種処理場などにおいて水中のリンを効率良く除去する方法に関し、さらに詳細には、低濃度のリン含有量を有する河川水などの大量な処理水を処理する場合に好適なリンの除去方法に関する。
【0002】
【従来の技術】
河川や湖沼、内湾域、各種処理場などにおいてCOD値やBOD値の高い水質を浄化するため、水中に溶存しているリンを取り除くことが行われる。
凝集剤を用いないこの種の装置として従来、水槽内の底部に鉄製の円板を配設し、リンを取り除くべき処理水をこの水槽に入れ、処理水中で円板を回転させて鉄イオンを処理水中に溶かし出し、鉄イオンにリンを結合させることでリンを取り除くようにした方式が知られている。これは、鉄板などの金属材を処理水に浸漬して攪拌すると、処理水中に鉄イオンを溶出するという金属の腐食現象に着目したものである。
【0003】
【発明が解決しようとする課題】
しかしながら、処理水中で鉄製の円板を回転させる方式では、特に水中の溶存酸素量が3mg/l程度より多い場合、鉄板の平行電位が不動態域に位置するようになり、鉄板の表面には防食性の酸化被膜を生成して腐食速度が徐々に低下するような状態となる。このため、鉄イオンの溶出量が減少し、鉄とリンの化合物が生成されにくくなり、リンの除去率を高めることができない不具合があった。
本発明は前記事情に鑑み案出されたものであって、本発明の目的は、低濃度のリン含有量を有する河川水などの大量な処理水を処理する場合に、水中の溶存酸素量が多い場合でも、鉄イオンなどの金属イオンとリンとを効率良く結合させ、リンの除去率を高めることができるリンの除去方法を提供することにある。
【0004】
【課題を解決するための手段】
前記目的を達成するため、本発明は、リンを含む処理水の中に、金属イオンを溶出させ易い金属で形成された電極を浸漬させ、前記電極に通電して電気分解を行ない、前記電極から前記処理水中に金属イオンを溶出させ、この金属イオンとリンを結合させて金属リン酸化物を生成する第1の工程と、前記第1の工程で得られた処理水中の金属リン酸化物を沈殿させる第2の工程とを備え前記第1の工程の前に、前記処理水を金属イオン溶出槽内に入れ、この金属イオン溶出槽において、金属イオンを溶出させ易い金属からなる多数の金属塊を処理水中で互いに擦れ合わせ、これにより金属イオンを処理水中に溶出させ、金属イオンとリンを結合させて金属リン酸化物を生成する前工程が行われることを特徴とする。
【0005】
本発明によれば、電気分解法を用いるので水中の溶存酸素量の多少に拘わらず金属イオンを安定して溶出でき、これにより金属リン酸化物を効率的に生成できる。そして、第2の工程でリンを金属リン酸化物として取り除く。
【0006】
【発明の実施の形態】
以下、本発明のリンの除去方法の実施の形態について図面を参照して説明する。
図1は本発明のリンの除去方法を実施するためのリン除去装置の概略構成図、図2(A)は電気分解槽の平面図、(B)は同拡大平面図、図3は電気分解槽の正面図を示す。
なお、本実施の形態では金属イオンを溶出させ易い電極として鉄を用いているが、用いる金属は金属イオンを溶出させ易いものであればよく、鉄のほかにもアルミニウムなどの金属も使用可能である。
本実施の形態では、処理水中からリンを除去するに際して、処理水を電気分解して鉄製の電極から鉄イオンを溶出させると共にこの鉄イオンとリンを結合させてリン酸鉄(FePO4)[特許請求の範囲の金属リン酸化物に相当]を生成する第1の工程と、第1の工程で得られた処理水中のリン酸鉄(FePO4)を沈殿させる第2の工程とが行われる。
上述のような工程を行なうリン除去装置14は、電気分解槽16と、沈殿槽18とを備え、前記第1の工程は電気分解槽16で行われ、前記第2の工程は沈殿槽18で行われる。
【0007】
電気分解槽16は、槽内に薄板状の鉄製の電極が多数配設されており、多数の電極の間に流路が形成され、処理水が槽内で電極の間の流路の間を時間を掛けて緩やかに流される。
前記電気分解槽16は、例えば、図2(A)に平面図で、図3に正面図で示すように、5つの槽16A乃至16Eが横に並べられ、各槽16A乃至16Eに、図2(B)に拡大平面図で示すように、多数の帯状の鉄製の電極1602が配設され、多数の電極1602にはプラスとマイナス(アース)の電圧が交互に印可され通電される。なお、本実施の形態では、各電極1602は各槽内において上下に5分割されているものを用いているが、電極1602が上下に分割されているか否かは任意である。
【0008】
そして、各槽16A乃至16Eにおいて下部に処理水が流入され、処理水は電極1602間の流路を通って、上方に進み、一つの槽を通過すると、同様に隣の槽の下部に流入され、上方へと進むように構成されている。
このように電気分解槽16において処理水中で電極1602に電圧を印可することで、電極1602から鉄イオン(Fe+2やFe+3)が溶出する。そして、この鉄イオンとリンと結合してリン酸鉄(Fe3PO4)が生成される第1の工程が行なわれる。
なお、本実施の形態では、各槽16A乃至16Eの底部にエアーレーションパイプが配設されてエアーレーションが行なわれ、これにより処理水に酸素を供給し、Fe+2からFe+3への反応を促進させ、鉄イオンとリンとの結合をより促進させるようにしている。なお、エアレーションパイプは、各槽16A乃至16Eの底部だけではなく、上下方向の中間部などにも配設するようにしてもよい。
【0009】
沈殿槽18では、前記第1の工程を経た処理水からリン酸鉄を沈殿させる第2の工程が行われる。
このような沈殿槽としては、例えば、槽の底部にフィルターを配設しておき、フィルターによりリン酸鉄を取り除く方式のものや、迷路状の水路を設けておき、水路の底部にリン酸鉄を沈殿させる方式のものなど、従来公知の種々の沈殿槽を用いることができる。
【0010】
本実施の形態によれば、電気分解法を用いるので、水中の溶存酸素量が多い場合でも、処理水中に鉄イオンを安定して溶出させることができ、鉄イオンとリンとを効率良く結合させ、リンの除去率を高めることが可能となる。
【0011】
次に、本実施の形態の実験結果を表1に示す。
この実験では、第1の工程において図2、図3に示す電気分解槽16に処理水を4時間停滞(電気分解槽の流路を通って電気分解槽から出るまでの時間)させた。各電極に印可した電圧は1.5Vで、10Aの電流を通した。また、有効容量の1m3あたり0.5m3/Hrという屎尿浄化槽の構造基準にしたがって電気分解槽の底部からエアーレーションを行なった。
【0012】
【表1】

Figure 0003953724
【0013】
表1においてAは、第1の工程を経る前の処理水の状態であり、Bは第1の工程と第2の工程が行われた後の沈殿物を取り出した処理水の状態を示している。
表1において、PO4Pは無機リンであり、TPは無機リンに有機リンを加えたリンの合計であり、solFeは処理水中に溶出した溶存鉄であり、TFeは溶存鉄にリン酸鉄を加えた鉄の合計である。
この表1からも明らかなように、PO4Pの値とTPの値が本発明の処理方法の前と後では、1/3程度まで減少しており、本発明の処理方法によりリンが効率良く取り除かれることが判明した。
【0014】
なお、第1の工程において電気分解を行なうと、電極1602の体積は減少していく。この場合、以下の前工程を行なうことで電極1602の体積の減少速度を緩め、電極1602の交換頻度を少なくする上で有利となる。
すなわち、図4に示すように、電気分解槽16の手前に鉄イオン溶出槽19(特許請求の範囲の金属イオン溶出槽に相当)を設け、処理水を電気分解槽16に入れる前に鉄イオン溶出槽19に入れる。
鉄イオン溶出槽19では、例えば、従来と同様に、槽内の底部に鉄製の円板を配設し、リンを取り除くべき処理水をこの槽に入れ、処理水中で円板を回転させ、円板から鉄イオン(Fe+2やFe+3)を処理水中に溶出させ、この鉄イオンにリンを結合させ、リン酸鉄(FePO4)を生成することが行われる。
【0015】
あるいは、槽に多数の小形で球状の鉄製の塊体(特許請求の範囲の金属塊に相当)を収容しておき、リンを取り除くべき処理水をこの槽に入れ、処理水中でこれら塊体を攪拌羽根などにより攪拌させ、擦り合わせることで塊体の表面に生成される酸化被膜を掻き落としつつ塊体から処理水中への鉄イオン(Fe+2やFe+3)の溶出を促進させ、この鉄イオンにリンを結合させ、リン酸鉄(FePO4)を生成することが行われる。
あるいは、図5(A)に正面図で、(B)に側面図で示すように、鉄イオン溶出槽19の内部で多数の鉄球20(特許請求の範囲の金属塊に相当)が収容された筒状の籠22を回転させ、これにより多数の鉄球20を擦り合わせ、擦り合わせることで鉄球20の表面に生成される酸化被膜を掻き落としつつ処理水中への鉄イオン(Fe+2やFe+3)の溶出を促進させるようにしてもよい。この場合には、鉄イオン溶出槽19の内部に挿入できるような枠状のフレーム24を設け、このフレーム24に上下に間隔をおいて2つの筒状の籠22を回転可能に配置し、フレーム24の上端にモータ26を配設し、モータ26の動力をチェーン28、スプロケット30を介して上下の籠22に伝達するように構成すればよい。
なお、第1の工程の前に前記の前工程を行なうに際して、上記の実施の形態では、金属イオンを溶出させ易い金属として第1の工程と同じ鉄を用いた場合について説明したが、用いる金属は金属イオンを溶出させ易いものであればよく、鉄のほかにもアルミニウムなどの金属も使用可能である。
【0016】
また、上記の第1の工程において、電極1602にプラスとマイナス(アース)の電圧を交互に印可していき長時間が経過すると、電極1602の表面に酸化鉄などの付着物が形成され、このような付着物が多くなると、電解性能の低下を招く。
そこで、図6に平面図で、図7に正面図に示すように、各槽16A乃至16Eにおいて、前記多数の電極1602間でそれぞれほぼ水平に延在し隣り合う電極1602の向かい合う電極表面に接触可能な多数の円柱体40(特許請求の範囲の棒状部材に相当)を設け、所定の時間毎に(例えば24時間毎に)これら円柱体40を上下に移動させ、これにより多数の電極1602の表面に付着した付着物を取り除くようにすると、Fe+2からFe+3への反応がより促進され、鉄イオンとリンとの結合をより促進させる上で有利となり、電解性能の低下を防止できる。
【0017】
この場合には、各槽16A乃至16Eにおいて、例えば、その上流側の空間にそれぞれ処理水の流れ方向と直交する方向で水平方向に延在する支持板42を設け、前記多数の円柱体40の端部をこの支持板42に取着しておく。また、支持板42の延在方向の両端に位置するように、各槽16A乃至16Eの上流側の空間にガイド44を立設する。そして、支持板42の両端の上下に回転可能に取着したガイドローラ46を前記ガイド44に係合し、支持板42がガイド44に沿って上下に移動するように構成する。また、各槽16A乃至16Eの上流側に位置する隔壁1620の上下に、水平に軸48を配設し、軸48の両端寄りにスプロケット50を固定し、これら上下の軸48の両端のスプロケット50にチェーン52を掛装し、このチェーン52の両端を前記支持板42に取着する。そして、上方の軸48をモータ54により回転し、チェーン52を介して支持板42を上下動させ、これにより多数の円柱体40を隣り合う電極1602間で移動させ、電極1602の表面に付着した付着物を取り除くようにする。なお、円柱体40は電極表面の損傷を防止するためゴムなどのような弾性を有する部材により形成されたものが好ましく、また、円柱体40は棒状に延在するものであればよく、四角柱などであってもよい。なお、図7において符号56はエアレーションパイプを示す。
【0018】
【発明の効果】
以上の説明で明らかなように本発明のリンの除去方法によれば、リンを含んだ処理水からリンを効率良く取り除くことが可能となる。
【図面の簡単な説明】
【図1】リン除去装置の概略構成図である。
【図2】 (A)は電気分解槽の平面図、(B)は同拡大平面図である。
【図3】電気分解槽の正面図である。
【図4】リン除去装置の概略構成図である。
【図5】 (A)は鉄イオン溶出槽の内部に設置する鉄イオン溶出装置の正面図、(B)は同側面図である。
【図6】電極表面の付着物を取り除くための機構を備える電気分解槽の平面図である。
【図7】電極表面の付着物を取り除くための機構を備える電気分解槽の正面図である。
【符号の説明】
14 リン除去装置
16 電気分解槽
18 沈殿槽
19 鉄イオン溶出槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for efficiently removing phosphorus in water in rivers, lakes, inner bays, or various treatment plants, and more specifically, a large amount of treated water such as river water having a low phosphorus content is treated. The present invention relates to a phosphorus removal method suitable for the case.
[0002]
[Prior art]
In order to purify water quality with high COD and BOD values in rivers, lakes, inner bays, and various treatment plants, phosphorus dissolved in water is removed.
Conventionally, an iron disc is installed at the bottom of the water tank as a device of this type that does not use a flocculant, and treated water for removing phosphorus is put into this water tank, and the disk is rotated in the treated water to produce iron ions. A method is known in which phosphorus is removed by dissolving it in treated water and binding phosphorus to iron ions. This focuses on the metal corrosion phenomenon in which iron ions are eluted into the treated water when a metal material such as an iron plate is immersed in the treated water and stirred.
[0003]
[Problems to be solved by the invention]
However, in the method of rotating an iron disk in treated water, especially when the amount of dissolved oxygen in water is more than about 3 mg / l, the parallel potential of the iron plate comes to be in the passive region, and the surface of the iron plate A corrosion-resistant oxide film is formed, and the corrosion rate is gradually reduced. For this reason, the elution amount of iron ions decreases, and it becomes difficult to produce a compound of iron and phosphorus, and there is a problem that the removal rate of phosphorus cannot be increased.
The present invention has been devised in view of the above circumstances, and the object of the present invention is to reduce the amount of dissolved oxygen in water when treating a large amount of treated water such as river water having a low concentration of phosphorus. Even in many cases, it is an object of the present invention to provide a phosphorus removal method that can efficiently bind metal ions such as iron ions and phosphorus, and increase the phosphorus removal rate.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention immerses an electrode formed of a metal that easily elutes metal ions in treated water containing phosphorus, and conducts electrolysis by energizing the electrode. A first step of eluting metal ions in the treated water and combining the metal ions and phosphorus to form a metal phosphor oxide; and precipitating the metal phosphate in the treated water obtained in the first step and a second step of, before said first step, placed in the treated water to the metal ion elution vessel, in the metal ion elution tank, a large number of metal block made of metal which easily elute metal ions Are rubbed together in the treated water, whereby metal ions are eluted in the treated water, and a pre-process is performed in which the metal ions and phosphorus are combined to form a metal phosphate.
[0005]
According to the present invention, since an electrolysis method is used, metal ions can be stably eluted regardless of the amount of dissolved oxygen in water, and thereby metal phosphate can be efficiently generated. Then, phosphorus is removed as a metal phosphorous oxide in the second step.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the phosphorus removal method of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a phosphorus removing apparatus for carrying out the phosphorus removing method of the present invention, FIG. 2 (A) is a plan view of an electrolysis tank, (B) is an enlarged plan view thereof, and FIG. The front view of a tank is shown.
In this embodiment, iron is used as an electrode that easily elutes metal ions. However, any metal that can easily elute metal ions may be used, and metals such as aluminum can be used in addition to iron. is there.
In the present embodiment, when removing phosphorus from the treated water, the treated water is electrolyzed to elute iron ions from the iron electrode, and the iron ions and phosphorus are combined to form iron phosphate (FePO 4 ) [patent The first step of generating [corresponding to the metal phosphorous oxide in the claims] and the second step of precipitating iron phosphate (FePO 4 ) in the treated water obtained in the first step are performed.
The phosphorus removal apparatus 14 that performs the above-described process includes an electrolysis tank 16 and a precipitation tank 18, wherein the first process is performed in the electrolysis tank 16, and the second process is performed in the precipitation tank 18. Done.
[0007]
The electrolysis tank 16 is provided with a large number of thin plate-like iron electrodes in the tank, a flow path is formed between the many electrodes, and the treated water passes between the flow paths between the electrodes in the tank. Slowly flow over time.
The electrolysis tank 16 has, for example, five tanks 16A to 16E arranged side by side as shown in a plan view in FIG. 2A and a front view in FIG. As shown in an enlarged plan view in (B), a large number of strip-shaped iron electrodes 1602 are provided, and positive and negative (earth) voltages are alternately applied to the large number of electrodes 1602 and energized. In this embodiment, each electrode 1602 is vertically divided into five in each tank. However, whether or not the electrode 1602 is vertically divided is arbitrary.
[0008]
Then, treated water flows into the lower part of each tank 16A to 16E. The treated water passes upward through the flow path between the electrodes 1602 and passes through one tank, and similarly flows into the lower part of the adjacent tank. It is configured to proceed upward.
Thus, by applying a voltage to the electrode 1602 in the treated water in the electrolysis tank 16, iron ions (Fe +2 and Fe +3 ) are eluted from the electrode 1602. Then, a first step is performed in which the iron ions and phosphorus are combined to produce iron phosphate (Fe 3 PO 4 ).
In the present embodiment, an aeration pipe is provided at the bottom of each of the tanks 16A to 16E to perform aeration, thereby supplying oxygen to the treated water and reacting from Fe +2 to Fe +3 To promote the binding between iron ions and phosphorus. In addition, you may make it arrange | position an aeration pipe not only to the bottom part of each tank 16A thru | or 16E but to the intermediate part of an up-down direction.
[0009]
In the sedimentation tank 18, the 2nd process of precipitating iron phosphate from the treated water which passed through the said 1st process is performed.
As such a sedimentation tank, for example, a filter is provided at the bottom of the tank and the iron phosphate is removed by the filter, or a maze-like water channel is provided, and the iron phosphate is provided at the bottom of the water channel. Various well-known precipitation tanks such as those for precipitating water can be used.
[0010]
According to the present embodiment, since the electrolysis method is used, even when the amount of dissolved oxygen in the water is large, iron ions can be stably eluted in the treated water, and iron ions and phosphorus can be bound efficiently. It becomes possible to increase the removal rate of phosphorus.
[0011]
Next, Table 1 shows the experimental results of the present embodiment.
In this experiment, in the first step, the treated water was stagnated in the electrolysis tank 16 shown in FIGS. 2 and 3 for 4 hours (time until the electrolysis tank exits the electrolysis tank through the flow path of the electrolysis tank). The voltage applied to each electrode was 1.5 V, and a current of 10 A was passed. In addition, aeration was performed from the bottom of the electrolysis tank in accordance with the structure standard of the urine septic tank of 0.5 m 3 / Hr per 1 m 3 of the effective capacity.
[0012]
[Table 1]
Figure 0003953724
[0013]
In Table 1, A is the state of the treated water before passing through the first step, and B is the state of the treated water from which the precipitate was taken out after the first step and the second step were performed. Yes.
In Table 1, PO 4 P is inorganic phosphorus, TP is the total of inorganic phosphorus plus organic phosphorus, solFe is dissolved iron eluted in the treated water, and TFe is iron phosphate in dissolved iron. This is the total amount of iron added.
As is apparent from Table 1, the values of PO 4 P and TP are reduced to about 1/3 before and after the treatment method of the present invention, and phosphorus is efficiently produced by the treatment method of the present invention. It turned out to be well removed.
[0014]
Note that when electrolysis is performed in the first step, the volume of the electrode 1602 decreases. In this case, the following pre-process is advantageous in that the volume reduction rate of the electrode 1602 is reduced and the replacement frequency of the electrode 1602 is reduced.
That is, as shown in FIG. 4, an iron ion elution tank 19 (corresponding to the metal ion elution tank in the claims) is provided in front of the electrolysis tank 16, and iron ions are added before the treated water is put into the electrolysis tank 16. It puts in the elution tank 19.
In the iron ion elution tank 19, for example, an iron disk is disposed at the bottom of the tank as in the prior art, and treated water from which phosphorus is to be removed is placed in this tank, and the disk is rotated in the treated water, Iron ions (Fe +2 and Fe +3 ) are eluted from the plate into the treated water, and phosphorus is bound to the iron ions to produce iron phosphate (FePO 4 ).
[0015]
Alternatively, a large number of small and spherical iron masses (corresponding to the metal masses in the claims) are accommodated in a tank, and treated water from which phosphorus is to be removed is placed in the tank, and these masses are treated in treated water. By stirring and rubbing with a stirring blade, etc., the elution of iron ions (Fe +2 and Fe +3 ) from the lump into the treated water is promoted while scraping off the oxide film formed on the lump surface. Phosphorus is bound to iron ions to produce iron phosphate (FePO 4 ).
Alternatively, as shown in a front view in FIG. 5A and in a side view in FIG. 5B, a large number of iron balls 20 (corresponding to the metal masses in the claims) are accommodated inside the iron ion elution tank 19. The cylindrical basket 22 is rotated, thereby rubbing a large number of the iron balls 20 and scraping off the oxide film formed on the surface of the iron ball 20 by rubbing them, and iron ions (Fe +2 into the treated water). And Fe +3 ) may be promoted. In this case, a frame-like frame 24 that can be inserted into the iron ion elution tank 19 is provided, and two cylindrical ridges 22 are rotatably arranged on the frame 24 with an interval in the vertical direction. A motor 26 may be disposed at the upper end of 24 and the power of the motor 26 may be transmitted to the upper and lower rods 22 via the chain 28 and the sprocket 30.
In addition, when performing the said previous process before a 1st process, in said embodiment, although the case where the same iron as a 1st process was used as a metal which is easy to elute a metal ion was demonstrated, the metal to be used As long as it is easy to elute metal ions, metals such as aluminum can be used in addition to iron.
[0016]
Further, in the first step, when positive and negative (earth) voltages are alternately applied to the electrode 1602 and a long time elapses, deposits such as iron oxide are formed on the surface of the electrode 1602, and this When such deposits increase, the electrolytic performance is degraded.
Therefore, as shown in the plan view of FIG. 6 and the front view of FIG. 7, in each of the tanks 16A to 16E, the electrodes 1602 extend between the plurality of electrodes 1602 and are in contact with the electrode surfaces facing each other. A large number of possible cylindrical bodies 40 (corresponding to the bar-shaped members in the claims) are provided, and the cylindrical bodies 40 are moved up and down at predetermined time intervals (for example, every 24 hours). By removing the adhering matter attached to the surface, the reaction from Fe +2 to Fe +3 is further promoted, which is advantageous for further promoting the binding between iron ions and phosphorus, and can prevent deterioration in electrolytic performance. .
[0017]
In this case, in each of the tanks 16A to 16E, for example, a support plate 42 extending in the horizontal direction in a direction orthogonal to the flow direction of the treated water is provided in the space on the upstream side thereof. The end is attached to the support plate 42. In addition, guides 44 are erected in the upstream space of each of the tanks 16A to 16E so as to be positioned at both ends of the support plate 42 in the extending direction. A guide roller 46 that is rotatably mounted on both ends of the support plate 42 is engaged with the guide 44 so that the support plate 42 moves up and down along the guide 44. Further, a shaft 48 is disposed horizontally above and below the partition wall 1620 located on the upstream side of each of the tanks 16A to 16E, and sprockets 50 are fixed near both ends of the shaft 48, and the sprockets 50 at both ends of these upper and lower shafts 48 are fixed. The chain 52 is hooked on the both ends, and both ends of the chain 52 are attached to the support plate 42. Then, the upper shaft 48 is rotated by the motor 54, and the support plate 42 is moved up and down via the chain 52. As a result, a large number of cylindrical bodies 40 are moved between the adjacent electrodes 1602 and adhered to the surface of the electrode 1602. Try to remove deposits. The cylindrical body 40 is preferably formed of a member having elasticity such as rubber in order to prevent damage to the electrode surface, and the cylindrical body 40 only needs to extend in a rod shape. It may be. In FIG. 7, reference numeral 56 denotes an aeration pipe.
[0018]
【The invention's effect】
As apparent from the above description, according to the phosphorus removal method of the present invention, phosphorus can be efficiently removed from the treated water containing phosphorus.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a phosphorus removal device.
2A is a plan view of an electrolysis tank, and FIG. 2B is an enlarged plan view of the same.
FIG. 3 is a front view of an electrolysis tank.
FIG. 4 is a schematic configuration diagram of a phosphorus removing device.
5A is a front view of an iron ion elution apparatus installed in the iron ion elution tank, and FIG. 5B is a side view of the same.
FIG. 6 is a plan view of an electrolysis tank provided with a mechanism for removing deposits on the electrode surface.
FIG. 7 is a front view of an electrolysis tank provided with a mechanism for removing deposits on the electrode surface.
[Explanation of symbols]
14 Phosphorus removal device 16 Electrolysis tank 18 Precipitation tank 19 Iron ion elution tank

Claims (2)

リンを含む処理水の中に、金属イオンを溶出させ易い金属で形成された電極を浸漬させ、前記電極に通電して電気分解を行ない、前記電極から前記処理水中に金属イオンを溶出させ、この金属イオンとリンを結合させて金属リン酸化物を生成する第1の工程と、
前記第1の工程で得られた処理水中の金属リン酸化物を沈殿させる第2の工程とを備え
前記第1の工程の前に、前記処理水を金属イオン溶出槽内に入れ、この金属イオン溶出槽において、金属イオンを溶出させ易い金属からなる多数の金属塊を処理水中で互いに擦れ合わせ、これにより金属イオンを処理水中に溶出させ、金属イオンとリンを結合させて金属リン酸化物を生成する前工程が行われる
ことを特徴とするリンの除去方法。
In the treated water containing phosphorus, an electrode formed of a metal that easily elutes metal ions is immersed, electrolyzed by energizing the electrode, and the metal ions are eluted from the electrode into the treated water. A first step of binding metal ions and phosphorus to form a metal phosphate;
And a second precipitating metal phosphate in the treated water obtained in the first step,
Prior to the first step, the treated water is put in a metal ion elution tank, and in this metal ion elution tank, a large number of metal lumps made of metal that easily elutes metal ions are rubbed together in the treated water. In order to elute metal ions into the treated water, a pre-process is performed in which the metal ions and phosphorus are combined to form a metal phosphate.
A method for removing phosphorus, characterized in that
前記第1の工程において、前記電気分解は処理水中に上下に延在する多数の帯状の前記電極が浸漬されることで行われ、前記多数の電極間でそれぞれほぼ水平に延在し隣り合う電極の向かい合う電極表面に接触可能な多数の弾性材製の棒状部材が設けられ、所定の時間毎に前記棒状部材が上下に移動され、これにより多数の電極の表面に付着した付着物が取り除かれることを特徴とする請求項1記載のリンの除去方法。  In the first step, the electrolysis is performed by immersing a number of strip-like electrodes extending vertically in the treated water, and the electrodes extending substantially horizontally between the plurality of electrodes and adjacent to each other. A large number of rod members made of elastic material that can come into contact with the electrode surfaces facing each other are provided, and the rod members are moved up and down every predetermined time, thereby removing the deposits adhering to the surfaces of the numerous electrodes. The method for removing phosphorus according to claim 1.
JP2000278354A 2000-09-13 2000-09-13 How to remove phosphorus Expired - Fee Related JP3953724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000278354A JP3953724B2 (en) 2000-09-13 2000-09-13 How to remove phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000278354A JP3953724B2 (en) 2000-09-13 2000-09-13 How to remove phosphorus

Publications (2)

Publication Number Publication Date
JP2002086151A JP2002086151A (en) 2002-03-26
JP3953724B2 true JP3953724B2 (en) 2007-08-08

Family

ID=18763533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000278354A Expired - Fee Related JP3953724B2 (en) 2000-09-13 2000-09-13 How to remove phosphorus

Country Status (1)

Country Link
JP (1) JP3953724B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238150U (en) * 1975-09-11 1977-03-17
JPS5442745U (en) * 1977-08-31 1979-03-23
JPH11207363A (en) * 1998-01-23 1999-08-03 Matsushita Electric Works Ltd Electrolytic dephosphorization device
JP2000070959A (en) * 1998-08-31 2000-03-07 Kawasaki Steel Corp Phosphorus removing device in water to be treated
JP2000176455A (en) * 1998-12-16 2000-06-27 Sanyo Electric Co Ltd Treatment device and method for phosphate ion- containing water
JP2001038369A (en) * 1999-08-04 2001-02-13 Michio Nagasaka Method and device for removing phosphorus and iron ball for removing phosphorus

Also Published As

Publication number Publication date
JP2002086151A (en) 2002-03-26

Similar Documents

Publication Publication Date Title
JP5881727B2 (en) Carbon bed electrolyzer for waste liquid treatment and its process
CN102596077B (en) Turboelectric coagulation apparatus
US4396474A (en) Modified carbon or graphite fibrous percolating porous electrode, its use in electrochemical reactions
WO2007050041A1 (en) Advanced electro-coagulation device and process of using the same for wastewater treatment
CN107337301B (en) A kind of method of the electric Fenton processing waste water of additional hydrogen peroxide
CN106044965B (en) Device and method for recovering heavy metals in electroplating wastewater
JP2000000596A (en) Waste water treatment method and apparatus
JP3953724B2 (en) How to remove phosphorus
Mahmoud et al. Experimental tests and modelling of an electrodeionization cell for the treatment of dilute copper solutions
KR102024359B1 (en) method to dispose water by electrolyzation
CN103922442A (en) Method for efficiently enriching ammonia nitrogen ions in water based on membrane and electrode
JP4765049B2 (en) Method for recovering useful substances from wastewater
KR102054963B1 (en) apparatys to dispose water by electrolyzation
Juang et al. Electrochemical treatment of copper from aqueous citrate solutions using a cation-selective membrane
JPH11253993A (en) Treatment of nitrate nitrogen in water to be treated
JP3506697B2 (en) Sewage treatment method and sewage septic tank
JP3692327B2 (en) Ionization and ionization purification equipment
KR100461941B1 (en) Process for removing COD and heavy metals from FGD wastewater using electrolysis
JP3440778B2 (en) Electrolytic dephosphorizer
JP3796033B2 (en) Sewage treatment equipment
TW401379B (en) The treatment for the phosphoric ion acid-containing waste water
JP2001047051A (en) Water treatment device
JP3385914B2 (en) Electrolytic dephosphorizer
Amitesha et al. Removal of heavy metal from electroplating wastewater using electrocoagulation: a review
JP3994405B2 (en) Method and apparatus for removing heavy metals in sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees