JP3951392B2 - Method for forming transparent conductive thin film - Google Patents

Method for forming transparent conductive thin film Download PDF

Info

Publication number
JP3951392B2
JP3951392B2 JP32673797A JP32673797A JP3951392B2 JP 3951392 B2 JP3951392 B2 JP 3951392B2 JP 32673797 A JP32673797 A JP 32673797A JP 32673797 A JP32673797 A JP 32673797A JP 3951392 B2 JP3951392 B2 JP 3951392B2
Authority
JP
Japan
Prior art keywords
thin film
transparent conductive
plastic substrate
conductive thin
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32673797A
Other languages
Japanese (ja)
Other versions
JPH11156990A (en
Inventor
泰美 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP32673797A priority Critical patent/JP3951392B2/en
Publication of JPH11156990A publication Critical patent/JPH11156990A/en
Application granted granted Critical
Publication of JP3951392B2 publication Critical patent/JP3951392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチック基板上に透明で、かつ導電性を有する薄膜の形成方法に関する。
【0002】
【従来の技術】
従来より、透明導電薄膜は、電気的分野や光学的分野において、広く利用されており、例えば、酸化インジウム錫(Indium Tin Oxside以後ITOと略す)、酸化スズ(SnO2 )などの金属酸化物を用いて、真空蒸着法、スパッタリング法、イオンプレーティング法などのドライコーティング方法によって成膜されていた。
【0003】
上記成膜方法のうちのイオンプレーティング法においては、例えばITOを電子ビームで照射し蒸発させて、その蒸発粒子を酸素プラズマ中を通過させて成膜するプラズマアシストイオンプレーティング法が知られており、この成膜方法によるITO薄膜は、基板を傷めない低基板温度で低抵抗を有するという特徴をもったものであった。
【0004】
【発明が解決しようとする課題】
しかし、上記の従来技術すなわちプラズマアシストイオンプレーティング法による透明導電薄膜の成膜方法においては、その成膜速度が40〜50nm/minと遅く、大量生産には不向きのごとき問題点があった。
【0005】
また、上記方法においては、蒸発材料に高出力の電子ビームを照射するので、蒸発材料の粒径の小さいものが飛散するスプラッシュ現象が発生し、膜厚にムラが生じる問題点があった。
【0006】
本発明は、かかる従来技術の問題点を解決するものであり、その課題とするところは、プラスチック基板もしくはフィルム上に、生産性に寄与する速い成膜速度で、かつ均一な膜厚の形成を可能にする透明導電薄膜の形成方法を提供することにある。
【0007】
【課題を解決しようとする手段】
本発明に於いて上記課題を達成するために、まず請求項1の発明では、プラスチック基板上に、金属酸化物からなる蒸発材料を蒸発源とし、該蒸発材料を電子ビームで蒸発させて薄膜を形成する方法であって、
前記蒸発された蒸発粒子が、前記蒸発源とプラスチック基板の間に形成されたヘリウムと酸素のプラズマ領域中を通過してなり、
前記蒸発源とプラスチック基板の間に導入されるヘリウムと酸素を、前記蒸発源と前記プラスチック基板の間に設けられた高電圧印可のRFコイルの内側から該プラスチック基板に向けて噴射するように導入する
ことを特徴とする透明導電薄膜の形成方法としたものである。
【0008】
また、請求項2の発明では、前記蒸発材料の粒径が3mm以上で、かつ均一であることを特徴とする請求項1記載の透明導電薄膜の形成方法としたものである。
【0010】
【発明の実施の形態】
以下本発明の実施の形態を図面を用いて詳細に説明する。
本発明の透明導電薄膜の形成方法は、図1に示すような、プラズマアシストイオンプレーティング装置(100)を用いて行うもので、このプラズマアシストイオンプレーティング装置(100)は、真空チャンバー(50)内には蒸発源(20)を保持するハース(30)と蒸発材料に照射して蒸発させる電子銃(80)、プラスチック基板(10)を保持する基板ホルダー(60)、ヘリウムと酸素ガスを導入するガス導入口(70)およびプラスチック基板(10)と蒸発源(20)の間に設けられたRFコイル(40)から構成されている。
【0011】
上記プラズマアシストイオンプレーティング装置(100)を用いて、本発明の透明導電薄膜の形成は、まず、真空度1×10-3Pa以下とした真空チャンバー(50)の下部に配設されているハース(30)の内部に、保持された金属酸化物からなる蒸発材料を蒸発源(20)とし、その蒸発材料を電子銃(80)から照射される電子ビームで蒸発させ、前記蒸発された蒸発粒子(22)が、前記蒸発源(20)とプラスチック基板(10)の間にガス導入口(70)から導入されたヘリウムと酸素のプラズマ領域中を通過して、基板ホルダー(60)に保持されたプラスチック基板(10)上(図面では下面)に薄膜を形成することを特徴とするものである。
【0012】
また、本発明の透明導電薄膜の形成方法は、上記の蒸発源(20)とプラスチック基板(10)の間に、ガス導入口(70)を介して導入するヘリウムと酸素を、高電圧印可のRFコイル(40)内側からプラスチック基板(10)に向けて噴射するように導入してヘリウムと酸素ガスをプラズマ形成することを特徴とするものである。
【0013】
以上のように、ヘリウムのプラズマ形成は、蒸発粒子(22)をプラズマ領域中を通過させることによってイオン化させ、さらに酸素(ガス)のプラズマ化は、電子銃(80)からの電子ビーム照射による蒸発粒子(22)からの脱酸素化を補うものである。
【0014】
さらにまた、ヘリウムと酸素ガスを高電圧印可のRFコイル(40)の内側からプラスチック基板(10)に向かって噴射するように導入することによって、プラズマ領域中の蒸発粒子(22)とヘリウムおよび酸素ガスとの混合を良好にし、上記のイオン化と酸化の反応性を高め促進するものである。よって、成膜の高速化が可能となるものである。
【0015】
また、請求項3の発明では、上記蒸発材料の粒径が3mm以上で、かつ均一であることを特徴とする透明導電薄膜の形成方法としたものであって、このことにより、電子銃(80)からの電子ビームの照射によるスプラッシュ現象を抑制し、成膜時の膜厚ムラの発生を抑制することができるものである。
【0016】
以上のような透明導電薄膜の形成方法を使用して、高生産性で、プラスチック基板(10)上に形成されたより均一な膜厚の透明導電薄膜板(またはフィルム)の用途として、高品質の液晶ディスプレイ透明電極、電磁波シールド材などが挙げられる。
【0017】
【実施例】
次に本発明を実施例により、さらに具体的に説明する。
〈実施例1〉
まず、図1に示すように、基板(10)として30×30cm、厚さ100μmのポリエステルフィルムをプラズマアシストイオンプレーティング装置(100)の真空チャンバー(50)内上部の基板ホルダー(60)に保持した。
【0018】
次いでハース(30)に蒸発源(20)として蒸発材料In2 3-SnO2 粒(SnO2 5重量%、粒径3mm)を配設した。
【0019】
上記の基板(10)と蒸発源(20)を用いて、以下5項目の成膜条件で成膜した。
(1)成膜真空度:8.0×10-2Pa
(2)導入ガス流量:ヘリウム−10sccm、酸素−50sccm
(3)電子ビーム:電流−0.15A、電圧−4000V
(4)RFコイル印可出力:400、600、800、1000Wに変化調整
(5)基板温度:25℃(常温)
【0020】
上記の条件で得られた透明導電薄膜について成膜速度、比抵抗、光透過率、を測定して評価した結果を表1に示した。
なお、上記の評価法として、
(A)成膜速度:成膜時間を1分とし、その時の透明導電薄膜の膜厚(nm)を成膜速度とした。
(B)比抵抗:表面抵抗器LORESTA(三菱油化社製)を用いて、面抵抗R(Ω/□)を測定し、式ρ=R×d・10-7に示すように、面抵抗Rに透明導電薄膜の膜厚d(nm)を乗じて比抵抗ρ(Ω・cm)を求めた。
(C)光透過率:プラスチック基板(10)上の透明導電薄膜について、分光光度計(島津製作所社製)を用いて波長550nmにおける光透過率を求めた。
【0021】
【表1】

Figure 0003951392
【0022】
上記表1に示されるように、成膜速度は遅い方でも190nm/minであり、RF出力1000Wでは300nm/minと速い成膜速度であり、従来に比し可なりの生産性の向上がみられた。
【0023】
また、上記で得られた透明導電薄膜は、比抵抗が9.4×10-3Ω・cm以下であり、波長550nmにおける透過率が79%以上であり、電気的特性および透明性に優れたものであった。
【0024】
また、30×30cmの範囲における透明導電薄膜の膜厚の分布は、±10%程度であり、良好な均一性をもった透明導電薄膜が得られた。
【0025】
【発明の効果】
本発明は以上の構成であるから、下記に示す如き効果がある。
即ち、プラスチック基板上に、金属酸化物からなる蒸発材料を蒸発源とし、該蒸発材料を電子ビームで蒸発させて薄膜を形成する方法において、前記蒸発された蒸発粒子を、前記蒸発源とプラスチック基板の間に形成されたヘリウムと酸素のプラズマ領域中を通過させ、前記蒸発源とプラスチック基板の間に導入されるヘリウムと酸素を、高電圧印可のRFコイル内側からプラスチック基板に向けて噴射するように導入することによって、生産性に寄与する速い成膜が可能となる。
【0026】
また、前記蒸発材料の粒径を3mm以上で、かつ均一なものとすることによって、均一性に優れた透明導電薄膜の膜厚とすることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を説明するためのプラズマアシストイオンプレーティング装置の概略図である。
【符号の説明】
10‥‥プラスチック基板
20‥‥蒸発源
22‥‥蒸発粒子
30‥‥ハース
40‥‥RFコイル
50‥‥真空チャンバー
60‥‥基板ホルダー
70‥‥ガス導入口
80‥‥電子銃
100‥‥プラズマアシストイオンプレーティング装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a transparent and conductive thin film on a plastic substrate.
[0002]
[Prior art]
Conventionally, transparent conductive thin films have been widely used in the electrical and optical fields. For example, metal oxides such as indium tin oxide (hereinafter referred to as ITO) and tin oxide (SnO 2 ) are used. The film was formed by a dry coating method such as a vacuum deposition method, a sputtering method, or an ion plating method.
[0003]
Of the above film forming methods, the ion plating method is known to be a plasma assisted ion plating method in which, for example, ITO is irradiated with an electron beam to evaporate, and the evaporated particles are passed through oxygen plasma to form a film. In addition, the ITO thin film formed by this film forming method has a feature of having a low resistance at a low substrate temperature that does not damage the substrate.
[0004]
[Problems to be solved by the invention]
However, in the above-described prior art, that is, the method for forming a transparent conductive thin film by the plasma assisted ion plating method, the film formation rate is as low as 40 to 50 nm / min, which is not suitable for mass production.
[0005]
Further, in the above method, since the evaporation material is irradiated with a high-power electron beam, there is a problem that a splash phenomenon occurs in which the evaporation material having a small particle size is scattered, resulting in unevenness of the film thickness.
[0006]
The present invention solves the problems of the prior art, and the problem is to form a uniform film thickness on a plastic substrate or film at a high film formation rate that contributes to productivity. It is an object of the present invention to provide a method for forming a transparent conductive thin film that makes it possible.
[0007]
[Means to solve the problem]
In order to achieve the above object in the present invention, first, in the invention of claim 1, a thin film is formed on a plastic substrate by using an evaporation material made of a metal oxide as an evaporation source and evaporating the evaporation material with an electron beam. A method of forming,
The vaporized evaporation particles, Ri Na through said evaporation source and helium and oxygen plasma region formed between the plastic substrate,
Helium and oxygen introduced between the evaporation source and the plastic substrate are introduced so as to be ejected from the inside of a high voltage applied RF coil provided between the evaporation source and the plastic substrate toward the plastic substrate. This is a method for forming a transparent conductive thin film.
[0008]
According to a second aspect of the present invention, there is provided the method for forming a transparent conductive thin film according to the first aspect, wherein the evaporation material has a particle size of 3 mm or more and uniform .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The method for forming a transparent conductive thin film of the present invention is performed using a plasma assisted ion plating apparatus (100) as shown in FIG. 1, and the plasma assisted ion plating apparatus (100) includes a vacuum chamber (50). ) Includes a hearth (30) for holding the evaporation source (20), an electron gun (80) for irradiating and evaporating the evaporation material, a substrate holder (60) for holding the plastic substrate (10), helium and oxygen gas. A gas introduction port (70) to be introduced and an RF coil (40) provided between the plastic substrate (10) and the evaporation source (20) are configured.
[0011]
The formation of the transparent conductive thin film of the present invention using the plasma-assisted ion plating apparatus (100) is first arranged under the vacuum chamber (50) having a vacuum degree of 1 × 10 −3 Pa or less. Inside the hearth (30), an evaporation material made of a metal oxide held therein is used as an evaporation source (20), and the evaporation material is evaporated by an electron beam irradiated from an electron gun (80). The particles (22) pass through the plasma region of helium and oxygen introduced from the gas inlet (70) between the evaporation source (20) and the plastic substrate (10) and are held by the substrate holder (60). A thin film is formed on the plastic substrate (10) (the lower surface in the drawing).
[0012]
Further, the method for forming a transparent conductive thin film of the present invention can apply helium and oxygen introduced through a gas inlet (70) between the evaporation source (20) and the plastic substrate (10) at a high voltage. The plasma is formed by introducing helium and oxygen gas by injecting from the inside of the RF coil (40) toward the plastic substrate (10).
[0013]
As described above, the plasma formation of helium is ionized by passing the vaporized particles (22) through the plasma region, and the oxygen (gas) plasma is vaporized by irradiation with an electron beam from the electron gun (80). It supplements deoxygenation from the particles (22).
[0014]
Furthermore, by introducing helium and oxygen gas so as to be injected from the inside of the RF coil (40) to which high voltage is applied toward the plastic substrate (10), the evaporated particles (22) in the plasma region, helium and oxygen It improves the mixing with the gas and enhances and accelerates the ionization and oxidation reactivity. Therefore, the film formation speed can be increased.
[0015]
According to a third aspect of the present invention, there is provided a method for forming a transparent conductive thin film characterized in that the evaporation material has a particle size of 3 mm or more and is uniform, whereby an electron gun (80 ) To suppress the splash phenomenon caused by the irradiation of the electron beam, and the occurrence of film thickness unevenness during film formation can be suppressed.
[0016]
Using the transparent conductive thin film formation method as described above, the high-quality transparent conductive thin film plate (or film) formed on the plastic substrate (10) with high productivity can be used as a high quality product. A liquid crystal display transparent electrode, an electromagnetic shielding material, etc. are mentioned.
[0017]
【Example】
Next, the present invention will be described more specifically with reference to examples.
<Example 1>
First, as shown in FIG. 1, a polyester film having a thickness of 30 × 30 cm and a thickness of 100 μm is held as a substrate (10) in a substrate holder (60) in an upper part of a vacuum chamber (50) of a plasma assisted ion plating apparatus (100). did.
[0018]
Next, evaporation material In 2 O 3 —SnO 2 grains (5% by weight of SnO 2 , particle diameter of 3 mm) were disposed in the hearth (30) as an evaporation source (20).
[0019]
Using the substrate (10) and the evaporation source (20), a film was formed under the following five conditions.
(1) Deposition vacuum: 8.0 × 10 −2 Pa
(2) Introduction gas flow rate: helium-10 sccm, oxygen-50 sccm
(3) Electron beam: current -0.15A, voltage -4000V
(4) RF coil applied output: 400, 600, 800, 1000 W change adjustment (5) Substrate temperature: 25 ° C. (room temperature)
[0020]
Table 1 shows the results of measuring and evaluating the film formation rate, specific resistance, and light transmittance of the transparent conductive thin film obtained under the above conditions.
In addition, as the above evaluation method,
(A) Film formation speed: The film formation time was 1 minute, and the film thickness (nm) of the transparent conductive thin film at that time was taken as the film formation speed.
(B) Specific resistance: Surface resistance R (Ω / □) was measured using a surface resistor LORESTA (manufactured by Mitsubishi Yuka Co., Ltd.), and as shown in the formula ρ = R × d · 10 −7 , surface resistance The specific resistance ρ (Ω · cm) was determined by multiplying R by the film thickness d (nm) of the transparent conductive thin film.
(C) Light transmittance: About the transparent conductive thin film on a plastic substrate (10), the light transmittance in wavelength 550nm was calculated | required using the spectrophotometer (made by Shimadzu Corp.).
[0021]
[Table 1]
Figure 0003951392
[0022]
As shown in Table 1 above, the deposition rate is 190 nm / min even at a slower rate, and the deposition rate is as fast as 300 nm / min at an RF output of 1000 W, which is a significant improvement in productivity as compared with the prior art. It was.
[0023]
Further, the transparent conductive thin film obtained above has a specific resistance of 9.4 × 10 −3 Ω · cm or less, a transmittance at a wavelength of 550 nm of 79% or more, and excellent electrical characteristics and transparency. It was a thing.
[0024]
Further, the film thickness distribution of the transparent conductive thin film in the range of 30 × 30 cm was about ± 10%, and a transparent conductive thin film having good uniformity was obtained.
[0025]
【The invention's effect】
Since this invention is the above structure, there exist the following effects.
That is, in a method of forming a thin film by using an evaporation material made of a metal oxide as an evaporation source on a plastic substrate and evaporating the evaporation material with an electron beam, the evaporated particles are separated from the evaporation source and the plastic substrate. So that helium and oxygen introduced between the evaporation source and the plastic substrate are jetted from the inside of the RF coil to which the high voltage is applied toward the plastic substrate. By introducing it into the film, rapid film formation that contributes to productivity becomes possible.
[0026]
Moreover, the film thickness of the transparent conductive thin film excellent in uniformity can be obtained by making the particle size of the evaporation material 3 mm or more and uniform.
[Brief description of the drawings]
FIG. 1 is a schematic view of a plasma assisted ion plating apparatus for explaining an embodiment of the present invention.
[Explanation of symbols]
10. Plastic substrate 20 Evaporation source 22 Evaporation particle 30 Hearth 40 RF coil 50 Vacuum chamber 60 Substrate holder 70 Gas inlet 80 Electron gun 100 Plasma assist Ion plating equipment

Claims (2)

プラスチック基板上に、金属酸化物からなる蒸発材料を蒸発源とし、該蒸発材料を電子ビームで蒸発させて薄膜を形成する方法であって、
前記蒸発された蒸発粒子が、前記蒸発源とプラスチック基板の間に形成されたヘリウムと酸素のプラズマ領域中を通過してなり、
前記蒸発源とプラスチック基板の間に導入されるヘリウムと酸素を、前記蒸発源と前記プラスチック基板の間に設けられた高電圧印可のRFコイルの内側から該プラスチック基板に向けて噴射するように導入する
ことを特徴とする透明導電薄膜の形成方法。
A method of forming a thin film on a plastic substrate using an evaporation material made of a metal oxide as an evaporation source and evaporating the evaporation material with an electron beam,
The vaporized evaporation particles, Ri Na through said evaporation source and helium and oxygen plasma region formed between the plastic substrate,
Helium and oxygen introduced between the evaporation source and the plastic substrate are introduced so as to be ejected from the inside of a high voltage applied RF coil provided between the evaporation source and the plastic substrate toward the plastic substrate. A method for forming a transparent conductive thin film, comprising:
前記蒸発材料の粒径が3mm以上で、かつ均一であることを特徴とする請求項1記載の透明導電薄膜の形成方法。  2. The method for forming a transparent conductive thin film according to claim 1, wherein a particle diameter of the evaporating material is 3 mm or more and uniform.
JP32673797A 1997-11-27 1997-11-27 Method for forming transparent conductive thin film Expired - Fee Related JP3951392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32673797A JP3951392B2 (en) 1997-11-27 1997-11-27 Method for forming transparent conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32673797A JP3951392B2 (en) 1997-11-27 1997-11-27 Method for forming transparent conductive thin film

Publications (2)

Publication Number Publication Date
JPH11156990A JPH11156990A (en) 1999-06-15
JP3951392B2 true JP3951392B2 (en) 2007-08-01

Family

ID=18191125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32673797A Expired - Fee Related JP3951392B2 (en) 1997-11-27 1997-11-27 Method for forming transparent conductive thin film

Country Status (1)

Country Link
JP (1) JP3951392B2 (en)

Also Published As

Publication number Publication date
JPH11156990A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
TW539752B (en) Method of forming indium tin oxide thin film using magnetron negative ion sputter source
WO2004055233A1 (en) Transparent conductive film and film forming method therefor
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
JP2003520296A (en) Electron beam evaporation method of transparent indium tin oxide
JPWO2008044474A1 (en) Method for forming transparent conductive film
WO2008050662A1 (en) Plasma display panel manufacturing method and manufacturing device
JP2004214184A (en) Transparent conductive film and forming method of the same
JP4660570B2 (en) Vacuum film forming apparatus and film forming method
JP5447240B2 (en) Magnetron sputtering apparatus and method for producing transparent conductive film
JPH02101160A (en) Ion plating method
JP3951392B2 (en) Method for forming transparent conductive thin film
US20100003423A1 (en) Plasma generating apparatus and film forming apparatus using plasma generating apparatus
JP2004197207A (en) Thin film deposition system
JPH11195333A (en) Manufacture of transparent conductive film and this transparent conductive film
JPH07310181A (en) Dc magnetron sputtering method and device therefor
JPH1036962A (en) Device for producing optical thin coating film and its production
JPH058527B2 (en)
JPH0273963A (en) Formation of thin film on low-temperature substrate
JPH11279756A (en) Formation of transparent conductive film
JP3775851B2 (en) Vapor deposition apparatus and protective film manufacturing method
JP2002129307A (en) Thin film forming method and equipment
JPH083735A (en) Production of thin film
JPH02228469A (en) Ion plating method
JP3126976B2 (en) Method for manufacturing plasma display panel
JPS63210006A (en) Formation of thin amorphous carbon film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees