JP3952272B2 - Aerobic treatment tank and sewage purification tank having particle agglomeration chamber - Google Patents

Aerobic treatment tank and sewage purification tank having particle agglomeration chamber Download PDF

Info

Publication number
JP3952272B2
JP3952272B2 JP2002063777A JP2002063777A JP3952272B2 JP 3952272 B2 JP3952272 B2 JP 3952272B2 JP 2002063777 A JP2002063777 A JP 2002063777A JP 2002063777 A JP2002063777 A JP 2002063777A JP 3952272 B2 JP3952272 B2 JP 3952272B2
Authority
JP
Japan
Prior art keywords
chamber
tank
solid
sewage
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002063777A
Other languages
Japanese (ja)
Other versions
JP2003260480A (en
Inventor
信義 片貝
宏 山下
淳 日比野
裕二 小泉
Original Assignee
株式会社日立ハウステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハウステック filed Critical 株式会社日立ハウステック
Priority to JP2002063777A priority Critical patent/JP3952272B2/en
Publication of JP2003260480A publication Critical patent/JP2003260480A/en
Application granted granted Critical
Publication of JP3952272B2 publication Critical patent/JP3952272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する技術分野】
本発明は、し尿、その他の生活排水、これらの合併汚水(単に、汚水ともいう)等を浄化処理する汚水浄化槽に好適に組み込める好気処理槽と、その好気処理槽を組み込んだ汚水浄化槽に関するものである。
【0002】
【従来の技術】
本発明者らは、先に、上流から嫌気濾床槽第1室、嫌気濾床槽第2室、好気濾床槽(上区画の生物反応床と下区画の濾過床とからなる)、処理水槽及び消毒槽を備える汚水浄化槽を開発した(特許第2904102号公報)。また、この汚水浄化槽の改良もしくは変形として、生物反応床と濾過床とを仕切壁を隔てて並置した好気処理槽を備える汚水浄化槽を提案した(特開2001−246390号公報)。
【0003】
一方、特開2001―79580号公報には、上流から、夾雑物除去槽A、嫌気濾床槽B、生物濾過槽C、処理水槽D及び消毒槽Eで構成される汚水浄化槽(図6)が開示され、その生物濾過槽Cでは、中程に好気処理ゾーンMが形成され、下部には濾過処理ゾーンNが形成され、好気処理ゾーンMの上側には「電気化学的に金属イオンを溶出させる金属電極を有する」脱リン装置Pが配置されている。汚水中に含まれるリン酸イオンは、電気化学的に溶出させた金属イオンと反応して不溶性物を生成し、好気処理ゾーンMの流動性担体は、金属電極に衝突したり金属電極を擦すったりして、金属電極に付着した生物膜や電極表面の不動体皮膜を剥離・洗浄する。
【0004】
【発明が解決しようとする課題】
本発明は、上記特許第2904102号の汚水浄化槽を更に改良する過程で完成したものであり、その目的とするところは、一層良好な処理水質が得られる好気処理槽、及びこれを組み込んだ汚水浄化槽を提供することである。
【0005】
【課題を解決するための手段】
上記課題を達成するため、本発明では次の構成をとった。すなわち、本発明は、好気的な生物反応室2と、粒子凝集室3と、濾過室4とが各々区画され、これらが流れの順に並置されている好気処理槽1である。
ここで、粒子凝集室3には、好ましくは、金属イオンを溶出させる電極対を配置する。
【0006】
本発明は、また、上記好気処理槽を組み込んだ汚水浄化槽、すなわち、上流から順に、嫌気処理槽と、上記好気処理槽1と、消毒槽23とを備える汚水浄化槽でもある。
ここで、嫌気処理槽としては、濾床を備える嫌気濾床槽(第1室、第2室)であってもよい。また、濾床を有しない第一固液分離室と、その第一固液分離室の上部一画に配された第二固液分離室とからなるもので、第二固液分離室の底部は開口していて第一固液分離室に連通している嫌気処理槽であってもよい。
【0007】
【作用】
散気管5からの散気によって生物担体(微生物付着材、担体、接触材等ともいう)が流動状態となる生物反応室2中では、流入液(汚水)に初めから含まれていた固体粒子のほかに、有機物の分解・転換によって発生した生物性汚泥(SS)等の浮遊粒子が存在する。これら浮遊粒子は、凝集してフロックを形成する性質があるものの、散気管5から吐出される空気泡の影響や流動性担体の衝突によって細かく分断されて、いわゆるピンフロック(微細粒子)となる。ピンフロックのままでは、後段の濾過室4で捕捉しにくく、外へリークしやすい。そこで、生物反応室2から出た液を一旦、粒子凝集室3に導いて、ピンフロックを凝集成長させて大きい粒子とし、後段の濾過室4で捕捉する。
【0008】
ピンフロックを凝集成長させるために、先ずは、生物反応室2からの移流液は静かに粒子凝集室3へ導く。そこで、金属を含む電極対9の一方側から、電気化学的反応や電圧印加による電気分解等によって金属イオンを溶出させて難溶性金属水酸化物を生じさせる。このとき、移流してきたピンフロックの表面電位にも変化が生じて凝集・成長が起こる。移流液中にリン酸イオンが存在する場合は、金属イオンとリン酸イオンとが反応して不溶性リン酸塩も同時に生じる。このようにして、比較的大きな凝集物を含む液が次の濾過室4に流れ込むので、濾過床4aでのSSの捕捉性が高まり、処理水の水質(透明度)が向上する。
【0009】
【発明の実施の形態】
添付図面を参照しながら、本発明を更に具体的に説明する。
図1は、本発明の一例の好気処理槽であり、上流側から順に(好気的)生物反応室2、粒子凝集室3、及び濾過室4を配置している。
【0010】
先ず、粒子凝集室3について説明する。(好気的)生物反応室2の一画に濾過室4に隣接するように、すなわち、汚水流入口7の反対側の壁側に粒子凝集室3を配置し、その液流入口部8には、液は通過させるが生物担体を通過させない通水部材(スリット、メッシュ等)を配している。なお、粒子凝集室3は、生物反応室2の一画で汚水流入口7からは遠い一隅に配置させることも、あるいは、生物反応室2の中央部一画に配置させることもできる。
【0011】
粒子凝集室3においては、生物反応室2から移流する浮遊粒子を凝集させる金属イオンを供給するため、金属を含む電極対9を配置させ、電気化学的反応などにより金属イオンを溶出させる。
【0012】
金属イオンの供給方法としては、次に説明するように、電気化学的反応や電圧印加による電気分解等の方法がある。
(電気化学的反応)
イオン化列の上位にある金属とイオン化列の下位にある金属とを片方の端部で接合して電極対とし、これを液中に浸漬して、金属イオンを溶出させる方法である。例えば、アルミニウムと亜鉛、アルミニウムと鉄、アルミニウムとニッケル、アルミニウムと銅、アルミニウムと銀、亜鉛と鉄、亜鉛とニッケル、亜鉛と銅、亜鉛と銀、鉄とニッケル、鉄と銅、鉄と銀等の電極対である。それぞれの金属材は合金、又はめっき等を施したものであってもよい。これら電極対は、液中では、イオン化列の上位側の金属が溶出する。
【0013】
図2は、イオン化列の大きい鉄板9aとこれよりイオン化列の小さい銀めっき銅板9bとを組み合わせた例で、電極対を液中に浸漬すると、イオン化列の大きい鉄板9a側からは鉄イオンが溶出し、溶出した鉄イオンは水酸化物を形成する。このとき、移流してきた浮遊粒子もその表面電位が変化して凝集する。
【0014】
(電圧印加による電気分解)
異種金属材又は同種金属材どうしからなる電極対を配置させ、電圧を印加して電気分解させ、陽極側から金属イオンを溶出させる方法である。電極には、亜鉛と亜鉛、鉄と鉄、アルミニウムとアルミニウム等の同種金属材からなる電極対、亜鉛と鉄、鉄とアルミニウム等の異種金属からなる電極対が挙げられる。更には陰極側にカーボン等の伝導体を用いることもできる。
【0015】
図3は、陽極の鉄板9cと陰極の鉄板9dとを組み合わた例である。電圧を印加すると、陽極の鉄板9c側から鉄イオンが溶出する。溶出した鉄イオンは、電気化学的反応の場合と同様に水酸化物を形成し、移流してきた浮遊粒子を凝集させる。
【0016】
粒子どうしを効果的に接触させるために、仕切壁に突起物を設けたり、スターティックミキサー的な役目を担うハニカムコア等の充填材を粒子凝集室内に配してもよい(図示省略)。
【0017】
粒子凝集室3の上流の生物反応室2には、生物担体と槽内液とを流動・撹拌させ、併せて酸素を供給するために、散気部材(散気管)5を底部に配置し、これにブロワ6から空気を送る。散気管5は、平面視で一の字状でも、円形又は三角形のループ状、目の字状、あるいは四角形のループ状等でもよい。
【0018】
生物反応室2には、生物担体を散気で流動可能な程度に、すなわち、嵩容積で30〜60%(好ましくは35〜55%)に充填する。散気管5からのばっ気によって、槽内液と生物担体とが良好に流動し接触し、さらには溶存酸素の均一拡散によって、有機物の分解がy良好に進む。
【0019】
生物担体は、散気による撹拌力で液中に浮遊して流動するものがよい。比重では0.9〜1.1程度である。生物担体の形状は、中空円筒状、球状、円柱状、立方体状、網様円筒状、ヘチマ状、骨格球状等の種々の形状を用いることができ、大きさは塊として見た場合の径及び長さで各々約10mm程度(5〜20mm程度)が好ましい。また、比表面積が大きいものほど好ましい。その基材としては、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルフォルマール等の合成樹脂が好ましく用いられる。
【0020】
粒子凝集室3の下流の濾過室4では、濾材を充填した濾過床4aを配置し、濾過床4aの下方又は下部にはブロワ6と繋がる散気管11を配置させている。通常処理時は、散気管11からは空気を吐出させずに、静止状態で主としてSS等の浮遊粒子を濾過する。運転を続けると、捕捉されたSS等により濾過床4aが詰まってくるので、時々(一日に一回又は数回)、散気管11から散気し、捕捉したSSを剥離させ濾過床4aを逆洗する。同時に、濾過室4の底部から槽内液をエアリフトポンプ等を用いて引き抜く(図5(b)参照)。なお、濾過室4では、SSの捕捉の他に、生物反応室2から持ち越された溶存酸素によって更に好気的生物分解も進行する。
【0021】
図4は、本発明の別の実施例の好気処理槽である。汚水が流入する上流側から順に、(好気的)生物反応室2、粒子凝集室3及び濾過室4が隣り合わせに並置されている構成である。その他の構成は図1に示した構成と同じである。なお、図1や図4では、生物反応室2、粒子凝集室3及び濾過室4は、平面視で四角形状としたが、これらは円形形状(特に、粒子凝集室3では)等としてもよい。
【0022】
図5は、上記好気処理槽を組み込んだ汚水浄化槽の例である。汚水浄化槽20は、汚水が流入する上流から順に、第一の嫌気処理槽となる第一固液分離室21、第二の嫌気処理槽となる第二固液分離室22、(好気的)生物反応室2、粒子凝集室3、濾過室4及び消毒槽23で構成されている。
【0023】
第一固液分離室21には汚水流入口25があり、第一固液分離室21と第二固液分離室22とは、第二固液分離室22底部の開口部26で繋がっている。また、第一固液分離室21及び第二固液分離室22には、汚水の流入変動を平均化して後段の生物反応室2以降へ定量移送するための流量調整部27(最低水位L.W.L〜最高水位H.W.Lの間)を設けている。第二固液分離室22には、槽内液を生物反応室2へ定量移送する移送用エアリフトポンプ28を設けており、その吸込み口29は最低水位L.W.Lに設けている。
なお、第一固液分離室21及び第二固液分離室22の代わりに、生物担体が充填された濾床をもつ嫌気濾床槽でもよく、また、嫌気処理槽は1室のみであっても2室であってもよい。また、流量調整機能を外すこともできる。
【0024】
粒子凝集室3には、電気化学的反応を利用した電極対が配置されているほか、(好気的)生物反応室2からの移流水の一部を第一固液分離室21へ循環させる循環用エアリフトポンプ30、及び濾過室4の洗浄排水を引き抜いて第一固液分離室21へ移送させる洗浄排水引き抜きポンプ31が配置されている。なお、循環用エアリフトポンプ30及び洗浄排水引き抜きポンプ31は、電動ポンプ等の移送ポンプを用いることもできる。また、循環用エアリフトポンプ30は配置しなくともよい。
【0025】
濾過室4には、濾過床4aの逆洗時に、その洗浄排水を引き抜く洗浄排水引き抜きポンプ31も配置されている。移送用エアリフトポンプ28、循環用エアリフトポンプ30及び洗浄排水引き抜きポンプ31には、ブロワ6から空気が供給される。濾過室4では液の流れ方向は下向流である。なお、この流れ方向は上向流とすることもできる。
【0026】
次に、汚水浄化槽20における汚水処理方法を説明する。流入汚水は、実線矢印で示すとおり、汚水流入口25から第一固液分離室21に入り、固液分離及び嫌気的生物処理が行われる。ここを通過した移流液は、第二固液分離室22に入り、さらに固液分離及び嫌気的生物処理が行われる。第一固液分離室21及び第二固液分離室22で流入汚水の流量変動を緩和しつつ、移送用エアリフトポンプ28により液を生物反応室2へ定量移送する。
【0027】
生物反応室2へ流入した液は、散気管5から吐出される空気及び流動する生物担体と接触して、好気的生物分解が進行する。分解された有機物の一部は微生物に転換され、その微生物の一部は生物担体に付着し、あるいは液中にSS(ピンフロックを含む)として浮遊する。このSS混じりの液は、下部に設けた液流入口部8から粒子凝集室3に流入する。
【0028】
粒子凝集室3では、配置させた金属対から溶出する金属イオンにより、流入液に含まれるピンフロックは凝集・成長する。また、移流液中にリン酸イオンが含まれる場合、溶出する金属イオンはリン酸イオンとも反応して不溶性リン酸塩を形成する。この不溶性リン酸塩は、上記ピンフロックとともに凝集・成長する。また、粒子凝集室3には、循環用エアリフトポンプ30が配置されていて、液の一部が連続的に又は間欠的に第一固液分離室21に返送され、そこでSSが分離される。
【0029】
残りの液は流出口33から濾過室4へ入り、そこで、濾過床4aの充填材(濾材)によってSSが捕捉除去され、引き続き生物的処理も進む。濾液は消毒槽23を経て放流口34から処理済み水として放流される。
【0030】
濾過室4での濾材の洗浄は次のようにして行われる。先ず、散気管11から空気を吐出させ、濾過床4aをバブリングしてSSを剥離させる。このとき、洗浄排水引き抜きポンプ31を稼動させ、濾過室4の底部から洗浄排水を引き抜いて第一固液分離室21に返送する。この際、洗浄排水の全量を引き抜くことが好ましい。洗浄排水の引抜き完了によって、洗浄は終了する。この洗浄は、第一固液分離室21の水位が最低水位(L.W.L)付近にあるとき(即ち、汚水の流入のないとき)に行うのが好ましい。
【0031】
【発明の効果】
本発明の好気処理槽又は汚水浄化槽によれば、流動状態の(好気的)生物反応室でピンフロック化した微細粒子を、粒子凝集室で凝集・成長させてそれよりも大きい粒子にさせるので、後段の濾過室でのSSの捕捉性能を高めることができる。そのため、透明度の高い高品質な処理水を得ることができる。また、汚水中に含まれる可溶性リン酸分も不溶性粒子化して除去することができる。
【図面の簡単な説明】
【図1】本発明の一実施例の好気処理槽で、(a)は概略平面図、(b)は(a)のA−A面における概略断面図。
【図2】電気化学的反応による電極対を配置させた粒子凝集室の概略断面図。
【図3】電圧印加の電気分解による電極対を配置させた粒子凝集室の概略断面図。
【図4】本発明の別の実施例の好気処理槽で、(a)は概略平面図、(b)は(a)のB−B面における概略断面図。
【図5】本発明の一実施例の汚水浄化槽で、(a)は概略平面図、(b)は(a)のC―C面の概略断面図
【図6】従来の一例の汚水浄化槽の概略断面図。
【符号の説明】
1:好気処理槽
2:(好気的)生物反応室 2a:生物反応床
3:粒子凝集室 4:濾過室 4a:濾過床
5:散気部材(散気管) 6:ブロワ
7:汚水流入口 8:液流入口部(通水性部材)
9、9a、9b、9c、9d:電極対(金属板)
11:散気部材(散気管)
20:汚水浄化槽
21:嫌気処理槽第一室(第一固液分離室)
22:嫌気処理槽第二室(第二固液分離室)
23:消毒槽 24:消毒槽
26:開口部 27:流量調整部
28:移送用エアリフトポンプ 29:吸込み口
30:循環用エアリフトポンプ 31:洗浄排水引抜ポンプ
33:流出口 34:放流口
A:夾雑物除去槽 B:嫌気濾床槽
C:生物濾過槽 D:処理水槽
E:消毒槽
M:好気処理ゾーン N:濾過処理ゾーン
P:脱リン装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aerobic treatment tank that can be suitably incorporated in a sewage septic tank that purifies human waste, other domestic wastewater, and the combined sewage (also simply referred to as sewage), and a sewage septic tank that incorporates the aerobic treatment tank. Is.
[0002]
[Prior art]
The present inventors, from the upstream, anaerobic filter bed tank first chamber, anaerobic filter bed tank second chamber, aerobic filter bed tank (consisting of an upper compartment biological reaction bed and a lower compartment filter bed), A sewage purification tank equipped with a treatment water tank and a disinfection tank was developed (Japanese Patent No. 2904102). Further, as an improvement or modification of the sewage septic tank, a sewage septic tank having an aerobic treatment tank in which a biological reaction bed and a filtration bed are juxtaposed with a partition wall therebetween is proposed (Japanese Patent Laid-Open No. 2001-246390).
[0003]
On the other hand, JP-A-2001-79580 discloses a sewage purification tank (FIG. 6) composed of a contaminant removal tank A, an anaerobic filter bed tank B, a biological filtration tank C, a treated water tank D, and a disinfection tank E from the upstream. In the biological filtration tank C disclosed, the aerobic treatment zone M is formed in the middle, the filtration treatment zone N is formed in the lower part, and the upper side of the aerobic treatment zone M is “electrochemically contains metal ions. A dephosphorization device P having a metal electrode to be eluted is arranged. Phosphate ions contained in the sewage react with electrochemically eluted metal ions to produce insoluble matter, and the fluid carrier in the aerobic treatment zone M collides with or rubs the metal electrode. Remove the biological film attached to the metal electrode and the non-moving film on the electrode surface.
[0004]
[Problems to be solved by the invention]
The present invention was completed in the process of further improving the sewage septic tank of the above-mentioned Patent No. 2904102, and the object thereof is an aerobic septic tank capable of obtaining better treated water quality, and sewage incorporating the same. It is to provide a septic tank.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration. That is, the present invention is an aerobic treatment tank 1 in which an aerobic biological reaction chamber 2, a particle agglomeration chamber 3, and a filtration chamber 4 are partitioned, and these are juxtaposed in the order of flow.
Here, the particle aggregation chamber 3 is preferably provided with an electrode pair for eluting metal ions.
[0006]
The present invention is also a sewage purification tank incorporating the aerobic treatment tank, that is, a sewage purification tank including the anaerobic treatment tank, the aerobic treatment tank 1, and the disinfection tank 23 in order from the upstream.
Here, the anaerobic treatment tank may be an anaerobic filter bed tank (first chamber, second chamber) provided with a filter bed. The first solid-liquid separation chamber having no filter bed and the second solid-liquid separation chamber arranged in the upper part of the first solid-liquid separation chamber, the bottom of the second solid-liquid separation chamber May be an anaerobic treatment tank that is open and communicated with the first solid-liquid separation chamber.
[0007]
[Action]
In the biological reaction chamber 2 in which the biological carrier (also referred to as a microorganism adhering material, a carrier, a contact material, etc.) is in a fluid state due to the air diffused from the air diffuser 5, the solid particles originally contained in the influent (sewage) In addition, there are suspended particles such as biological sludge (SS) generated by the decomposition and conversion of organic matter. Although these suspended particles have a property of agglomerating to form flocs, they are finely divided by the influence of air bubbles discharged from the air diffusing tube 5 and the collision of the fluid carrier to form so-called pin flocs (fine particles). If the pin flock remains as it is, it is difficult to capture in the subsequent filtration chamber 4 and easily leaks outside. Therefore, the liquid exiting from the biological reaction chamber 2 is once guided to the particle agglomeration chamber 3, and pin flocs are agglomerated to form large particles, which are captured by the subsequent filtration chamber 4.
[0008]
In order to coagulate and grow pin floc, first, the advection liquid from the biological reaction chamber 2 is gently guided to the particle aggregation chamber 3. Therefore, metal ions are eluted from one side of the electrode pair 9 containing metal by electrolysis or electrolysis by applying a voltage to form a hardly soluble metal hydroxide. At this time, the surface potential of the pin floc that has advected also changes, causing aggregation and growth. When phosphate ions are present in the advection liquid, metal ions and phosphate ions react to form insoluble phosphate at the same time. Thus, since the liquid containing a comparatively big aggregate flows into the following filtration chamber 4, the capture | acquisition property of SS in the filtration bed 4a improves, and the water quality (transparency) of treated water improves.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described more specifically with reference to the accompanying drawings.
FIG. 1 shows an aerobic treatment tank according to an example of the present invention, in which an (aerobic) biological reaction chamber 2, a particle aggregation chamber 3, and a filtration chamber 4 are arranged in this order from the upstream side.
[0010]
First, the particle aggregation chamber 3 will be described. (Aerobic) The particle agglomeration chamber 3 is arranged in a part of the biological reaction chamber 2 so as to be adjacent to the filtration chamber 4, that is, on the wall side opposite to the sewage inflow port 7. Is provided with water-permeable members (slits, meshes, etc.) that allow liquids to pass but not biological carriers. The particle agglomeration chamber 3 can be disposed in one corner of the biological reaction chamber 2 at a corner far from the sewage inlet 7 or in the central portion of the biological reaction chamber 2.
[0011]
In the particle agglomeration chamber 3, in order to supply metal ions for aggregating the floating particles advancing from the biological reaction chamber 2, an electrode pair 9 containing metal is arranged and the metal ions are eluted by an electrochemical reaction or the like.
[0012]
As a method for supplying metal ions, as described below, there are methods such as electrochemical reaction and electrolysis by voltage application.
(Electrochemical reaction)
In this method, a metal located above the ionization row and a metal located below the ionization row are joined at one end to form an electrode pair, which is immersed in a solution to elute the metal ions. For example, aluminum and zinc, aluminum and iron, aluminum and nickel, aluminum and copper, aluminum and silver, zinc and iron, zinc and nickel, zinc and copper, zinc and silver, iron and nickel, iron and copper, iron and silver, etc. Electrode pair. Each metal material may be alloyed or plated. These electrode pairs elute the upper metal in the ionization column in the liquid.
[0013]
FIG. 2 shows an example in which an iron plate 9a having a large ionization row and a silver-plated copper plate 9b having a smaller ionization row are combined. When the electrode pair is immersed in the liquid, iron ions are eluted from the iron plate 9a side having a large ionization row. The eluted iron ions form hydroxides. At this time, the suspended particles that have advected also aggregate due to the change in surface potential.
[0014]
(Electrolysis by applying voltage)
This is a method in which a pair of electrodes made of different kinds of metal materials or the same kind of metal materials is arranged, and a voltage is applied to cause electrolysis to elute metal ions from the anode side. Examples of the electrode include an electrode pair made of the same metal material such as zinc and zinc, iron and iron, aluminum and aluminum, and an electrode pair made of different metals such as zinc and iron, iron and aluminum. Further, a conductor such as carbon can be used on the cathode side.
[0015]
FIG. 3 shows an example in which an anode iron plate 9c and a cathode iron plate 9d are combined. When a voltage is applied, iron ions are eluted from the iron plate 9c side of the anode. The eluted iron ions form hydroxides as in the case of the electrochemical reaction, and agglomerated floating particles are agglomerated.
[0016]
In order to effectively bring the particles into contact with each other, a protrusion may be provided on the partition wall, or a filler such as a honeycomb core that plays the role of a static mixer may be disposed in the particle aggregation chamber (not shown).
[0017]
In the biological reaction chamber 2 upstream of the particle agglomeration chamber 3, a diffusion member (aeration tube) 5 is arranged at the bottom in order to flow and agitate the biological carrier and the liquid in the tank, and supply oxygen together. Air is sent from the blower 6 to this. The air diffuser 5 may have a single letter shape in a plan view, a circular or triangular loop shape, an eye shape, or a square loop shape.
[0018]
The biological reaction chamber 2 is filled with a biological carrier to such an extent that it can flow with aeration, that is, 30 to 60% (preferably 35 to 55%) by volume. Due to the aeration from the air diffuser 5, the liquid in the tank and the biological carrier flow and come into contact with each other, and further, the decomposition of the organic matter proceeds in a favorable y direction due to the uniform diffusion of dissolved oxygen.
[0019]
The biological carrier is preferably one that floats and flows in the liquid with stirring force by aeration. The specific gravity is about 0.9 to 1.1. As the shape of the biological carrier, various shapes such as a hollow cylindrical shape, a spherical shape, a cylindrical shape, a cubic shape, a net-like cylindrical shape, a loofah shape, a skeletal shape, and the like can be used. Each length is preferably about 10 mm (about 5 to 20 mm). A larger specific surface area is more preferable. As the base material, a synthetic resin such as polypropylene, polyethylene, polyvinyl chloride, polyvinyl alcohol, and polyvinyl formal is preferably used.
[0020]
In the filtration chamber 4 downstream of the particle aggregation chamber 3, a filter bed 4a filled with a filter medium is disposed, and an air diffuser 11 connected to the blower 6 is disposed below or below the filter bed 4a. During normal processing, air is not discharged from the diffusing tube 11, and suspended particles such as SS are mainly filtered in a stationary state. If the operation is continued, the filter bed 4a is clogged by the captured SS or the like, so sometimes (once or several times a day) it diffuses from the air diffuser 11, and the captured SS is peeled off to remove the filter bed 4a. Backwash. At the same time, the liquid in the tank is pulled out from the bottom of the filtration chamber 4 using an air lift pump or the like (see FIG. 5B). In the filtration chamber 4, in addition to the capture of SS, aerobic biodegradation further proceeds due to dissolved oxygen carried over from the biological reaction chamber 2.
[0021]
FIG. 4 shows an aerobic treatment tank according to another embodiment of the present invention. In this configuration, the (aerobic) biological reaction chamber 2, the particle aggregation chamber 3, and the filtration chamber 4 are juxtaposed side by side in order from the upstream side where the sewage flows. Other configurations are the same as those shown in FIG. In FIG. 1 and FIG. 4, the biological reaction chamber 2, the particle aggregation chamber 3, and the filtration chamber 4 have a quadrangular shape in plan view, but these may have a circular shape (particularly in the particle aggregation chamber 3). .
[0022]
FIG. 5 is an example of a sewage purification tank incorporating the aerobic treatment tank. The sewage purification tank 20 is, in order from the upstream where sewage flows in, a first solid-liquid separation chamber 21 serving as a first anaerobic treatment tank, a second solid-liquid separation chamber 22 serving as a second anaerobic treatment tank, (aerobic). The biological reaction chamber 2, the particle aggregation chamber 3, the filtration chamber 4, and the disinfection tank 23 are configured.
[0023]
The first solid-liquid separation chamber 21 has a sewage inlet 25, and the first solid-liquid separation chamber 21 and the second solid-liquid separation chamber 22 are connected by an opening 26 at the bottom of the second solid-liquid separation chamber 22. . The first solid-liquid separation chamber 21 and the second solid-liquid separation chamber 22 have a flow rate adjusting unit 27 (minimum water level L.L) for averaging the sewage inflow fluctuation and transferring it to the biological reaction chamber 2 and the subsequent stages. W.L to the highest water level H.W.L). The second solid-liquid separation chamber 22 is provided with a transfer air lift pump 28 for quantitatively transferring the liquid in the tank to the biological reaction chamber 2, and the suction port 29 has a minimum water level L.P. W. L is provided.
In addition, instead of the first solid-liquid separation chamber 21 and the second solid-liquid separation chamber 22, an anaerobic filter bed tank having a filter bed filled with a biological carrier may be used, and there is only one anaerobic treatment tank. There may also be two rooms. Further, the flow rate adjusting function can be removed.
[0024]
In the particle aggregation chamber 3, an electrode pair using an electrochemical reaction is arranged, and a part of the advection water from the (aerobic) biological reaction chamber 2 is circulated to the first solid-liquid separation chamber 21. A circulation air lift pump 30 and a cleaning drainage pump 31 for extracting the cleaning wastewater from the filtration chamber 4 and transferring it to the first solid-liquid separation chamber 21 are arranged. The circulation air lift pump 30 and the cleaning / drainage extraction pump 31 may be a transfer pump such as an electric pump. Further, the circulation air lift pump 30 may not be arranged.
[0025]
The filtration chamber 4 is also provided with a washing drainage pump 31 for drawing out the washing drainage when the filtration bed 4a is backwashed. Air is supplied from the blower 6 to the transfer air lift pump 28, the circulation air lift pump 30, and the cleaning drainage extraction pump 31. In the filtration chamber 4, the flow direction of the liquid is a downward flow. This flow direction can also be an upward flow.
[0026]
Next, the sewage treatment method in the sewage septic tank 20 will be described. The inflowing sewage enters the first solid-liquid separation chamber 21 from the sewage inlet 25 as indicated by solid arrows, and solid-liquid separation and anaerobic biological treatment are performed. The advection liquid that has passed through here enters the second solid-liquid separation chamber 22, and further undergoes solid-liquid separation and anaerobic biological treatment. The liquid is quantitatively transferred to the biological reaction chamber 2 by the transfer air lift pump 28 while the flow rate fluctuation of the influent wastewater is reduced in the first solid-liquid separation chamber 21 and the second solid-liquid separation chamber 22.
[0027]
The liquid flowing into the biological reaction chamber 2 comes into contact with the air discharged from the diffuser tube 5 and the flowing biological carrier, and aerobic biodegradation proceeds. A part of the decomposed organic matter is converted into a microorganism, and a part of the microorganism adheres to the biological carrier or floats as SS (including pin floc) in the liquid. The SS mixed liquid flows into the particle agglomeration chamber 3 from a liquid inlet 8 provided at the lower part.
[0028]
In the particle agglomeration chamber 3, the pin flocs contained in the influent are agglomerated and grown by the metal ions eluted from the arranged metal pairs. When phosphate ions are contained in the advection liquid, the eluted metal ions react with phosphate ions to form insoluble phosphate. The insoluble phosphate aggregates and grows together with the pin floc. In addition, a circulating air lift pump 30 is disposed in the particle agglomeration chamber 3, and a part of the liquid is continuously or intermittently returned to the first solid-liquid separation chamber 21 where SS is separated.
[0029]
The remaining liquid enters the filtration chamber 4 from the outlet 33, where SS is captured and removed by the filler (filter medium) of the filtration bed 4a, and the biological treatment continues. The filtrate is discharged as treated water from the outlet 34 through the disinfection tank 23.
[0030]
The filter medium is washed in the filtration chamber 4 as follows. First, air is discharged from the air diffuser 11, and the filter bed 4a is bubbled to separate the SS. At this time, the cleaning drainage pump 31 is operated, and the cleaning drainage is extracted from the bottom of the filtration chamber 4 and returned to the first solid-liquid separation chamber 21. At this time, it is preferable to draw out the entire amount of the washing waste water. Cleaning is completed when the drainage of the cleaning wastewater is completed. This washing is preferably performed when the water level in the first solid-liquid separation chamber 21 is near the lowest water level (LWL) (that is, when there is no inflow of sewage).
[0031]
【The invention's effect】
According to the aerobic treatment tank or the sewage septic tank of the present invention, the fine particles pin-flocculated in the fluidized (aerobic) biological reaction chamber are agglomerated and grown in the particle agglomeration chamber to form larger particles. Therefore, it is possible to improve the SS capturing performance in the subsequent filtration chamber. Therefore, high-quality treated water with high transparency can be obtained. In addition, the soluble phosphoric acid content contained in the wastewater can also be removed as insoluble particles.
[Brief description of the drawings]
1A and 1B are aerobic treatment tanks according to an embodiment of the present invention, in which FIG. 1A is a schematic plan view, and FIG. 1B is a schematic cross-sectional view taken along the AA plane in FIG.
FIG. 2 is a schematic cross-sectional view of a particle aggregation chamber in which electrode pairs by electrochemical reaction are arranged.
FIG. 3 is a schematic cross-sectional view of a particle aggregation chamber in which electrode pairs are arranged by electrolysis with voltage application.
4A and 4B are aerobic treatment tanks according to another embodiment of the present invention, in which FIG. 4A is a schematic plan view, and FIG. 4B is a schematic cross-sectional view taken along the plane BB of FIG.
5A is a schematic plan view, and FIG. 5B is a schematic cross-sectional view of the CC plane of FIG. 6A. FIG. 6 is a schematic view of a conventional sewage septic tank according to an embodiment of the present invention. FIG.
[Explanation of symbols]
1: aerobic treatment tank 2: (aerobic) biological reaction chamber 2a: biological reaction bed 3: particle agglomeration chamber 4: filtration chamber 4a: filtration bed 5: diffuser member (diffuser tube) 6: blower 7: sewage flow Inlet 8: Liquid inlet part (water-permeable member)
9, 9a, 9b, 9c, 9d: Electrode pair (metal plate)
11: Air diffuser (air diffuser)
20: Wastewater purification tank 21: Anaerobic treatment tank first chamber (first solid-liquid separation chamber)
22: Anaerobic treatment tank second chamber (second solid-liquid separation chamber)
23: Disinfection tank 24: Disinfection tank 26: Opening part 27: Flow rate adjustment part 28: Air lift pump for transfer 29: Suction port 30: Air lift pump for circulation 31: Washing drain pump 33: Outlet 34: Outlet A: Contamination Waste removal tank B: Anaerobic filter bed tank C: Biological filtration tank D: Treated water tank E: Disinfection tank M: Aerobic treatment zone N: Filtration treatment zone P: Dephosphorization device

Claims (2)

生物反応室と、粒子凝集室と、濾過室とが各々区画され、上記生物反応室が、散気管とこの散気管からの散気により流動可能な生物担体とを有し、上記粒子凝集室が、金属イオンを溶出する電極対を有している好気処理槽。A biological reaction chamber, a particle agglomeration chamber, and a filtration chamber are each partitioned, and the biological reaction chamber has an aeration tube and a biological carrier that can flow by aeration from the aeration tube, and the particle aggregation chamber An aerobic treatment tank having an electrode pair for eluting metal ions . 上流から順に、嫌気処理槽と、請求項1記載の好気処理槽と、消毒槽とを備える汚水浄化槽 A sewage purification tank comprising an anaerobic treatment tank, an aerobic treatment tank according to claim 1 and a disinfection tank in order from the upstream .
JP2002063777A 2002-03-08 2002-03-08 Aerobic treatment tank and sewage purification tank having particle agglomeration chamber Expired - Fee Related JP3952272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002063777A JP3952272B2 (en) 2002-03-08 2002-03-08 Aerobic treatment tank and sewage purification tank having particle agglomeration chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002063777A JP3952272B2 (en) 2002-03-08 2002-03-08 Aerobic treatment tank and sewage purification tank having particle agglomeration chamber

Publications (2)

Publication Number Publication Date
JP2003260480A JP2003260480A (en) 2003-09-16
JP3952272B2 true JP3952272B2 (en) 2007-08-01

Family

ID=28670911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002063777A Expired - Fee Related JP3952272B2 (en) 2002-03-08 2002-03-08 Aerobic treatment tank and sewage purification tank having particle agglomeration chamber

Country Status (1)

Country Link
JP (1) JP3952272B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2899576B1 (en) * 2006-04-05 2008-07-04 Oceane Des Plastics Soc Par Ac METHOD AND STATION FOR TREATMENT, IN PARTICULAR PURIFICATION, EFFLUENTS, PARTICULARLY URBAN, INDUSTRIAL OR ANIMAL, AND SANITARY FACILITY SUITABLE FOR BEING ASSOCIATED WITH SUCH A TREATMENT STATION
GB201608615D0 (en) 2016-05-16 2016-06-29 Evolution Aqua Ltd Filter apparatus and method

Also Published As

Publication number Publication date
JP2003260480A (en) 2003-09-16

Similar Documents

Publication Publication Date Title
CN102936072B (en) Nano-catalysis, electrolysis, flocculation and air-floatation device
US3857910A (en) Oxygenator support
CN202519115U (en) Nano-catalysis, electrolysis, flocculation and air-floatation device
CN110451697A (en) Salt-containing organic wastewater electrocatalytic oxidation coupling pretreatment method and device
JP3471619B2 (en) Prevention device for clogging of filter media in biological filtration tank
JP3952272B2 (en) Aerobic treatment tank and sewage purification tank having particle agglomeration chamber
JP3301996B2 (en) Dephosphorization method for sewage treatment and aerobic treatment tank equipped with metal electrode for dephosphorization
JP4014581B2 (en) Biological filtration device
JP3836576B2 (en) Fluidized bed wastewater treatment equipment
JP3506697B2 (en) Sewage treatment method and sewage septic tank
CN108946882A (en) A kind of Novel micro-electrolysis device handling oily waste water
CN207632652U (en) A kind of printing wastewater catalysis reaction filter device
US4111768A (en) Method of separating solids from a fluid system
JP2003033764A (en) Method and apparatus for washing filtration body by using ozone
JP2003181455A5 (en)
JP3666064B2 (en) Wastewater treatment equipment
JP3668358B2 (en) Structure of bioreactor with carrier
JP2585187B2 (en) Organic wastewater biological treatment method
JP4342687B2 (en) Wastewater treatment equipment
JP3328139B2 (en) Method and apparatus for producing activated sludge
JP3666065B2 (en) Biological filtration type nitrogen removal method
JPH03188994A (en) Biotreating device for organic sewage
JP2000037698A (en) Method and apparatus for biological treatment of sewage
JP2002273449A (en) Dephosphorization method in swage treatment and aerrobic treating tank provided with metallic electrode for dephosphorization
JP4338853B2 (en) Aerobic filter bed tank and sewage septic tank with a diffuser for cleaning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees