JP3953189B2 - Control device for permanent magnet type synchronous motor - Google Patents

Control device for permanent magnet type synchronous motor Download PDF

Info

Publication number
JP3953189B2
JP3953189B2 JP15220598A JP15220598A JP3953189B2 JP 3953189 B2 JP3953189 B2 JP 3953189B2 JP 15220598 A JP15220598 A JP 15220598A JP 15220598 A JP15220598 A JP 15220598A JP 3953189 B2 JP3953189 B2 JP 3953189B2
Authority
JP
Japan
Prior art keywords
permanent magnet
component
axis
synchronous motor
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15220598A
Other languages
Japanese (ja)
Other versions
JPH11332279A (en
Inventor
茂教 萩原
洋一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP15220598A priority Critical patent/JP3953189B2/en
Publication of JPH11332279A publication Critical patent/JPH11332279A/en
Application granted granted Critical
Publication of JP3953189B2 publication Critical patent/JP3953189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor And Converter Starters (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、位置センサや速度センサを有することなく停止時からの起動を可能にする永久磁石形同期電動機の制御装置に関するものである。
【0002】
【従来の技術】
図2に従来の技術のブロック線図の一例を示す。図中、1は永久磁石形同期電動機、2は永久磁石形同期電動機1に印可される一次電圧v1を検出する電圧検出器、3は永久磁石形同期電動機1に流れる一次電流i1を検出する電流検出器、4は永久磁石形同期電動機1に電力を供給する電力変換器である。
7は電流成分変成器であり、電流検出器3の出力i1及び推定された永久磁石の方向θgを入力して推定された永久磁石の方向θgに平行なd軸電流成分idおよび垂直なq軸電流成分iqを出力する。
8は電圧成分変換器であり、電圧検出器2の出力v1及び推定された永久磁石の方向θgを入力して前記推定された永久磁石の方向θgに平行なd軸電圧成分vd及び垂直なq軸電圧成分vqを出力する。
【0003】
6は、高調波重畳器であり、d軸電流成分idに重畳する高調波電流のd軸電流指令idcを出力する。電流制御器5は、d軸電流成分id及びq軸電流成分iqがd軸電流指令idc及びq軸電流指令iqc(=0)に追従するような制御信号を電力変換器4に出力する。
22は位置推定器であり、d軸電流成分id、q軸電流成分iq及びq軸電圧成分vqを入力して永久磁石の方向θgを出力する。
【0004】
位置推定器22中12は微分器であり、q軸電流成分iqを微分する。13はインダクタンス分電圧降下演算器であり、微分器12の出力と永久磁石の方向に垂直な軸の永久磁石形同期電動機1のインダクタンスLqとの積を出力する。
14は抵抗分電圧降下演算器であり、q軸電流成分iqと永久磁石形同期電動機1の電機子抵抗Rとの積を出力する。
15は加算器であり、インダクタンス分電圧降下演算器13の出力と抵抗分電圧降下演算器14の出力との和を出力する。16は減算器であり、加算器15の出力とq軸電圧成分vqとの差を出力する。17は微分器であり、減算器16の出力を微分する。18は位置誤差検出器であり、微分器17の出力dvqとd軸電流成分idとの積Δωを出力する。19は低域通過フィルタであり、位置誤差検出器18の出力Δωに含まれる直流成分Δωfを出力する。
【0005】
20は比例積分増幅器であり、低域通過フィルタ19の出力Δωfを入力して永久磁石形同期電動機1の回転速度ωgを出力する。21は積分器であり、回転速度ωgを積分して永久磁石の方向θgを出力する。
【0006】
以下は、従来の技術について永久磁石形同期電動機の回転速度ωgと永久磁石の方向θgとの推定原理を説明する。
図3は永久磁石形同期電動機の実際の永久磁石φgrの方向θgrと推定された永久磁石φgの方向θgの関係をベクトルで表したもので、これらの間に
【0007】
【数1】

Figure 0003953189
【0008】
の位置誤差Δθがある場合、d軸電流成分idとq軸電流成分iqが、
【0009】
【数2】
Figure 0003953189
【0010】
に制御されているとすると、一次電流i1の中で実際の永久磁石φgrの方向θgrに平行なdr軸電流成分idr及び垂直なqr軸電流成分iqrは、
【0011】
【数3】
Figure 0003953189
【0012】
で表される。
ここで、Iは電流の波高値、ωは電流の角周波数、tは時間である。
【0013】
永久磁石形同期電動機の特性方程式は、次式で表される。
【0014】
【数4】
Figure 0003953189
【0015】
ここで、vdrは一次電圧v1の中で実際の永久磁石φgrの方向θgrに平行なdr軸電圧成分、vqrは一次電圧v1の中で実際の永久磁石φgrの方向θgrに垂直なqr軸電圧成分、pは微分演算子、Ldは永久磁石形同期電動機のインダクタンスで永久磁石の方向に平行な軸のインダクタンス、ωgrは永久磁石形同期電動機の実際の回転速度、φは永久磁石の磁束の大きさである。
停止時のdr軸電圧成分vdrとqr軸電圧成分vqrは(4)式、(5)式、(6)式と(7)式より、
【0016】
【数5】
Figure 0003953189
【0017】
となる。
従って、推定された永久磁石φgの方向θg及び垂直なq軸電圧成分vqは、(8)式と(9)式により、
【0018】
【数6】
Figure 0003953189
【0019】
と表される。
【0020】
位置誤差検出器18の出力Δωは、d軸電流成分idとq軸電圧成分vqを微分した値との積なので、
【0021】
【数7】
Figure 0003953189
【0022】
と表される。従って、低域通過フィルタ19の出力ΔωfであるΔωの直流成分は、
【0023】
【数8】
Figure 0003953189
【0024】
となる。Lq>Ldなので(12)式よりΔθ>0の場合はΔωf<0、
Δθ<0の場合はΔωf>0となることが分かる。つまり推定している永久磁石の方向θgが実際の方向θgrよりも進んでいる場合は、Δωf<0となり比例積分増幅器20によって推定された永久磁石形同期電動機の回転速度ωgが小さくなるのでθgの進みが遅くなり実際の方向に一致するようになる。
逆の場合も同様である。
【0025】
【発明が解決しようとする課題】
(12)式によりΔωfは−sin(2・Δθ)と比例関係にあることから永久磁石の磁束の方向を推定できることを説明したが、それは位置誤差Δθが
−90度<Δθ<90度である場合に限られる。すなわち永久磁石形同期電動機が停止している場合等、永久磁石の方向が分からない場合、最初の位置誤差Δθが±90度以上あると推定される永久磁石の磁束の方向θgは±180度の位置誤差Δθを持ってしまう。
【0026】
さらに最初の位置誤差Δθが±90度付近の場合、Δωfが不安定となり永久磁石の方向を推定できなくなる。
本発明は上述した点に鑑みて創案されたもので、その目的とするところは、これらの欠点を解決し、位置誤差Δθが−90度<Δθ<90度以外でも永久磁石の方向を推定することができ、さらに位置誤差Δθが±90度付近の場合に
Δωfが不安定になることも解消できる永久磁石形同期電動機の制御装置を提供するものである。
【0027】
【課題を解決するための手段】
つまり、その目的を達成するための手段は、請求項1に示す如く、永久磁石形同期電動機の推定された永久磁石の方向に平行な一次電流の成分に高調波を重畳して、検出された前記永久磁石形同期電動機の一次電流と一次電圧より前記推定された永久磁石の方向を修正できる位置推定器を持つ永久磁石形同期電動機の制御装置において、前記永久磁石形同期電動機の一次電流を、推定された永久磁石の方向に平行なd軸電流成分及び垂直なq軸電流成分に分けて出力する電流成分変換器と、前記永久磁石形同期電動機の一次電圧を、推定された永久磁石の方向に平行なd軸電圧成分及び垂直なq軸電圧成分に分けて出力する電圧成分変換器と、前記永久磁石形同期電動機が停止した状態で、前記推定された永久磁石に平行な一次電流成分を直流成分のない高調波成分のみとし、前記推定された永久磁石の方向に垂直な方向の一次電流成分を零としたときに前記電圧成分変換器出力のd軸電圧成分の振幅の大きさが所定値より大きい場合は前記推定された永久磁石の方向を90度進めるか90度遅らせるように前記位置推定器を修正するdq軸判定器と、前記d軸電流成分が正の時のd軸電圧成分の平均値が、d軸電流成分が負の時のd軸電圧成分の平均値より大きい場合に前記推定された永久磁石の方向を180度進めた値になるように前記位置推定器を修正する磁極判定器とを具備するものである。
【0028】
【発明の実施の形態】
図1に請求項1に対する本発明の一実施例のブロック線図を示し、以下この図に基づいて説明する。なお、図2と同一符号で示す部分は、同一構成、同一機能を有するが、ここではその説明は省略する。
図1中、10はdq軸判定器であり、d軸電圧成分vdの振幅の大きさが所定値より大きい場合は推定された永久磁石の方向θgを90度進めるか遅らせるように位置推定器9の出力を修正する。11は磁極判定器であり、d軸電流成分idが正の時のd軸電圧成分vdの平均値がd軸電流成分idが負の時のd軸電圧成分vdの平均値より大きい場合に前記推定された永久磁石の方向θgを180度進めた値になるように位置推定器9の出力を修正する。位置推定器9は、位置推定器22にdq軸判定器10と磁極判定器11とによる前記推定された永久磁石の方向θgを修正する機能を加えたものである。
【0029】
以下は本発明によって、前記問題点を解決できる理由を説明する。推定された永久磁石φgの方向θgと平行な成分のd軸電圧成分vdは、(8)式と(9)式により、
【0030】
【数9】
Figure 0003953189
【0031】
と表される。(13)式よりd軸電圧成分vdの振幅の大きさは、Lq>Ldの関係から位置誤差Δθが±90度に近づくほど大きくなる。よって、d軸電圧成分vdの振幅の大きさを所定値と比較して、d軸電圧成分vdの振幅の大きさが所定値より大きければ、推定された永久磁石の方向θgを90度進めるかもしくは遅らせる。
【0032】
永久磁石の方向θgが正しく推定されている場合の永久磁石形同期電動機のインダクタンスLdは、d軸電流成分idが正ならd軸電流成分idによる磁束と永久磁石の磁束の方向θgとが等しくなり、インダクタンスLdが小さくなる。逆に、d軸電流成分idが負ならd軸電流成分idによる磁束と永久磁石の磁束の方向θgとが逆方向となりインダクタンスLdが大きくなる磁気飽和現象が発生する。よって、永久磁石の方向θgに180度の位置誤差Δθがある場合は、d軸電流成分idが正ならインダクタンスLdは大きくなり、d軸電流成分idが負ならインダクタンスLdは小さくなることは明らかである。そこで、d軸電流指令idc=I・sin(ω・t)、q軸電流指令iqc=0に制御した時、d軸電流成分idが正の時のd軸電圧成分vdの平均値とd軸電流成分idが負の時のd軸電圧成分vdの平均値を比較することで180度の位置誤差Δθがあるかどうかを判定することができる。
【発明の効果】
本発明により、位置センサなしで永久磁石形同期電動機の停止時の永久磁石の方向を推定することが可能になった。
【図面の簡単な説明】
【図1】本発明の一実施例を表すブロック図である。
【図2】従来方式の一実施例を表すブロック図である。
【図3】本発明の原理を説明するためのベクトル図である。
【符号の説明】
1 永久磁石形同期電動機
2 電圧検出器
3 電流検出器
4 電力変換器
5 電流制御器
6 高調波重畳器
7 電流成分変換器
8 電圧成分変換器
9 位置推定器
10 dq軸判定器
11 磁極判定器
12 微分器
13 インダクタンス分電圧降下演算器
14 抵抗分電圧降下演算器
15 加算器
16 減算器
17 微分器
18 位置誤差検出器
19 低域通過フィルタ
20 比例積分増幅器
21 積分器
22 位置推定器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a controller for a permanent magnet synchronous motor that can be started from a stop without having a position sensor or a speed sensor.
[0002]
[Prior art]
FIG. 2 shows an example of a conventional block diagram. In the figure, 1 is a permanent magnet type synchronous motor, 2 is a voltage detector for detecting a primary voltage v1 applied to the permanent magnet type synchronous motor 1, and 3 is a current for detecting a primary current i1 flowing through the permanent magnet type synchronous motor 1. The detector 4 is a power converter that supplies power to the permanent magnet type synchronous motor 1.
7 is a current component transformer, which receives the output i1 of the current detector 3 and the estimated direction θg of the permanent magnet and inputs the d-axis current component id parallel to the estimated direction θg of the permanent magnet and the vertical q-axis. The current component iq is output.
A voltage component converter 8 receives the output v1 of the voltage detector 2 and the estimated direction θg of the permanent magnet and inputs a d-axis voltage component vd parallel to the estimated direction θg of the permanent magnet and a vertical q The shaft voltage component vq is output.
[0003]
Reference numeral 6 denotes a harmonic superimposer that outputs a d-axis current command idc of a harmonic current to be superimposed on the d-axis current component id. The current controller 5 outputs a control signal to the power converter 4 such that the d-axis current component id and the q-axis current component iq follow the d-axis current command idc and the q-axis current command iqc (= 0).
Reference numeral 22 denotes a position estimator which inputs a d-axis current component id, a q-axis current component iq and a q-axis voltage component vq and outputs a permanent magnet direction θg.
[0004]
12 in the position estimator 22 is a differentiator that differentiates the q-axis current component iq. An inductance voltage drop calculator 13 outputs the product of the output of the differentiator 12 and the inductance Lq of the permanent magnet type synchronous motor 1 whose axis is perpendicular to the direction of the permanent magnet.
A resistance voltage drop calculator 14 outputs a product of the q-axis current component iq and the armature resistance R of the permanent magnet type synchronous motor 1.
An adder 15 outputs the sum of the output of the inductance voltage drop calculator 13 and the output of the resistance voltage drop calculator 14. Reference numeral 16 denotes a subtracter that outputs the difference between the output of the adder 15 and the q-axis voltage component vq. A differentiator 17 differentiates the output of the subtractor 16. A position error detector 18 outputs a product Δω of the output dvq of the differentiator 17 and the d-axis current component id. Reference numeral 19 denotes a low-pass filter that outputs a DC component Δωf included in the output Δω of the position error detector 18.
[0005]
Reference numeral 20 denotes a proportional integration amplifier which inputs the output Δωf of the low-pass filter 19 and outputs the rotational speed ωg of the permanent magnet synchronous motor 1. An integrator 21 integrates the rotational speed ωg and outputs the direction θg of the permanent magnet.
[0006]
In the following, the estimation principle of the rotational speed ωg of the permanent magnet type synchronous motor and the direction θg of the permanent magnet will be described with respect to the prior art.
FIG. 3 shows the relationship between the direction θgr of the actual permanent magnet φgr of the permanent magnet type synchronous motor and the direction θg of the estimated permanent magnet φg as a vector.
[Expression 1]
Figure 0003953189
[0008]
When there is a position error Δθ of d-axis current component id and q-axis current component iq,
[0009]
[Expression 2]
Figure 0003953189
[0010]
In the primary current i1, the dr-axis current component idr parallel to the direction θgr of the actual permanent magnet φgr and the qr-axis current component iqr perpendicular to
[0011]
[Equation 3]
Figure 0003953189
[0012]
It is represented by
Here, I is the peak value of the current, ω is the angular frequency of the current, and t is the time.
[0013]
The characteristic equation of the permanent magnet type synchronous motor is expressed by the following equation.
[0014]
[Expression 4]
Figure 0003953189
[0015]
Here, vdr is a dr-axis voltage component parallel to the direction θgr of the actual permanent magnet φgr in the primary voltage v1, and vqr is a qr-axis voltage component perpendicular to the direction θgr of the actual permanent magnet φgr in the primary voltage v1. , P is the differential operator, Ld is the inductance of the permanent magnet type synchronous motor and the inductance of the axis parallel to the direction of the permanent magnet, ωgr is the actual rotational speed of the permanent magnet type synchronous motor, φ is the magnitude of the magnetic flux of the permanent magnet It is.
The dr-axis voltage component vdr and the qr-axis voltage component vqr at the time of stop are expressed by the equations (4), (5), (6), and (7),
[0016]
[Equation 5]
Figure 0003953189
[0017]
It becomes.
Therefore, the estimated direction θg of the permanent magnet φg and the vertical q-axis voltage component vq are expressed by the equations (8) and (9):
[0018]
[Formula 6]
Figure 0003953189
[0019]
It is expressed.
[0020]
The output Δω of the position error detector 18 is the product of the d-axis current component id and the value obtained by differentiating the q-axis voltage component vq.
[0021]
[Expression 7]
Figure 0003953189
[0022]
It is expressed. Therefore, the DC component of Δω that is the output Δωf of the low-pass filter 19 is
[0023]
[Equation 8]
Figure 0003953189
[0024]
It becomes. Since Lq> Ld, from equation (12), when Δθ> 0, Δωf <0,
It can be seen that Δωf> 0 when Δθ <0. That is, when the estimated direction θg of the permanent magnet is ahead of the actual direction θgr, Δωf <0, and the rotational speed ωg of the permanent magnet type synchronous motor estimated by the proportional integration amplifier 20 becomes small. The advance is slow and matches the actual direction.
The same applies to the reverse case.
[0025]
[Problems to be solved by the invention]
The equation (12) explained that Δωf is proportional to −sin (2 · Δθ), so that the direction of the magnetic flux of the permanent magnet can be estimated. However, the positional error Δθ is −90 degrees <Δθ <90 degrees. Limited to cases. That is, when the direction of the permanent magnet is unknown, such as when the permanent magnet type synchronous motor is stopped, the direction θg of the magnetic flux of the permanent magnet that is estimated to have an initial position error Δθ of ± 90 degrees or more is ± 180 degrees. It has a position error Δθ.
[0026]
Further, when the initial position error Δθ is around ± 90 degrees, Δωf becomes unstable and the direction of the permanent magnet cannot be estimated.
The present invention was devised in view of the above points, and its object is to solve these drawbacks and estimate the direction of the permanent magnet even when the position error Δθ is other than −90 degrees <Δθ <90 degrees. In addition, the present invention provides a controller for a permanent magnet type synchronous motor that can eliminate the instability of Δωf when the position error Δθ is around ± 90 degrees.
[0027]
[Means for Solving the Problems]
In other words, the means for achieving the object is detected by superimposing harmonics on the component of the primary current parallel to the direction of the estimated permanent magnet of the permanent magnet type synchronous motor, as shown in claim 1. In the controller for a permanent magnet type synchronous motor having a position estimator capable of correcting the direction of the estimated permanent magnet from the primary current and primary voltage of the permanent magnet type synchronous motor, the primary current of the permanent magnet type synchronous motor is A current component converter that outputs a d-axis current component that is parallel to the direction of the estimated permanent magnet and a q-axis current component that is perpendicular to the direction of the estimated permanent magnet, and a primary voltage of the permanent magnet synchronous motor that is estimated. A voltage component converter that outputs a voltage component divided into a d-axis voltage component and a q-axis voltage component that are parallel to each other, and a primary current component that is parallel to the estimated permanent magnet while the permanent magnet synchronous motor is stopped. straight The amplitude of the d-axis voltage component of the voltage component converter output is a predetermined value when only the harmonic component having no component is set and the primary current component in the direction perpendicular to the direction of the estimated permanent magnet is set to zero. If it is larger, a dq-axis discriminator that modifies the position estimator so that the estimated direction of the permanent magnet is advanced by 90 degrees or delayed by 90 degrees, and a d-axis voltage component when the d-axis current component is positive The magnetic pole that corrects the position estimator so that the average value becomes a value obtained by advancing the direction of the estimated permanent magnet by 180 degrees when the average value is larger than the average value of the d-axis voltage component when the d-axis current component is negative. And a determiner.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a block diagram of an embodiment of the present invention corresponding to claim 1 and will be described below with reference to this figure. Note that portions denoted by the same reference numerals as those in FIG. 2 have the same configuration and the same function, but the description thereof is omitted here.
In FIG. 1, reference numeral 10 denotes a dq axis determiner. When the amplitude of the d axis voltage component vd is larger than a predetermined value, the position estimator 9 is configured to advance or delay the estimated direction θg of the permanent magnet by 90 degrees. Correct the output of. 11 is a magnetic pole discriminator, which is used when the average value of the d-axis voltage component vd when the d-axis current component id is positive is larger than the average value of the d-axis voltage component vd when the d-axis current component id is negative. The output of the position estimator 9 is corrected so that the estimated direction θg of the permanent magnet is a value advanced by 180 degrees. The position estimator 9 is obtained by adding a function of correcting the estimated direction θg of the permanent magnet by the dq axis determiner 10 and the magnetic pole determiner 11 to the position estimator 22.
[0029]
Hereinafter, the reason why the above-described problem can be solved by the present invention will be described. The d-axis voltage component vd, which is a component parallel to the estimated direction θg of the permanent magnet φg, is expressed by the following equations (8) and (9):
[0030]
[Equation 9]
Figure 0003953189
[0031]
It is expressed. From the equation (13), the magnitude of the amplitude of the d-axis voltage component vd increases as the position error Δθ approaches ± 90 degrees from the relationship of Lq> Ld. Therefore, the magnitude of the amplitude of the d-axis voltage component vd is compared with a predetermined value. If the magnitude of the amplitude of the d-axis voltage component vd is larger than the predetermined value, the estimated direction θg of the permanent magnet is advanced by 90 degrees. Or delay.
[0032]
If the d-axis current component id is positive, the inductance Ld of the permanent magnet synchronous motor when the direction θg of the permanent magnet is correctly estimated is equal to the magnetic flux direction θg of the d-axis current component id and the magnetic flux direction of the permanent magnet. Inductance Ld becomes small. Conversely, if the d-axis current component id is negative, a magnetic saturation phenomenon occurs in which the magnetic flux due to the d-axis current component id and the direction θg of the permanent magnet magnetic flux are reversed and the inductance Ld increases. Therefore, when there is a position error Δθ of 180 degrees in the direction θg of the permanent magnet, it is clear that the inductance Ld increases if the d-axis current component id is positive, and the inductance Ld decreases if the d-axis current component id is negative. is there. Therefore, when the d-axis current command idc = I · sin (ω · t) and the q-axis current command iqc = 0 are controlled, the average value of the d-axis voltage component vd when the d-axis current component id is positive and the d-axis By comparing the average value of the d-axis voltage component vd when the current component id is negative, it can be determined whether or not there is a position error Δθ of 180 degrees.
【The invention's effect】
The present invention makes it possible to estimate the direction of the permanent magnet when the permanent magnet type synchronous motor is stopped without a position sensor.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating an embodiment of the present invention.
FIG. 2 is a block diagram showing an example of a conventional method.
FIG. 3 is a vector diagram for explaining the principle of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Permanent magnet type synchronous motor 2 Voltage detector 3 Current detector 4 Power converter 5 Current controller 6 Harmonic superimposer 7 Current component converter 8 Voltage component converter 9 Position estimator 10 dq axis determiner 11 Magnetic pole determiner 12 Differentiator 13 Inductance voltage drop calculator 14 Resistance voltage drop calculator 15 Adder 16 Subtractor 17 Differentiator 18 Position error detector 19 Low-pass filter 20 Proportional integration amplifier 21 Integrator 22 Position estimator

Claims (1)

永久磁石形同期電動機の推定された永久磁石の方向に平行な一次電流の成分に高調波を重畳して、検出された前記永久磁石形同期電動機の一次電流と一次電圧より前記推定された永久磁石の方向を修正できる位置推定器を持つ永久磁石形同期電動機の制御装置において、前記永久磁石形同期電動機の一次電流を、推定された永久磁石の方向に平行なd軸電流成分及び垂直なq軸電流成分に分けて出力する電流成分変換器と、前記永久磁石形同期電動機の一次電圧を、推定された永久磁石の方向に平行なd軸電圧成分及び垂直なq軸電圧成分に分けて出力する電圧成分変換器と、前記永久磁石形同期電動機が停止した状態で、前記推定された永久磁石に平行な一次電流成分を直流成分のない高調波成分のみとし、前記推定された永久磁石の方向に垂直な方向の一次電流成分を零としたときに前記電圧成分変換器出力のd軸電圧成分の振幅の大きさが所定値より大きい場合は前記推定された永久磁石の方向を90度進めるか90度遅らせるように前記位置推定器を修正するdq軸判定器と、前記d軸電流成分が正の時のd軸電圧成分の平均値が、d軸電流成分が負の時のd軸電圧成分の平均値より大きい場合に前記推定された永久磁石の方向を180度進めた値になるように前記位置推定器を修正する磁極判定器とを具備することを特徴とする永久磁石形同期電動機の制御装置。The estimated permanent magnet is obtained from the detected primary current and primary voltage of the permanent magnet type synchronous motor by superimposing harmonics on the component of the primary current parallel to the direction of the estimated permanent magnet of the permanent magnet type synchronous motor. In a control apparatus for a permanent magnet type synchronous motor having a position estimator capable of correcting the direction of the permanent magnet type synchronous motor, a primary current of the permanent magnet type synchronous motor is determined by using a d-axis current component parallel to the direction of the estimated permanent magnet and a vertical q axis. The primary component voltage of the current component converter that outputs the current component separately and the permanent magnet type synchronous motor is divided into the d-axis voltage component parallel to the estimated permanent magnet direction and the q-axis voltage component perpendicular to the output. With the voltage component converter and the permanent magnet type synchronous motor stopped, the primary current component parallel to the estimated permanent magnet is only a harmonic component without a DC component, and the direction of the estimated permanent magnet If the magnitude of the amplitude of the d-axis voltage component output from the voltage component converter is larger than a predetermined value when the primary current component in the vertical direction is zero, is the estimated permanent magnet direction advanced by 90 degrees? A dq axis determiner that modifies the position estimator so as to be delayed, an average value of the d axis voltage component when the d axis current component is positive, and a d axis voltage component when the d axis current component is negative. And a magnetic pole discriminator for correcting the position estimator so that the estimated direction of the permanent magnet becomes a value obtained by advancing the direction of the estimated permanent magnet by 180 degrees when the average value is larger than the average value. apparatus.
JP15220598A 1998-05-15 1998-05-15 Control device for permanent magnet type synchronous motor Expired - Lifetime JP3953189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15220598A JP3953189B2 (en) 1998-05-15 1998-05-15 Control device for permanent magnet type synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15220598A JP3953189B2 (en) 1998-05-15 1998-05-15 Control device for permanent magnet type synchronous motor

Publications (2)

Publication Number Publication Date
JPH11332279A JPH11332279A (en) 1999-11-30
JP3953189B2 true JP3953189B2 (en) 2007-08-08

Family

ID=15535372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15220598A Expired - Lifetime JP3953189B2 (en) 1998-05-15 1998-05-15 Control device for permanent magnet type synchronous motor

Country Status (1)

Country Link
JP (1) JP3953189B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439536B2 (en) 2017-03-07 2019-10-08 Lsis Co., Ltd. Apparatus and method for estimating initial position of rotor of motor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3919003B2 (en) 2002-09-26 2007-05-23 本田技研工業株式会社 DC brushless motor rotor angle detector
CN1310416C (en) * 2003-11-20 2007-04-11 株式会社日立制作所 Control device for permanent magnet type synchronous motor
JP7205117B2 (en) * 2018-09-06 2023-01-17 株式会社アドヴィックス motor controller
JP2020088978A (en) * 2018-11-20 2020-06-04 株式会社日立産機システム Electric power conversion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439536B2 (en) 2017-03-07 2019-10-08 Lsis Co., Ltd. Apparatus and method for estimating initial position of rotor of motor

Also Published As

Publication number Publication date
JPH11332279A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
JP5761243B2 (en) Motor control device and magnetic pole position estimation method
US7504797B2 (en) Motor control device
US7245104B2 (en) Position-sensorless motor control device
JP5861819B2 (en) Control device for permanent magnet type synchronous motor
US6344725B2 (en) Method and apparatus for controlling a synchronous motor
WO2013058281A1 (en) Device for controlling rotary electrical machine
JP5281339B2 (en) Synchronous motor drive system and control device used therefor
US20170264227A1 (en) Inverter control device and motor drive system
JP2001251889A (en) Conjecturing method for position of rotor in synchronous motor, and method and apparatus for sensorless control of position
JP2015136237A (en) Dynamo-electric machine controller, dynamo-electric machine control method, and creation method of control map
JP5277724B2 (en) Control device for permanent magnet type synchronous motor
JP2009060688A (en) Controller for synchronous motors
JP5757205B2 (en) Control device for permanent magnet type synchronous motor
JP2010166638A (en) Controller of rotating electrical machine
JP3945904B2 (en) Position and speed sensorless controller for synchronous motor
JP3953189B2 (en) Control device for permanent magnet type synchronous motor
JP2009273283A (en) Controller for permanent magnet type synchronous motor
JP4305698B2 (en) Synchronous motor position and speed estimation device
WO2014167678A1 (en) Control device for permanent magnet motor
JP7304891B2 (en) Rotating machine control device and electric vehicle control device
JP5614539B2 (en) Electric motor control device
JP4596092B2 (en) Induction motor magnetic flux position estimation method and control apparatus
JP4371487B2 (en) Synchronous motor position and speed estimation device
JP4596200B2 (en) Control device for permanent magnet type synchronous motor
JP6590196B2 (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

EXPY Cancellation because of completion of term