JP3952585B2 - Secondary battery charger - Google Patents

Secondary battery charger Download PDF

Info

Publication number
JP3952585B2
JP3952585B2 JP07809398A JP7809398A JP3952585B2 JP 3952585 B2 JP3952585 B2 JP 3952585B2 JP 07809398 A JP07809398 A JP 07809398A JP 7809398 A JP7809398 A JP 7809398A JP 3952585 B2 JP3952585 B2 JP 3952585B2
Authority
JP
Japan
Prior art keywords
secondary battery
threshold voltage
charging
control threshold
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07809398A
Other languages
Japanese (ja)
Other versions
JPH11318040A (en
Inventor
行伯 赤本
浩孝 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP07809398A priority Critical patent/JP3952585B2/en
Publication of JPH11318040A publication Critical patent/JPH11318040A/en
Application granted granted Critical
Publication of JP3952585B2 publication Critical patent/JP3952585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル水素電池等の二次電池を過充電することなく効率的に充電することのできる二次電池の充電装置に関する。
【0002】
【関連する背景技術】
リチウムイオン電池やニッケル水素電池等の二次電池に対する充電は、一般的には電池電圧や電池温度の変化(変化率)からその満充電が検出されるまで定電流定電圧電源から電流を供給して行われる。また満充電の検出後、微少な電流にてトリクル充電することも行われる。この際、過充電による電池性能の劣化を防止する上で、その満充電状態を的確に検出することが重要である。そこで従来では二次電池の満充電直後にその電圧がピークに達することに着目して、例えば図7(a)に示すように電池電圧のピークを検出することで満充電を検出している。具体的には現在の電池電圧からそれ以前に検出された最大電池電圧を減算し、その減算値が所定の設定値(例えば−10mV)よりも小さくなったとき、これを満充電に到達したとして検出して、その充電を停止している(−dV法)。この為、電池電圧のピークが検出されるまでの間に過充電が生じることが否めない。
【0003】
また電池温度の変化を利用して満充電の検出を行う場合には、例えば図7(b)に示すように単位時間当たりの温度変化を求め、この温度変化が所定の設定値(例えば1℃/分)を越えたとき、これを満充電に到達したとしてその検出が行われる。この手法はニッケル水素電池が満充電状態に達した後、その正極から発生する酸素が負極において還元される際に発生する熱により、電池温度が上昇することに着目したものである。
【0004】
【発明が解決しようとする課題】
しかしながら上述した満充電の検出手法は、いずれも満充電後の現象を捉えたものであり、従って過充電になり易いと言う問題がある。特に大電流を用いて急速充電するような場合に上記問題が生じ易く、その充電を繰り返す毎に電池性能が劣化して充放電サイクル寿命が短くなり、またその発熱も大きくなると言う不具合がある。
【0005】
一方、特開平9−233726号公報に開示されるように、二次電池の開放電圧を検出しながらその充電電流を断続制御して該二次電池をパルス充電する手法がある。このパルス充電方式は、上記断続制御により二次電池に対する充電と休止とを繰り返しながら充電休止時における二次電池の開放電圧を検出し、その開放電圧が所定の設定電圧以下になったときに上記充電を再開するものであり、特にその充電休止時間が設定時間をよりも長くなったとき、これを満充電に到達したとしてその充電処理を停止するものである。
【0006】
しかし上述した如く充電電流を断続制御するに際して、例えば前記設定電圧が低いとパルス充電の間隔(充電休止時間)が長くなり、十分な充電が行われない状態で満充電が検出されることになるので、所定の充電容量が得られなくなる。逆に前記設定電圧が高いと頻繁に充電が再開され、パルス充電が繰り返し行われることになり、その充電休止時間からの満充電の検出が遅れるので、二次電池が過充電される虞が生じる。
【0007】
本発明はこのような事情を考慮してなされたもので、その目的は、充電電流を断続制御して二次電池をパルス充電するに際し、該二次電池が過充電に至る前の満充電状態を的確に検出してその充電処理を停止させることのできる機能を備えた二次電池の充電装置を提供することにある。
特に本発明は、二次電池の開放電圧を検出しながら該二次電池に対するパルス充電を制御するに際して、上記開放電圧を判定する上での設定電圧(制御閾値電圧)を適切に設定し、これによって前記二次電池が過充電に至る前にその満充電状態を的確に検出するようにした二次電池の充電装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
上述した目的を達成するべく本発明に係る二次電池の充電装置は、二次電池の開放電圧を制御閾値電圧と比較して該二次電池に対するパルス充電を制御する上で、最適な制御閾値電圧が二次電池の温度に依存することを見出してなされたもので、
1個または直列接続された複数のニッケル水素電池からなる二次電池の充電休止時における該二次電池の開放電圧を検出し、検出した開放電圧と制御閾値電圧とを比較して該開放電圧と上記制御閾値電圧よりも低いとき前記二次電池に対する充電電流を断続制御して該二次電池をパルス充電する充電制御手段とを備えたものであって、特に前記パルス充電における前記二次電池の温度を検出し、検出された電池温度に応じて前記制御閾値電圧を適応的に、前記開放電圧が上記最適化した制御閾値電圧を上回るとき前記パルス充電を制御するようにしたことを特徴としている。
【0009】
具体的には前記二次電池の個数をN、電池温度T[℃]をx、前記制御閾値電圧Vref[mV]をyとしたとき
(1425−x)・N ≦ y ≦ (1475−x)・N
なる条件式の下で前記制御閾値電圧Vrefを電池温度Tに応じて適応的に設定することで、最適なパルス充電制御を実現することを特徴としている。
【0010】
また本発明に係る二次電池の充電装置は、請求項2に記載するように直列に接続された複数の二次電池にそれぞれ設けられて各二次電池をその直列回路から個別に切り離す複数のバイパス回路と、前記各二次電池の開放電圧をそれぞれ検出する手段とを有するものであって、
前記検出された開放電圧が所定の制御閾値電圧以上の二次電池に設けられたバイパス回路を作動させて、その二次電池を前記直列回路から切り離すバイパス制御手段を有すると共に、前記検出された開放電圧が前記所定の制御閾値電圧よりも低い二次電池があるとき、前記直列回路に供給する充電電流を断続制御して前記直列回路を形成している二次電池をパルス充電する充電制御手段を有し、
且つ、前記充電制御手段は、前記二次電池の温度を検出し、この検出された温度に応じて最適な制御閾値電圧を設定し、前記複数の二次電池の開放電圧の全てが上記最適化された制御閾値電圧を上回るとき前記パルス充電を停止制御することを特徴としている。
【0011】
即ち、直列に接続された複数の二次電池の各開放電圧に応じてバイパス回路を選択的に作動させることで、その開放電圧が前記制御閾値電圧を越えている二次電池をその直列回路から切り離す。そして開放電圧が前記制御閾値電圧よりも低く、前記直列回路に組み込まれている二次電池に対してだけパルス充電するように構成することで、充電状態が異なる複数の二次電池を一括して充電するようにしたことを特徴としている。
【0012】
この発明の好ましい態様は、請求項3に示すように前記各二次電池がそれぞれ1個または直列接続された複数のニッケル水素電池からなるとき、前記各二次電池におけるニッケル水素電池の個数をN、電池温度T[℃]をx、前記制御閾値電圧Vref[mV]をyとして、前述したように
(1425−x)・N ≦ y ≦ (1475−x)・N
なる条件式の下で、前記各二次電池毎にその制御閾値電圧Vrefを電池温度Tに応じて適応的に設定することを特徴としている。
【0013】
この際、前記複数の二次電池の温度を、その全体的なまとまりとして一括して検出しても良いが、例えば請求項4に記載するように、各二次電池毎にそれぞれ検出するようにしても良い。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態に係る二次電池の充電装置について説明する。
図1は第1の実施形態を示す充電装置の概略構成図で、1は二次電池BATを充電する為の電源である。上記二次電池BATは、例えば1個または直列接続した複数のニッケル水素電池からなる。電源1は、一般的には定電流定電圧電源が用いられるが、ここでは後述するようにパルス制御によって前記二次電池BATに対する充電を制御することから、格別に定電流・定電圧特性を備えなくても良く、或る程度の大きさの充電電流を確保し得るものであれば十分である。
【0015】
さて充電装置は、前記電源1と二次電池BATとの間に直列に介挿されたスイッチ2と、このスイッチ2を断続制御して前記二次電池BATに対する充電と休止を繰り返し、これによって該二次電池BATをパルス充電するスイッチ制御部(充電制御部)3を備えている。尚、上記スイッチ2は、高速スイッチング動作可能なパワーFET等によって構成される。
【0016】
しかして電圧検出部4は、前記スイッチ制御部3の制御の下で充電休止期間における前記二次電池BATの開放電圧Voff[mV]を検出するものであり、検出された開放電圧Voffは比較器5に与えられて所定の制御閾値電圧Vref[mV]と比較されている。前記スイッチ制御部3は、上述した如く比較器5にて比較される前記開放電圧Voffが前記制御閾値電圧Vrefに満たないとき、所定幅のパルス時間(オン時間)に亘って前記スイッチ2を導通させることで前記電源1から二次電池BATに対して充電電流を流して該二次電池BATをパルス充電する。つまりスイッチ制御部3は、前記開放電圧Voffが前記制御閾値電圧Vrefに満たないときにスイッチ2をオン動作させて充電を開始し、予め設定された所定の時間に亘って二次電池BATを充電した後、前記スイッチ2をオフ動作させることで充電と休止とを交互に繰り返し、これによって二次電池BATをパルス充電する如く構成されている。
【0017】
さてここで本装置が特徴とするところは、例えばサーミスタからなる温度センサ6を用いて前記二次電池BATの温度T[℃]を検出する温度検出部7を備え、更にこの温度検出部7にて検出された電池温度Tに従って前述した制御閾値電圧Vrefを適応的に設定する電圧設定部8を備えている点にある。この電圧設定部8は、例えば電池温度Tに対応する制御閾値電圧Vrefを予め記憶したテーブル(メモリ)として実現されるものであっても良く、或いは後述するように検出された電池温度Tに応じて、所定の演算式の下で最適な制御閾値電圧Vrefを算出し、これを比較器5に出力するものであっても良い。
【0018】
しかして前記電圧設定部8は、前記二次電池BATを構成するニッケル水素電池の個数がN[個]であるとき、前述した如く検出される二次電池BATの温度T[℃]をxとして前記制御閾値電圧Vref[mV]を、
(1425−x)・N≦y≦ (1475−x)・N
なる条件式に示される変数yとして設定するように構成されている。即ち、二次電池BATに対する充電を前述した如くパルス制御して実行するに際して、その最適な制御閾値電圧Vref[mV]が該二次電池BATの温度T[℃]に依存することを見出し、これに着目して前記電圧設定部8においては上述した条件式の下で電池温度T[℃]に応じた制御閾値電圧Vref[mV]を適応的に設定するものとなっている。具体的には電池温度Tに応じて、例えば図2に示すように如く設定される範囲の下で制御閾値電圧Vrefを設定するものとなっている。
【0019】
この条件式(制御閾値電圧Vrefの設定範囲)について説明すると、本発明者は前記制御閾値電圧Vref[mV]を変えて二次電池BAT(ニッケル水素電池)を所定時間に亘ってパルス充電した後、該二次電池BATを所定の放電条件で放電させると言う充放電サイクルを繰り返し実行し、各サイクル毎にその電池電圧が所定の判定電圧に達するまでの時間に従ってその放電容量(充電容量)を算出した。具体的にはAAサイズの通常のニッケル水素電池からなる二次電池BATを、その定格充電電流に対して2倍の充電電流(2CmA)で1時間に亘ってパルス充電した後、当該二次電池を放電電流1CmAで放電させ、その放電電圧(開放電圧)Voffが1.0[V]に達するまでの時間から、該二次電池BATの放電容量(充電容量)を算出した。特に二次電池BATの雰囲気温度(電池温度T)を変えながら上記計測を行った。
【0020】
そして常温(20℃)での1サイクル目における放電容量を基準として、温度Tおよび制御閾値電圧Vrefを異ならせた各種条件下での放電容量比を求めた。また同時に上記各条件下での充放電サイクルにおいて、その放電容量が1サイクル目の放電容量の80%まで低下したときのサイクル数をそれぞれ求め、常温でのサイクル数を基準とするサイクル数比を求めた。尚、この実験は電池温度Tに対して、前記制御閾値電圧Vrefを表1に示すように設定して行った。また[ ]を付して示す制御閾値電圧Vrefは、前記条件式で示される範囲外の値であり、比較例を示している。
【0021】
【表1】

Figure 0003952585
【0022】
しかして上述した如く求められた放電容量比およびサイクル数比を、電池温度Tをパラメータとして前記制御閾値電圧Vrefの変化に対してプロットしたところ、図3に示すような傾向があることが明らかとなった。尚、図3において実線は放電容量比の変化を示しており、破線はサイクル数比の変化を示している。そこで二次電池BATを良好に充電している制御閾値電圧Vrefの範囲について検証したところ、図3に示すように電池温度T毎に或る一定の幅を有することが見出された。ちなみに制御閾値電圧Vrefが上記最適範囲よりも低くなったときには、その放電容量比と共にサイクル数比が低下していることから、二次電池BATが十分に充電されていないと考えられる。また制御閾値電圧Vrefが上記最適範囲よりも高くなった場合には、放電容量比がさほど低下していないにも拘わらずそのサイクル数比が大幅に低下することから、過充電によってその充放電サイクル寿命が短くなったと考えられる。
【0023】
また、例えば電気自動車の電源として用いられる大電流用のニッケル水素電池からなる二次電池BATについても同様な実験を行い、表2に示すように温度Tおよび制御閾値電圧Vrefを異ならせた各種条件下での放電容量比と、そのサイクル数比を求めた。尚、上記大電流用のニッケル水素電池は、定格充電電流に対して、例えば5CmA以上の大きな放電電流を得るべく、その電極の構成・構造や集電板とのコンタクト構造を工夫することで、その内部インピーダンスを十分に低くしたものである。また上記実験は、上記二次電池を充電電流2CmAで1時間に亘ってパルス充電した後、放電電流5CmAで放電させて該二次電池BATの放電容量(充電容量)を算出した。
【0024】
【表2】
Figure 0003952585
【0025】
このようにして求められた放電容量比およびサイクル数比を、先の実験例と同様に電池温度Tをパラメータとして前記制御閾値電圧Vrefの変化に対してプロットしたところ、図4に示すような傾向があることが明らかとなった。しかもこの場合においても、二次電池BATを良好に充電している制御閾値電圧Vrefの範囲については、図4に示すように電池温度T毎に或る一定の幅を有することが見出された。特に制御閾値電圧Vrefの最適範囲が、先の実験例に比較してその上限側に大きく拡がることが確認された。この制御閾値電圧Vrefの最適範囲の拡大は、該二次電池BATの内部インピーダンスが前述したように低く押さえられており、この結果、充電に伴う内部発熱が少なくなったことによるものと考えられる。
【0026】
そこで上述した各電池温度Tと、制御閾値電圧Vrefの最適範囲との関係に着目したところ、図2に示すように前述したパルス充電を制御するに最適な制御閾値電圧Vrefが、電池温度Tに依存する特定の関係を有することが見出された。特に二次電池BATを十分に充電し得る制御閾値電圧Vrefの下限値は、電池温度T[℃]を独立変数xとしたときの従属変数yとして
y= 1425−x
なる1次式で表現されることを見出した。また通常の二次電池BATを過充電することのない制御閾値電圧Vrefの上限値は、同様にして
y= 1445−x
なる1次式(破線で示す特性)で表現され、更に前述した如く内部インピーダンスを低く設定した大電流用の二次電池BATに対する制御閾値電圧Vrefの過充電を招来することのない上限値は
y= 1475−x
なる1次式で表現されることを見出した。
【0027】
そこで本発明に係る電圧設定部8においては、上述した条件式の下で二次電池BATを構成するニッケル水素電池の個数Nに応じて、電池温度T[℃]に応じた制御閾値電圧Vref[mV]を
(1425−x)・N≦y≦ (1475−x)・N
なる範囲で適応的に設定するものとなっている。特に電池温度Tが90℃、また−40℃とその温度限界を超えたとき、図3および図4にそれぞれ示すように電池性能自体が著しく劣化することから、−30℃〜80℃の電池温度範囲において、上述した如く制御閾値電圧Vrefを設定するものとなっている。
【0028】
尚、更に安定した充電制御を達成する場合には、上記制御閾値電圧Vrefを
(1430−x)・N≦y≦ (1470−x)・N
なる範囲で設定するようにすれば良く、また電池温度Tに関しても−20℃〜70℃の範囲に抑えるようにすれは良い。ちなみに電池温度Tが上記温度範囲を外れるような場合には、安全性等の観点からパルス充電自体を停止させることが望ましい。
【0029】
かくして上述した如く電池温度Tに応じて最適な制御閾値電圧Vrefを設定して二次電池BATに対するパルス充電を制御する本充電装置によれば、例えば図5に示すように効率的に二次電池BATを充電することができ、該二次電池BATが過充電となる前にその満充電を検出して充電処理を停止することができる。しかも充電電流の大きさに拘わることなく、ほぼ一定の開放電圧Voffの変化の下で二次電池BATをパルス充電することができ、満充電に近付いたときには、これに伴って充電休止時間が長くなるので電池温度Tの変化を殆ど招くことなくその満充電を検出することが可能となる。
【0030】
尚、充電電流が2CmAと大きいときには、その充電初期時における大電流での急速なパルス充電によって多少電池温度Tが上昇するが、その開放電圧Voffが前述した制御閾値電圧Vrefを越えた後には、そのパルス充電間隔(充電休止期間)が長くなるので、上記電池温度Tは略安定する。従って充電電流の大きさに拘わることなく、二次電池BATを安定に充電することが可能となり、過充電に至る前にその満充電を検出して充電処理を停止することが可能となる。
【0031】
ところで本発明は次のように実施することも可能である。図6に示す充電装置は、直列に接続された複数の二次電池BAT(Ba,Bb,〜Bn)を一括してパルス充電するもので、特に各二次電池BAT毎に、当該二次電池BATをその直列回路から切り離すバイパス回路9(9a,9b,〜9n)を設けたことを特徴としている。尚、これらのバイパス回路9は、各二次電池BATの正極に第1端子を接続すると共に該二次電池BATの負極に第2端子を接続して択一的に導通して、その共通端子からの電流路を切り換える一対のパワーFETからなる。
【0032】
しかして各二次電池BAT(Ba,Bb,〜Bn)には、その開放電圧Voffを検出する電圧検出部4(4a,4b,〜4n)がそれぞれ設けられると共に、検出した開放電圧Voffを前述した如く制御閾値電圧Vrefとそれぞれ比較する比較器5(5a,5b,〜5n)がそれぞれ設けられる。またここでは前述した如く直列接続された複数の二次電池BATの電池温度Tを、温度センサ6を用いて一括して検出する温度検出部7が組み込まれており、電圧設定部8において上記電池温度Tに応じて前記制御閾値電圧Vrefが設定されるようになっている。
【0033】
尚、上記各二次電池BAT毎に、温度センサ6、温度検出部7、および電圧設定部8からなる制御ユニットを組み込んで個々の二次電池BAT毎にその制御閾値電圧Vrefを設定するようにしても良い。即ち、前述した図1に示す実施形態の制御部をユニット化し、これを個々の二次電池BATに組み込むようにしても良い。このような構成とすればその構成が多少複雑化するが、直列に接続された複数の二次電池BATの環境温度が異なる場合、或いは各二次電池BATの性能が異なる場合にも、各二次電池BAT毎に効果的な充電制御を行うことが可能となる。しかし、複数の二次電池BATにおける環境温度の違いが殆どないような場合には、図6に示すように構成した方が、装置構成の簡素化を図る上で好ましい。
【0034】
しかして二次電池BATに対するパルス充電を制御するスイッチ制御部3は、前述したスイッチ2の作動を制御する充電制御部3aを備えると共に、前記バイパス回路9(9a,9b,〜9n)をそれぞれ選択的に作動させるバイパス制御部3bを備えて構成される。上記充電制御部3aは、前記比較器5(5a,5b,〜5n)において開放電圧Voffが前記制御閾値電圧Vrefを下回った二次電池BATが少なくとも1つ検出されたとき、前記スイッチ2を導通させてパルス充電を再開させる役割を担う。また前記バイパス制御部3bは、開放電圧Voffが前記制御閾値電圧Vrefを越えている二次電池BATに対して、そのバイパス回路9(9a,9b,〜9n)を作動させて当該二次電池BATをその充電路から切り離す役割を担う。従ってバイパス回路9(9a,9b,〜9n)の選択的な作動により、その直列回路から切り離された二次電池BATがあるならば、前記充電制御部3aの制御の下でスイッチ2が導通駆動されたとしても、当該二次電池BATに対してはパルス充電がなされないようになっている。
【0035】
かくしてこのように構成された充電装置によれば、直列に接続された複数の二次電池BATの充電状態(電池性能)が異なる場合であっても、その開放電圧Voffが逸早く制御閾値電圧Vrefに達した二次電池BATが、バイパス回路9の作動によってその直列回路から切り離されるので、残された二次電池BAT(開放電圧Voffが制御閾値電圧Vrefに達していない二次電池BAT)に対してだけパルス充電が行われる。そしてバイパス回路9によって直列回路から切り離された二次電池BATであっても、その開放電圧Voffが制御閾値電圧Vrefを下回った場合には、そのバイパス回路9が再び遮断(オフ)されてその直列回路に組み込まれるので、再度、その二次電池BATに対するパルス充電が行われることになる。従って直列に接続した複数の二次電池BATを一括して効率的に充電することが可能となる。
【0036】
また前述したように個々の二次電池BAT毎に、その電池温度Tに応じて制御閾値電圧Vrefを適応的に設定するようにしたならば、各二次電池BATの環境温度の違いに対処することができるので、例えば複数の二次電池BATを直列に接続して該二次電池BATを電源とする装置(例えば電気自動車)に実装した状態のまま、これを充電するような場合にも、各二次電池BATを効果的に充電することが可能となる。
【0037】
尚、本発明は上述した実施形態に限定されるものではない。例えば二次電池としてリチウムイオン電池を用いる場合にも、同様にその電池温度Tに応じて制御閾値電圧Vrefを適応的に設定するようにすれば良い。但し、この場合における電池温度Tに応じた最適な制御閾値電圧Vrefの範囲は、前述したニッケル水素電池の場合と異なることは言うまでもない。また通常のニッケル水素電池に対して充電制御を行う場合には、前述した図3の特性に示されるように電池温度T[℃]に応じた制御閾値電圧Vref[mV]を
(1425−x)・N≦y≦ (1445−x)・N
なる範囲で適応的に設定すれば良いことは言うまでもない。
【0038】
更には電池温度Tに適応した制御閾値電圧Vrefをテーブルデータとして与えるような場合には、例えば予め設定した複数のサンプル温度T毎に求めた複数の制御閾値電圧Vrefを、検出した電池温度に従って内挿補間する等して最適な制御閾値電圧Vrefを設定するようにすれば良い。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。
【0039】
【発明の効果】
以上説明したように本発明によれば、二次電池のパルス充電を制御するに際して、その開放電圧の判定に用いる制御閾値電圧Vrefを、電池温度に応じて適応的に最適設定するので、過充電に至る前にその満充電を確実に検出することができる。特に充電制御自体を変更することなく上記制御閾値電圧Vrefを電池温度に応じて適応的に設定するだけで、制御充電不足や過充電を招来することなく、また充電電流値の大きさに拘わることなく二次電池を効率的に充電することかできる。
【0040】
また複数の二次電池を直列に接続して一括して充電する場合には、その開放電圧に応じて作動するバイパス回路を用いて二次電池を選択的に充電回路から切り離すので、これらの二次電池を効率的に充電することができ、また必ずしも定電流電源を必要としないので、電源の簡素化を図り得る等の効果が奏せられる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る二次電池の充電装置の概略構成図。
【図2】図1に示す充電装置において、電池温度Tに応じて最適設定される制御閾値電圧Vrefの範囲を示す図。
【図3】制御閾値電圧Vrefによって変化する二次電池(ニッケル水素電池)の放電容量比とサイクル数比とを電池温度Tをパラメータとして示す図。
【図4】制御閾値電圧Vrefによって変化する二次電池(大電流用ニッケル水素電池)の放電容量比とサイクル数比とを電池温度Tをパラメータとして示す図。
【図5】本充電装置による二次電池の充電特性を示す図。
【図6】本発明の別の実施形態に係る充電装置の構成例を示す図。
【図7】従来の充電制御による満充電検出の例を示す図。
【符号の説明】
BAT(Ba,Bb,〜Bc) 二次電池
1 電源
2 スイッチ(パルス充電制御)
3 スイッチ制御部
3a 充電制御部
3b バイパス制御部
4(4a,4b,〜4c) 電圧検出部
5(5a,5b,〜5c) 比較器
6 温度センサ
7 温度検出部
8 電圧設定部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary battery charging apparatus capable of efficiently charging a secondary battery such as a nickel metal hydride battery without overcharging.
[0002]
[Related background]
When charging a secondary battery such as a lithium ion battery or a nickel metal hydride battery, generally a current is supplied from a constant-current / constant-voltage power supply until full charge is detected from the change (rate of change) in battery voltage or battery temperature. Done. Further, after full charge is detected, trickle charging is also performed with a minute current. At this time, it is important to accurately detect the fully charged state in order to prevent deterioration of battery performance due to overcharging. Therefore, in the related art, paying attention to the fact that the voltage reaches a peak immediately after the secondary battery is fully charged, for example, as shown in FIG. 7A, the full charge is detected by detecting the peak of the battery voltage. Specifically, when the maximum battery voltage detected before is subtracted from the current battery voltage and the subtraction value becomes smaller than a predetermined set value (for example, −10 mV), this is assumed to have reached full charge. Detected and stopped charging (-dV method). For this reason, it cannot be denied that overcharge occurs until the peak of the battery voltage is detected.
[0003]
When full charge is detected using a change in battery temperature, for example, as shown in FIG. 7B, a temperature change per unit time is obtained, and this temperature change is a predetermined set value (for example, 1 ° C.). / Min), this is detected as reaching full charge. This technique focuses on the fact that after the nickel-metal hydride battery reaches a fully charged state, the battery temperature rises due to heat generated when oxygen generated from the positive electrode is reduced at the negative electrode.
[0004]
[Problems to be solved by the invention]
However, all of the above-described full charge detection methods capture the phenomenon after full charge, and there is a problem that overcharge is likely to occur. In particular, when the battery is rapidly charged using a large current, the above problem is likely to occur. Each time the charging is repeated, the battery performance deteriorates, the charge / discharge cycle life is shortened, and the heat generation is increased.
[0005]
On the other hand, as disclosed in Japanese Patent Application Laid-Open No. 9-233726, there is a method in which the secondary battery is pulse-charged by intermittently controlling the charging current while detecting the open-circuit voltage of the secondary battery. This pulse charging method detects the open voltage of the secondary battery during charging pause while repeating charging and pause for the secondary battery by the intermittent control, and when the open voltage falls below a predetermined set voltage, Charging is resumed. In particular, when the charging suspension time becomes longer than the set time, the charging processing is stopped assuming that this has reached full charging.
[0006]
However, when the charge current is intermittently controlled as described above, for example, if the set voltage is low, the pulse charge interval (charge stop time) becomes long, and full charge is detected in a state where sufficient charge is not performed. Therefore, a predetermined charge capacity cannot be obtained. Conversely, when the set voltage is high, charging is frequently resumed and pulse charging is repeatedly performed, and detection of full charge from the charging suspension time is delayed, which may cause the secondary battery to be overcharged. .
[0007]
The present invention has been made in consideration of such circumstances, and its purpose is to fully charge the secondary battery before it is overcharged when the charging current is intermittently controlled to pulse charge the secondary battery. It is to provide a charging device for a secondary battery having a function capable of accurately detecting and stopping the charging process.
In particular, the present invention appropriately sets a set voltage (control threshold voltage) for determining the open-circuit voltage when controlling the pulse charging for the secondary battery while detecting the open-circuit voltage of the secondary battery. Therefore, the secondary battery charging device can accurately detect the fully charged state before the secondary battery is overcharged.
[0008]
[Means for Solving the Problems]
In order to achieve the above-described object, the charging device for a secondary battery according to the present invention compares the open-circuit voltage of the secondary battery with the control threshold voltage to control the pulse charging for the secondary battery. It was made by finding that the voltage depends on the temperature of the secondary battery,
Detecting an open-circuit voltage of the secondary battery at the time of charging suspension of a secondary battery composed of one or a plurality of nickel-metal hydride batteries connected in series , and comparing the detected open-circuit voltage with a control threshold voltage; Charge control means for intermittently controlling the charging current to the secondary battery when the voltage is lower than the control threshold voltage and pulse charging the secondary battery, and in particular, the secondary battery in the pulse charging detecting a temperature, adaptively the control threshold voltage in accordance with the detected battery temperature, the open-circuit voltage is characterized in that so as to control the pulse charging when exceeding the control threshold voltage above optimization .
[0009]
Specifically, when the number of the secondary batteries is N, the battery temperature T [° C.] is x, and the control threshold voltage Vref [mV] is y.
(1425−x) ・ N ≦ y ≦ (1475−x) ・ N
An optimum pulse charge control is realized by adaptively setting the control threshold voltage Vref according to the battery temperature T under the following conditional expression.
[0010]
Moreover, the secondary battery charging device according to the present invention is provided with a plurality of secondary batteries connected in series as described in claim 2 , and a plurality of secondary batteries are individually separated from the series circuit . Having a bypass circuit and means for detecting the open voltage of each of the secondary batteries,
The detected open-circuit voltage actuates a bypass circuit provided in the secondary battery of the above predetermined control threshold voltage, and having a bypass control means for disconnecting the rechargeable battery from said series circuit, the detected open Charge control means for pulse-charging the secondary battery forming the series circuit by intermittently controlling the charging current supplied to the series circuit when there is a secondary battery whose voltage is lower than the predetermined control threshold voltage Have
The charging control means detects the temperature of the secondary battery, sets an optimal control threshold voltage according to the detected temperature, and all the open-circuit voltages of the plurality of secondary batteries are optimized. The pulse charge is stopped when the control threshold voltage is exceeded .
[0011]
That is, by selectively operating a bypass circuit according to each open voltage of a plurality of secondary batteries connected in series, a secondary battery whose open voltage exceeds the control threshold voltage is removed from the series circuit. Separate. And, the open circuit voltage is lower than the control threshold voltage, and it is configured such that only the secondary batteries incorporated in the series circuit are pulse charged. It is characterized by charging.
[0012]
According to a preferred aspect of the present invention, when the secondary batteries are each composed of one or a plurality of nickel hydride batteries connected in series as shown in claim 3 , the number of nickel hydride batteries in each secondary battery is set to N As described above, the battery temperature T [° C.] is x and the control threshold voltage Vref [mV] is y.
(1425−x) ・ N ≦ y ≦ (1475−x) ・ N
The control threshold voltage Vref is adaptively set according to the battery temperature T for each of the secondary batteries under the following conditional expression.
[0013]
At this time, the temperatures of the plurality of secondary batteries may be detected as a whole as a whole, but for example, as described in claim 4 , the temperature is detected for each secondary battery. May be.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a secondary battery charging device according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a charging apparatus according to the first embodiment. Reference numeral 1 denotes a power source for charging a secondary battery BAT. The secondary battery BAT includes, for example, one or a plurality of nickel metal hydride batteries connected in series. As the power source 1, a constant current / constant voltage power source is generally used. However, since the charging of the secondary battery BAT is controlled by pulse control as will be described later, the power source 1 has exceptional constant current / constant voltage characteristics. It is not necessary, and it is sufficient if it can secure a certain amount of charging current.
[0015]
Now, the charging device repeats charging and pause of the secondary battery BAT by controlling the switch 2 intermittently by switching the switch 2 inserted in series between the power source 1 and the secondary battery BAT. A switch control unit (charging control unit) 3 for pulse charging the secondary battery BAT is provided. The switch 2 is constituted by a power FET or the like capable of high-speed switching operation.
[0016]
Thus, the voltage detector 4 detects the open voltage Voff [mV] of the secondary battery BAT during the charging suspension period under the control of the switch controller 3, and the detected open voltage Voff is a comparator. 5 is compared with a predetermined control threshold voltage Vref [mV]. The switch control unit 3 conducts the switch 2 over a predetermined pulse width (on time) when the open circuit voltage Voff compared by the comparator 5 is less than the control threshold voltage Vref as described above. As a result, a charging current is supplied from the power source 1 to the secondary battery BAT to pulse charge the secondary battery BAT. That is, the switch control unit 3 starts the charging by turning on the switch 2 when the open circuit voltage Voff is less than the control threshold voltage Vref, and charges the secondary battery BAT for a predetermined time. After that, the switch 2 is turned off to alternately charge and pause, whereby the secondary battery BAT is pulse-charged.
[0017]
Now, this apparatus is characterized by including a temperature detection unit 7 that detects the temperature T [° C.] of the secondary battery BAT using a temperature sensor 6 made of, for example, a thermistor. The voltage setting unit 8 that adaptively sets the control threshold voltage Vref described above according to the detected battery temperature T is provided. The voltage setting unit 8 may be realized as a table (memory) in which a control threshold voltage Vref corresponding to the battery temperature T is stored in advance, or according to the detected battery temperature T as described later. Thus, the optimum control threshold voltage Vref may be calculated under a predetermined arithmetic expression and output to the comparator 5.
[0018]
Accordingly, the voltage setting unit 8 sets the temperature T [° C.] of the secondary battery BAT detected as described above to x when the number of nickel metal hydride batteries constituting the secondary battery BAT is N [pieces]. The control threshold voltage Vref [mV]
(1425−x) ・ N ≦ y ≦ (1475−x) ・ N
It is configured to set as a variable y shown in the conditional expression. That is, when charging the secondary battery BAT by performing pulse control as described above, the optimum control threshold voltage Vref [mV] is found to depend on the temperature T [° C.] of the secondary battery BAT. In the voltage setting unit 8, the control threshold voltage Vref [mV] corresponding to the battery temperature T [° C.] is adaptively set under the above-described conditional expression. Specifically, the control threshold voltage Vref is set in accordance with the battery temperature T, for example, within a range set as shown in FIG.
[0019]
Explaining this conditional expression (setting range of the control threshold voltage Vref), the present inventor changed the control threshold voltage Vref [mV] and pulse-charged the secondary battery BAT (nickel metal hydride battery) for a predetermined time. , Repeatedly performing a charge / discharge cycle of discharging the secondary battery BAT under a predetermined discharge condition, and determining the discharge capacity (charge capacity) according to the time until the battery voltage reaches a predetermined determination voltage for each cycle. Calculated. Specifically, a secondary battery BAT composed of a normal nickel metal hydride battery of AA size is pulse-charged for 1 hour at a charging current (2 CmA) twice that of the rated charging current, and then the secondary battery. Was discharged at a discharge current of 1 CmA, and the discharge capacity (charge capacity) of the secondary battery BAT was calculated from the time until the discharge voltage (open voltage) Voff reached 1.0 [V]. In particular, the above measurement was performed while changing the ambient temperature (battery temperature T) of the secondary battery BAT.
[0020]
Then, discharge capacity ratios under various conditions with different temperatures T and control threshold voltage Vref were obtained with reference to the discharge capacity in the first cycle at normal temperature (20 ° C.). At the same time, in the charge / discharge cycle under the above conditions, the number of cycles when the discharge capacity is reduced to 80% of the discharge capacity of the first cycle is obtained, and the cycle number ratio based on the number of cycles at room temperature is determined. Asked. In this experiment, the control threshold voltage Vref was set as shown in Table 1 with respect to the battery temperature T. Further, the control threshold voltage Vref indicated with [] is a value outside the range indicated by the conditional expression, and shows a comparative example.
[0021]
[Table 1]
Figure 0003952585
[0022]
Thus, when the discharge capacity ratio and the cycle number ratio obtained as described above are plotted against the change in the control threshold voltage Vref using the battery temperature T as a parameter, it is clear that there is a tendency as shown in FIG. became. In FIG. 3, the solid line indicates the change in the discharge capacity ratio, and the broken line indicates the change in the cycle number ratio. Thus, when the range of the control threshold voltage Vref that satisfactorily charges the secondary battery BAT was verified, it was found that the battery temperature T had a certain width as shown in FIG. Incidentally, when the control threshold voltage Vref becomes lower than the optimum range, the cycle number ratio is reduced together with the discharge capacity ratio, so that the secondary battery BAT is not sufficiently charged. In addition, when the control threshold voltage Vref is higher than the optimum range, the cycle number ratio is greatly reduced even though the discharge capacity ratio is not significantly reduced. It is thought that the lifetime has been shortened.
[0023]
Further, for example, a similar experiment was performed on a secondary battery BAT made of a nickel-metal hydride battery for large current used as a power source for an electric vehicle. The lower discharge capacity ratio and its cycle number ratio were determined. The above-described nickel-metal hydride battery for large currents is devised with respect to the rated charge current, for example, by devising its electrode configuration and structure and contact structure with the current collector plate in order to obtain a large discharge current of 5 CmA or more. The internal impedance is sufficiently low. In the experiment, the secondary battery was pulse-charged with a charging current of 2 CmA for 1 hour and then discharged with a discharging current of 5 CmA to calculate the discharge capacity (charge capacity) of the secondary battery BAT.
[0024]
[Table 2]
Figure 0003952585
[0025]
When the discharge capacity ratio and the cycle number ratio thus obtained were plotted against the change in the control threshold voltage Vref using the battery temperature T as a parameter, as in the previous experimental example, the tendency as shown in FIG. It became clear that there was. Moreover, even in this case, the range of the control threshold voltage Vref that charges the secondary battery BAT satisfactorily was found to have a certain width for each battery temperature T as shown in FIG. . In particular, it has been confirmed that the optimum range of the control threshold voltage Vref greatly expands to the upper limit side as compared with the previous experimental example. The expansion of the optimum range of the control threshold voltage Vref is considered to be due to the fact that the internal impedance of the secondary battery BAT is kept low as described above, and as a result, the internal heat generation associated with charging is reduced.
[0026]
Accordingly, when attention is paid to the relationship between each battery temperature T described above and the optimum range of the control threshold voltage Vref, the optimum control threshold voltage Vref for controlling the above-described pulse charging as shown in FIG. It has been found to have specific relationships that depend on it. In particular, the lower limit value of the control threshold voltage Vref that can sufficiently charge the secondary battery BAT is y = 1425 −x as a dependent variable y when the battery temperature T [° C.] is an independent variable x.
It was found that it is expressed by the following linear expression. Similarly, the upper limit value of the control threshold voltage Vref that does not overcharge the normal secondary battery BAT is y = 1445−x.
The upper limit value that does not cause overcharging of the control threshold voltage Vref for the secondary battery BAT for large currents, which is expressed by the following primary expression (characteristic indicated by the broken line) and whose internal impedance is set low as described above, is y = 1475−x
It was found that it is expressed by the following linear expression.
[0027]
Therefore, in the voltage setting unit 8 according to the present invention, the control threshold voltage Vref [according to the battery temperature T [° C.] according to the number N of nickel hydride batteries constituting the secondary battery BAT under the above-described conditional expression. mV]
(1425−x) ・ N ≦ y ≦ (1475−x) ・ N
In this range, it is set adaptively. In particular, when the battery temperature T exceeds 90 ° C. or −40 ° C. and its temperature limit, the battery performance itself deteriorates significantly as shown in FIGS. 3 and 4, respectively. Therefore, the battery temperature of −30 ° C. to 80 ° C. In the range, the control threshold voltage Vref is set as described above.
[0028]
In order to achieve more stable charge control, the control threshold voltage Vref is set to
(1430−x) ・ N ≦ y ≦ (1470−x) ・ N
The battery temperature T may be set within a range of −20 ° C. to 70 ° C. Incidentally, when the battery temperature T is out of the above temperature range, it is desirable to stop the pulse charging itself from the viewpoint of safety or the like.
[0029]
Thus, according to the present charging device that controls the pulse charging of the secondary battery BAT by setting the optimum control threshold voltage Vref according to the battery temperature T as described above, the secondary battery can be efficiently used as shown in FIG. 5, for example. The BAT can be charged, and the charging process can be stopped by detecting the full charge before the secondary battery BAT is overcharged. In addition, the secondary battery BAT can be pulse-charged under a substantially constant change in the open circuit voltage Voff regardless of the magnitude of the charging current. As a result, the full charge can be detected with almost no change in the battery temperature T.
[0030]
When the charging current is as large as 2 CmA, the battery temperature T slightly rises due to rapid pulse charging with a large current at the initial stage of charging, but after the open voltage Voff exceeds the control threshold voltage Vref described above, Since the pulse charging interval (charging suspension period) becomes longer, the battery temperature T is substantially stabilized. Therefore, it is possible to stably charge the secondary battery BAT regardless of the magnitude of the charging current, and to detect the full charge before overcharging and stop the charging process.
[0031]
By the way, the present invention can be implemented as follows. The charging device shown in FIG. 6 charges a plurality of secondary batteries BAT (Ba, Bb,... Bn) connected in series at once, and in particular, for each secondary battery BAT, the secondary battery. A bypass circuit 9 (9a, 9b, ˜9n) for separating the BAT from the series circuit is provided. These bypass circuits 9 have a first terminal connected to the positive electrode of each secondary battery BAT and a second terminal connected to the negative electrode of the secondary battery BAT, and are selectively turned on. It consists of a pair of power FETs that switch the current path from.
[0032]
Thus, each secondary battery BAT (Ba, Bb,... Bn) is provided with a voltage detector 4 (4a, 4b, .about.4n) for detecting the open circuit voltage Voff, and the detected open circuit voltage Voff is described above. As described above, the comparators 5 (5a, 5b,..., 5n) for comparing with the control threshold voltage Vref are provided. In addition, as described above, a temperature detection unit 7 that collectively detects the battery temperatures T of the plurality of secondary batteries BAT connected in series using the temperature sensor 6 is incorporated. The control threshold voltage Vref is set according to the temperature T.
[0033]
A control unit comprising a temperature sensor 6, a temperature detection unit 7, and a voltage setting unit 8 is incorporated for each secondary battery BAT, and the control threshold voltage Vref is set for each secondary battery BAT. May be. That is, the control unit of the embodiment shown in FIG. 1 described above may be unitized and incorporated into each secondary battery BAT. With such a configuration, the configuration is somewhat complicated. However, even when the environmental temperatures of a plurality of secondary batteries BAT connected in series are different, or when the performance of each secondary battery BAT is different, Effective charge control can be performed for each secondary battery BAT. However, when there is almost no difference in environmental temperature among the plurality of secondary batteries BAT, the configuration as shown in FIG. 6 is preferable in terms of simplifying the device configuration.
[0034]
Thus, the switch control unit 3 for controlling the pulse charge for the secondary battery BAT includes the above-described charge control unit 3a for controlling the operation of the switch 2, and selects the bypass circuits 9 (9a, 9b, to 9n), respectively. It is provided with a bypass control unit 3b that is actuated automatically. The charging control unit 3a conducts the switch 2 when at least one secondary battery BAT whose open circuit voltage Voff is lower than the control threshold voltage Vref is detected in the comparator 5 (5a, 5b, .about.5n). To play the role of restarting pulse charging. Further, the bypass control unit 3b operates the bypass circuit 9 (9a, 9b, .about.9n) on the secondary battery BAT whose open circuit voltage Voff exceeds the control threshold voltage Vref, and the secondary battery BAT. Is responsible for separating the battery from its charging path. Therefore, if there is a secondary battery BAT disconnected from the series circuit by selective operation of the bypass circuit 9 (9a, 9b,..., 9n), the switch 2 is conductively driven under the control of the charge control unit 3a. Even if it is done, the secondary battery BAT is not pulse-charged.
[0035]
Thus, according to the charging apparatus configured in this way, even when the charging states (battery performance) of the plurality of secondary batteries BAT connected in series are different, the open circuit voltage Voff quickly changes to the control threshold voltage Vref. Since the reached secondary battery BAT is disconnected from the series circuit by the operation of the bypass circuit 9, the remaining secondary battery BAT (secondary battery BAT whose open-circuit voltage Voff has not reached the control threshold voltage Vref) is left. Only pulse charging is performed. Even if the secondary battery BAT is disconnected from the series circuit by the bypass circuit 9, when the open circuit voltage Voff is lower than the control threshold voltage Vref, the bypass circuit 9 is again cut off (off) and the series battery BAT is disconnected. Since it is incorporated in the circuit, the secondary battery BAT is charged again with a pulse. Therefore, it is possible to efficiently charge a plurality of secondary batteries BAT connected in series collectively.
[0036]
Further, as described above, if the control threshold voltage Vref is adaptively set according to the battery temperature T for each secondary battery BAT, the difference in environmental temperature of each secondary battery BAT is dealt with. So, for example, when a plurality of secondary batteries BAT are connected in series and mounted on a device (for example, an electric vehicle) using the secondary battery BAT as a power source, Each secondary battery BAT can be effectively charged.
[0037]
The present invention is not limited to the embodiment described above. For example, when a lithium ion battery is used as the secondary battery, the control threshold voltage Vref may be set adaptively according to the battery temperature T. However, it goes without saying that the optimum range of the control threshold voltage Vref according to the battery temperature T in this case is different from that of the nickel hydride battery described above. When charge control is performed on a normal nickel metal hydride battery, the control threshold voltage Vref [mV] corresponding to the battery temperature T [° C.] is set as shown in the characteristics of FIG.
(1425−x) ・ N ≦ y ≦ (1445−x) ・ N
Needless to say, it may be set adaptively within a certain range.
[0038]
Further, when the control threshold voltage Vref adapted to the battery temperature T is given as table data, for example, a plurality of control threshold voltages Vref obtained for each of a plurality of preset sample temperatures T are set according to the detected battery temperature. An optimum control threshold voltage Vref may be set by interpolation or the like. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.
[0039]
【The invention's effect】
As described above, according to the present invention, when controlling the pulse charging of the secondary battery, the control threshold voltage Vref used for determining the open circuit voltage is adaptively optimally set according to the battery temperature. It is possible to reliably detect the full charge before reaching. In particular, the control threshold voltage Vref is adaptively set according to the battery temperature without changing the charge control itself, and the control current is not insufficient or overcharged. And the secondary battery can be charged efficiently.
[0040]
In addition, when a plurality of secondary batteries are connected in series and charged together, the secondary battery is selectively disconnected from the charging circuit by using a bypass circuit that operates according to the open circuit voltage. Since the secondary battery can be charged efficiently and a constant current power supply is not always required, effects such as simplification of the power supply can be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a secondary battery charging device according to an embodiment of the present invention.
2 is a diagram showing a range of a control threshold voltage Vref that is optimally set according to a battery temperature T in the charging device shown in FIG.
FIG. 3 is a diagram showing a discharge capacity ratio and a cycle number ratio of a secondary battery (nickel metal hydride battery) that change according to a control threshold voltage Vref, using the battery temperature T as a parameter.
FIG. 4 is a diagram illustrating a discharge capacity ratio and a cycle number ratio of a secondary battery (high-current nickel-metal hydride battery) that change according to a control threshold voltage Vref, using the battery temperature T as a parameter.
FIG. 5 is a view showing charging characteristics of a secondary battery by the charging device.
FIG. 6 is a diagram showing a configuration example of a charging device according to another embodiment of the present invention.
FIG. 7 is a diagram showing an example of full charge detection by conventional charge control.
[Explanation of symbols]
BAT (Ba, Bb, ~ Bc) Secondary battery 1 Power supply 2 Switch (pulse charge control)
3 Switch Control Unit 3a Charge Control Unit 3b Bypass Control Unit 4 (4a, 4b, ˜4c) Voltage Detection Unit 5 (5a, 5b, ˜5c) Comparator 6 Temperature Sensor 7 Temperature Detection Unit 8 Voltage Setting Unit

Claims (4)

1個または直列接続された複数のニッケル水素電池からなる二次電池の充電休止時における該二次電池の開放電圧を検出する手段と、この検出された開放電圧が制御閾値電圧よりも低いとき、前記二次電池に対する充電電流を断続制御して前記二次電池をパルス充電する充電制御手段とを有する二次電池の充電装置において、
前記パルス充電時における前記二次電池の温度を検出し、この検出された温度に応じて前記制御閾値電圧 ref[ mV ] を、前記二次電池の個数をN、検出された電池温度T [ ] をx、前記制御閾値電圧V ref[ mV ] をyとしたとき
(1425 −x ) ・N (1475 −x ) ・N
なる条件式の下で最適化設定し、前記開放電圧が上記最適化した制御閾値電圧を上回るとき前記パルス充電を停止制御することを特徴とする二次電池の充電装置。
Means for detecting an open voltage of the secondary battery at the time of charging suspension of the secondary battery composed of one or a plurality of nickel metal hydride batteries connected in series, and when the detected open voltage is lower than the control threshold voltage, In a charging device for a secondary battery, comprising charge control means for pulse-charging the secondary battery by intermittently controlling a charging current for the secondary battery,
The temperature of the secondary battery at the time of the pulse charge is detected, the control threshold voltage V ref [ mV ] is determined according to the detected temperature, the number of the secondary batteries is N, and the detected battery temperature T [ ° C ] is x, and the control threshold voltage V ref [ mV ] is y
(1425 -x ) ・ N y (1475 −x ) ・ N
Set Optimization under conditional expression, the charging device for a secondary battery wherein the open circuit voltage, characterized in that the stop controls the pulse charging when exceeding the control threshold voltage above optimization.
直列に接続された複数の二次電池にそれぞれ設けられて各二次電池をその直列回路から個別に切り離す複数のバイパス回路と、前記各二次電池の開放電圧をそれぞれ検出する手段とを有する二次電池の充電装置において、
前記検出された開放電圧が所定の制御閾値電圧以上の二次電池に設けられたバイパス回路を作動させて、その二次電池を前記直列回路から切り離すバイパス制御手段を有すると共に、前記検出された開放電圧が前記所定の制御閾値電圧よりも低い二次電池があるとき、前記直列回路に供給する充電電流を断続制御して前記直列回路を形成している二次電池をパルス充電する充電制御手段を有し、
前記充電制御手段は、前記二次電池の温度を検出し、この検出された温度に応じて最適な制御閾値電圧を設定し、前記複数の二次電池の開放電圧の全てが上記最適化された制御閾値電圧を上回るとき前記パルス充電を停止制御することを特徴とする二次電池の充電装置。
A plurality of bypass circuits which are respectively provided in a plurality of secondary batteries connected in series and individually disconnect each secondary battery from the series circuit; and a means for detecting an open circuit voltage of each of the secondary batteries. In the secondary battery charger,
The bypass circuit provided in the secondary battery having the detected open voltage equal to or higher than a predetermined control threshold voltage is operated to disconnect the secondary battery from the series circuit , and the detected open circuit Charge control means for pulse-charging the secondary battery forming the series circuit by intermittently controlling the charging current supplied to the series circuit when there is a secondary battery whose voltage is lower than the predetermined control threshold voltage Have
The charge control means detects the temperature of the secondary battery, sets an optimal control threshold voltage according to the detected temperature, and all of the open voltages of the plurality of secondary batteries are optimized. A charging device for a secondary battery, wherein the pulse charging is stopped when a control threshold voltage is exceeded.
前記各二次電池は、1個または直列接続された複数のニッケル水素電池からなり、前記各二次電池におけるニッケル水素電池の個数をN、検出された電池温度T[℃]をx、前記制御閾値電圧Vref[mV]をyとしたとき
(1425−x)・N ≦ y ≦ (1475−x)・N
なる条件式の下で前記各二次電池毎にその制御閾値電圧Vref[mV]を可変設定することを特徴とする請求項2に記載の二次電池の充電装置。
Each of the secondary batteries includes one or a plurality of nickel hydride batteries connected in series, wherein the number of nickel hydride batteries in each of the secondary batteries is N, the detected battery temperature T [° C.] is x, and the control When threshold voltage Vref [mV] is y
(1425−x) ・ N ≦ y ≦ (1475−x) ・ N
3. The secondary battery charging device according to claim 2 , wherein the control threshold voltage Vref [mV] is variably set for each of the secondary batteries under the following conditional expression.
前記電池温度は、前記二次電池毎に検出されることを特徴とする請求項3に記載の二次電池の充電装置。The secondary battery charging device according to claim 3 , wherein the battery temperature is detected for each secondary battery.
JP07809398A 1998-03-02 1998-03-25 Secondary battery charger Expired - Fee Related JP3952585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07809398A JP3952585B2 (en) 1998-03-02 1998-03-25 Secondary battery charger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4974998 1998-03-02
JP10-49749 1998-03-02
JP07809398A JP3952585B2 (en) 1998-03-02 1998-03-25 Secondary battery charger

Publications (2)

Publication Number Publication Date
JPH11318040A JPH11318040A (en) 1999-11-16
JP3952585B2 true JP3952585B2 (en) 2007-08-01

Family

ID=26390201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07809398A Expired - Fee Related JP3952585B2 (en) 1998-03-02 1998-03-25 Secondary battery charger

Country Status (1)

Country Link
JP (1) JP3952585B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167148B1 (en) * 2000-07-01 2008-02-06 Robert Bosch GmbH A method and apparatus for calculating actuation control of an FDR/ESP hydro-subassembly for reduction of hydraulic noises
JP4060756B2 (en) * 2003-06-03 2008-03-12 東芝電池株式会社 Secondary battery charging method, charging device and charging control program therefor
JP2006318682A (en) * 2005-05-10 2006-11-24 Makita Corp Charger
JP5260904B2 (en) * 2007-07-10 2013-08-14 三洋電機株式会社 Charging method of lithium ion secondary battery
JP6719853B1 (en) * 2019-03-25 2020-07-08 マレリ株式会社 Charge control device, charge control method, and charge control program

Also Published As

Publication number Publication date
JPH11318040A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
US5744937A (en) Dual battery charging device for charging nickel metal-hydride and lithium-ion batteries
JP5488877B2 (en) Electric tool
US7180269B2 (en) Battery charging method
US7071653B2 (en) Method for charging a non-aqueous electrolyte secondary battery and charger therefor
US20100237832A1 (en) Charging method and charging system
JP4894165B2 (en) Secondary battery discharge circuit, and secondary battery pack and electronic device having the same
JPH10248175A (en) Method and apparatus for charging secondary battery
JP3952585B2 (en) Secondary battery charger
JPH11339859A (en) Charging method for lead-acid battery
JP5573075B2 (en) Voltage equalization device for battery pack
JP4372074B2 (en) Rechargeable battery charging method
JP2009033795A (en) Charging equipment, and charge type electric instrument equipped with the charging equipment
WO2022170581A1 (en) Charger and charging method therefor
JP3092394B2 (en) Secondary battery charging method and device
JP2005027435A (en) Charging equipment
JPH05199674A (en) Method for charging battery
JPH10285820A (en) Method and apparatus for charging alkaline dry cell
JP3583926B2 (en) Rechargeable battery charging method
JP2000182677A (en) Secondary battery charging device
JP2906862B2 (en) Battery charging method
TW362301B (en) Method and apparatus for charging a rechargeable battery
JP3216595B2 (en) Rechargeable battery charger
JPH0778637A (en) Charging method for lead-acid battery
JP2006074935A (en) Charging method
KR0137758Y1 (en) Battery overcharging protection apparatus of an electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees