JP3951198B2 - Metal evaporation transfer material - Google Patents

Metal evaporation transfer material Download PDF

Info

Publication number
JP3951198B2
JP3951198B2 JP15288197A JP15288197A JP3951198B2 JP 3951198 B2 JP3951198 B2 JP 3951198B2 JP 15288197 A JP15288197 A JP 15288197A JP 15288197 A JP15288197 A JP 15288197A JP 3951198 B2 JP3951198 B2 JP 3951198B2
Authority
JP
Japan
Prior art keywords
vapor deposition
metal
angstroms
deposition layer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15288197A
Other languages
Japanese (ja)
Other versions
JPH10324093A (en
Inventor
正巳 斎藤
力 青柳
正行 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Advanced Film Co Ltd
Original Assignee
Toray Advanced Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Advanced Film Co Ltd filed Critical Toray Advanced Film Co Ltd
Priority to JP15288197A priority Critical patent/JP3951198B2/en
Publication of JPH10324093A publication Critical patent/JPH10324093A/en
Application granted granted Critical
Publication of JP3951198B2 publication Critical patent/JP3951198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Decoration By Transfer Pictures (AREA)

Description

【0001】
【発明の属する技術分野】
美麗な金属光沢を発現しつつ,人体に対して通電ショックのないことを要求される家庭電化製品やOA機器に用いる機能性を持った表面装飾材料である金属蒸着転写材料およびその製造方法に関する。
【0002】
【従来の技術】
テレビ,オーディオ,ビデオ等の家電製品には優れた美麗感を与えるために,基材表面上に金属光沢を付与することが従来から行われている。かかる金属光沢を付与する方法として,アルミニュウム箔に代表される金属箔を基材表面部に直接貼りつける方法が従来からおこなわれている。しかしながら,この方法による基材表面の装飾法は基材が曲面や複雑な凹凸構造を呈している場合は,かなりの熟練を要し,美麗に形成することは相当の困難を伴なった。
【0003】
公知の真空蒸着法によって金属の薄膜を形成することがおこなわれている。すなわち目的とする基材の表面に直接真空蒸着をおこなって,外観に金属光沢感を付与することがおこなわれている。この方法は金属層の厚さが前記の金属箔に比べて格段に薄いものが得られるので,経済的にはるかに優位性がある反面,基材が曲面や複雑な凹凸構造を呈している場合には全面に均一の厚さに形成することが困難である問題を伴なっていた。この解決策として,真空蒸着法による金属薄膜を転写材料に形成し,美麗感を必要とする基材に転写貼合せする方法がおこなわれている。金属箔に比べて格段に薄い金属薄膜で金属光沢感が得られること,複雑な形状の基材にも美麗に加工処理ができる一方,金属の有する通電現象は避けられず,漏電や静電気帯電時に触手した時の不快感は耐え難いものがあった。
【0004】
特公平3−25353には通電現象を回避する金属蒸着層を有する転写材料として,Sn,Pb,Zn等の金属を使って蒸着層に島状構造を設け,その島の大きさ,島相互の間隔を特定化しておこなうことが記載されている。ところで金属蒸着層が厚くなると島が連結して一体化するので金属蒸着層の厚さを光線透過率で代表させて,光線透過率が10〜15%の範囲に収まるよう推奨している。この透過率の値では,美麗な金属光沢を得るには金属蒸着層の厚さが十分でなく,得られた転写材料はくすみ感を持ち外観品位上美麗感が及ばない問題を伴なっていた。
【0005】
【発明が解決しようとする課題】
本発明の目的は、上記,製品およびその使用段階での問題に対し、従来技術の範囲では未解決であった問題点を解決した金属蒸着転写材料,すなわち、美麗な金属光沢性能を保持し,しかも触手しても通電や電気ショックを受ける心配がなく,しかも複雑な形状の基材にも良好に貼合せ加工でき,その結果として種々の家電製品に装着されて使用されることができる優れた金属蒸着転写材料およびその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らが鋭意検討した結果、上記目的は下記の構成を有する本発明によって好都合に達成された。
【0007】
[1]ベースフィルムの上面に離型層を設け,その上に保護樹脂層,金属蒸着層,接着層を順次形成してなる金属蒸着転写材料において,金属蒸着層の可視光線透過率が1%以上かつ10%未満および表面抵抗値が105 Ω以上であり、金属蒸着層は,無数の互いに独立して,200オングストローム以上,1000オングストローム以下の範囲内で均一の厚さであって,500オングストローム以上,5000オングストローム以下の長さに分布を持った蒸着層(Va)と,その間隙に介在し,蒸着層(Va)より微小であって互いに独立した粒状化の蒸着層(Vb)より構成され,該微小粒状化の蒸着層(Vb)は厚さ10オングストローム以上,200オングストローム未満,長さ5オングストローム以上,500オングストローム未満に分布し,(Va),(Vb)を含め,互いに独立する蒸着金属間の最短距離は10オングストローム以上,100オングストローム未満であって,互いに独立して隣り合う最短距離にある金属蒸着物間の距離は平均で50オングストローム以下に分布して存在し,(Va)は(Vb)に対して平面面積比にして50%以上100%未満を占めて存在していることを特徴とする金属蒸着転写材料。
【0008】
[2]金属蒸着層が,Sn,Sb,Zn,Pb,Biよりなる群から選ばれた一種または二種以上の金属からなる上記[1]記載の金属蒸着転写材料。
【0010】
【発明の実施の形態】
以下に、本発明の内容について詳しく説明する。
【0011】
ベースフィルムは形状保持性があれば特に限定されるものでなく,転写材料の基材として一般に使用されるポリエステルフィルム,ポリエチレンフィルム,ポリプロピレンフィルム等のプラスチックフィルム,または布,紙,不織布などから任意に選択される。
【0012】
離型層としては.リン脂質(レシチン),酢酸セルロース,ワックス,脂肪酸,脂肪酸アミド,脂肪酸エステル,ロジン,アクリル樹脂,シリコーン,フッ素樹脂等が,その剥離の容易性の程度に応じて,適宜選択されて使用される。ベースフィルムがフラットの場合は0.01〜2μmの厚さであり,より好ましくは,0.5〜1μmの厚さで使用される。ベースフィルムが小さい凹凸のあるマット加工フィルムやヘヤーライン加工等の場合は1〜3μmと厚くするほうが,離型性がよく転写加工し易い。
【0013】
金属蒸着層を保護するために保護樹脂層が設けられる。かかる保護樹脂層の樹脂としては離型層および金属蒸着層のいずれにも接着性のよい熱硬化性樹脂,熱可塑性樹脂または紫外線などの光硬化性樹脂が使われる。具体的には,蒸着金属の種類,用途による必要諸性能(機械的特性,耐熱性,耐溶剤性,光学的特性,耐候性など)により適宜選択することができ,例えば,アクリル樹脂,メラミン樹脂,ウレタン樹脂,エポキシ樹脂,アルキッド樹脂,セルロース系,ポリ塩化ビニル系等から選ばれた一種または二種以上を使用することができる。一般にその厚さは0.2〜5μm程度,より好ましくは1〜3μmである。これらの樹脂は透明性のよいものが使用されるが,染料,顔料または艶消し剤を入れて着色することもできる。また保護樹脂層の表面にホログラム加工を施すことによって,虹彩色もしくはホログラム効果を付与することもできる。
【0014】
本発明の金属蒸着層は金属光沢を与えるために必要であり,本発明の優れた金属光沢を発現するには,金属蒸着層は可視光線透過率で1%以上,10%未満を満たすことが必要である。金属光沢値としては一般的には500%を越すと美麗な金属光沢として審美感が得られ,かかる金属光沢性は蒸着層の透過率に依存するものであるが,可視光線透過率が10%以上になると全体がくすみ感を呈し金属光沢としての美麗感が著しく損なわれる。可視光線透過率が1%未満になると,金属光沢は満たすものの,基材表面部を蒸着金属によって密接に被覆され,静電気の通電抑止性を維持することができなくなる。
【0015】
発明者等は人体への通電ショックについて鋭意検討に努めた結果,金属蒸着層の通電性は従来考えられていた絶縁性であることは必ずしも必要でなく,表面抵抗値として105 Ω以上の半導体以上の性状を維持すれば,仮に通電しても人体には許容できる微細電流しか流れず,実用上何等問題ないことを見出した。表面抵抗値が105 Ωより少なくなると,帯電した基材表面部に接手した時の通電ショックは大きくなりその不快感は耐え難くなる。
【0016】
さらに本発明の金属蒸着層はSn,Sb,Zn,Pb,Biよりなる群から選ばれた金属を用いることが好ましい。良好な金属光沢を有するためには,基材表面を金属蒸着層で十分隠蔽被覆する必要があるが,これらの金属より高沸点を有する金属を用いると,蒸着形成能が十分でなくなる。
【0017】
本発明の良好な金属光沢を保持しつつ,かつ人体への通電ショックから回避された金属蒸着層を形成するに当たっては,蒸着時の蒸着機のクーリングキャンの温度を0℃以上,50℃以下にておこなう。クーリングキャンは真空蒸着機の内部に装着され,蒸着される基材が蒸着を受ける時に熱的損傷を受けることがないように,強制冷却をおこなう装置であって,通常は冷却水等で−5℃以下,好ましくは−10℃以下に冷却して,基材を該装置に接面させて冷却しながら蒸着がおこなわれる。本発明者等は該クーリングキャンの温度を従来の常識を越える本発明の温度範囲でおこなうと,金属光沢感を発現する光線透過率が1%以上,10%未満の厚さまで金属蒸着層を形成しても,105 Ω以上の表面抵抗値を保持し,帯電しても人体への通電ショックの受けることのない金属蒸着層を得ることを見出した。
【0018】
本発明の金属光沢に優れ,かつ人体への通電ショックから回避された金属蒸着層の構成は,金属蒸着層の厚みおよび分布状態については透過型電子顕微鏡による金属蒸着層の厚み方向の断面写真を,平面形状の様態については走査型電子顕微鏡撮影によって明らかにすることができる。すなわち本発明の金属蒸着層は,無数の互いに独立して,200オングストローム以上,1000オングストローム以下の範囲内で均一の厚さであって,500オングストローム以上,5000オングストローム以下の長さに分布を持った蒸着層(Va)と,その間隙に介在し,蒸着層(Va)より微小であって互いに独立した粒状化の蒸着層(Vb)より構成され,該微小粒状化の蒸着層(Vb)は厚さ10オングストローム以上,200オングストローム未満,長さ5オングストローム以上,500オングストローム未満に分布し,(Va),(Vb)を含め,互いに独立する蒸着金属間の最短距離は10オングストローム以上,100オングストローム未満であって,互いに独立して隣り合う最短距離にある金属蒸着物間の距離は平均で50オングストローム以下に分布して存在し,(Va)は(Vb)に対して平面面積比にして50%以上100%未満を占めて存在していることが特徴づけられる。前記蒸着層(Va)の厚さは可視光線透過率の大小に対応し,なかんずく蒸着時の真空度,蒸着温度,基材速度,蒸着金属品種によって制御されるものであって,金属光沢を発現する役割を担う。蒸着層(Va)の厚さが200オングストローム未満では可視光線透過率が10%以上となり全体がくすみ感に侵される。1000オングストロームを越えると金属光沢は満たすものの,基材表面部を蒸着金属で密接に被覆され,静電気の通電抑止性を維持することができなくなる。一方互いに独立する蒸着金属間の最短距離はクーリングキャンの温度によって制御を受けるが,本発明の範囲の距離であれば基材が帯電した場合,トンネル電流は流れるが,電流量が微小に留まるので人体への通電ショックが回避される機能を有する。
【0019】
接着層は金属薄膜層および転写すべき被転写材のいずれにも接着性の良い樹脂系接着剤が使用できる。例えばアクリル酸エステル系,ポリエステル系,合成ゴム系,エポキシ系,ポリウレタン系,エチレンー酢酸ビニル系,ポリアミド系,ポリ塩化ビニル,ハロゲン化ポリオレフィン,ニトロセルロースおよびこれらの共重合体などが一般的に使用できる。用途によっては加熱によって接着可能な公知の種々の接着剤あるいはホットメルトシートを使用することができる。ホットメルトシートとしてはポリウレタン,ポリアミド,ポリ塩化ビニル系のものが好ましく用いられる。接着層の厚さは,接着剤の場合は2〜100μm,好ましくは5〜30μm,ホットメルトシートでは20〜200μm,好ましくは50〜100μmの範囲でそれぞれ選ばれる。
【0020】
【実施例】
以下本発明の様態を実施例をもって具体的に説明するが,本発明はこれによって限定されるものではない。
【0021】
[実施例1]
厚さ25μmの2軸延伸ポリエチレンテレフタレ−トフィルムに,離型層(酢酸セルロース樹脂,厚さ0.5μm)を一色グラビヤコータを用いて塗布,乾燥をおこなった。ついで該離型層の上にメタクリル酸,メタクリル酸2−ヒドロキシエチル,メタクリル酸nブチル,メラミン樹脂を含有するトルエン溶液を前記コータを用いて塗布,乾燥,樹脂硬化をおこない,厚さ8μmの保護樹脂層を得た。引き続いて,該保護樹脂層の上面に半連続巻取り式真空蒸着装置を用いてSn金属の蒸着を,真空度:2×10-4Torr,クーリングキャンの温度:10℃の条件下でおこない,可視光線透過率5%のSn蒸着層を得た。該蒸着層上にさらにエチレン−酢酸ビニル共重合樹脂のトルエン溶液を前記一色グラビヤコータを用いて塗布,乾燥し,厚さ2μmの接着樹脂層を得た。得られた金属蒸着層の,表面抵抗値は1011Ωであった。この金属蒸着転写材料の外観光沢度は500%を示し美麗な金属光沢感を呈した。また強制的に静電気帯電をおこなってから直接手に触れても通電ショックを感じることなく,通常の取扱いをおこなっても問題なかった。
【0022】
なお金属蒸着層の断面部を透過型電子顕微鏡で,および平面状態を走査型電子顕微鏡で各々10万倍に拡大すると無数の互いに独立した長さ500オングストローム〜3000オングストローム,厚さ400オングストロームの蒸着層(Va)と,その間隙に介在し,蒸着層(Va)より微小であってかつ互いに独立した長さ5オングストローム〜400オングストローム,厚さ10〜100オングストロームに分布した粒状化の蒸着層(Vb)より構成され,蒸着層(Va),(Vb)を含め,互いに独立して隣り合う最短距離にある金属蒸着物間の距離は平均で50オングストロームに分布して存在し,蒸着層(Va)は(Vb)に対して平面面積比にして50%以上を占めて存在していることが観察された。
【0023】
[実施例2]
実施例1の金属蒸着層において,Sn金属の蒸着をクーリングキャンの温度を2℃にして,可視光線透過率2%のSn蒸着層を得た以外は,実施例1に準じてSn金属を蒸着した転写材料を得た。得られた金属蒸着層の表面抵抗値は1010Ωであった。この金属蒸着転写材料の外観光沢度は,590%を示し美麗な金属光沢感を呈した。また強制的に静電気帯電をおこなってから直接手に触れて通常の取扱いをおこなっても通電ショックを感じることなく問題なかった。
【0024】
金属蒸着層の断面部を透過型電子顕微鏡にて,および平面状態を走査型電子顕微鏡で各々10万倍に拡大すると無数の互いに独立した長さ500オングストローム〜4000オングストローム,厚さ700オングストロームの蒸着層(Va)と,その間隙に介在し,蒸着層(Va)より微小であってかつ互いに独立した長さ10オングストローム〜400オングストローム,厚さ10〜100オングストロームに分布した粒状化の蒸着層(Vb)より構成され,蒸着層(Va),(Vb)を含め,互いに独立して隣り合う最短距離にある金属蒸着物間の距離は平均で30オングストローム分布して存在し,蒸着層(Va)は(Vb)に対して平面面積比にして50%以上を占めて存在していることが観察された。
【0025】
[比較例1]
実施例1の金属蒸着層において,Sn金属の蒸着をクーリングキャンの温度を−10℃にして,可視光線透過率8%,蒸着層(Va)の膜厚300オングストロームのSn蒸着層を得た以外は,実施例1に準じてSn金属を蒸着した転写材料を得た。得られた金属蒸着層の表面抵抗値は104 Ω以下であった。この金属蒸着転写材料の外観光沢度は450%を呈した。強制的に静電気帯電をおこなってから直接手に触れると通電ショックを受けた。なお走査型電子顕微鏡を用いて金属蒸着層の平面状態を観察すると,互いに独立して隣り合う最短距離にある金属蒸着物間の距離は平均で10オングストローム以下となっているのが認められた。
【0026】
[比較例2]
実施例1の金属蒸着層において,Sn金属の蒸着をクーリングキャンの温度を60℃にして,Sn蒸着層を得る以外は,実施例1に準じてSn金属を蒸着した転写材料を得ようと試みた。蒸着時にプラスティックフィルム基材にいわゆるフィルムのヤケ,ヤブレ等の損傷が発生して良好品を得ることができなかった。
【0027】
[比較例3]
実施例1の金属蒸着層において,Sn金属の蒸着を可視光線透過率20%,蒸着層(Va)の膜厚130オングストロームを得た以外は,実施例1に準じてSn金属を蒸着した転写材料を得た。得られた金属蒸着層の表面抵抗値は1016Ω以上であった。この金属蒸着転写材料は強制的に静電気帯電をおこなってから直接手に触れても通電ショックを受けることはなかったが,外観光沢度が320%であり,外観上くすみ感が顕在化し良好な金属光沢感は得られなかった。
【0028】
[比較例4]
実施例1の金属蒸着層において,Sn金属の蒸着をクーリングキャンの温度を10℃,可視光線透過率0.1%,蒸着層の膜厚1500オングストロームのSn蒸着層を得た以外は,比較例1に準じてSn金属を蒸着した転写材料を得た。得られた金属蒸着層の表面抵抗値は104 Ω以下であった。この金属蒸着転写材料の外観光沢度は750%であり優れた金属光沢性を示したが,強制的に静電気帯電を与えてから直接手に触れると通電ショックを受け著しい不快感をこうむった。透過型電子顕微鏡にて金属蒸着層の断面および走査型電子顕微鏡を用いて金属蒸着層の平面状態を観察すると,金属蒸着層が基板全体に被覆しているのが認められた。
【0029】
[比較例5]
実施例1の金属蒸着層において,Sn金属の蒸着をクーリングキャンの温度を−10℃,可視光線透過率15%,蒸着層の膜厚180オングストロームのSn蒸着層を得た以外は,実施例1に準じてSn金属を蒸着した転写材料を得た。得られた金属蒸着層の表面抵抗値は約1016Ωであった。この金属蒸着転写材料は強制的に静電気帯電をおこなってから直接手に触れても通電ショックを受けることはなかったが,外観光沢度が380%であり,外観上くすみ感が顕在化し良好な金属光沢感は得られなかった。
【0030】
【表1】

Figure 0003951198
表1における物性の測定方法等は下記のとおりである。
【0031】
注1) 比較例2は蒸着工程中にフィルムヤブレが発生し,一部評価困難。
【0032】
注2) 透過率…透過率計(日本電色工業製 型式NDH−1001DP)を用いて錫蒸着層の光線透過率を求めた。
【0033】
注3) 表面抵抗値…超絶縁抵抗計(安藤電気製 型式VMG−1000)を用いて電極間距離41mmの2端子電極法により印加電圧500V,1分間充電後の体積抵抗値を計測し,錫蒸着層の厚さから表面抵抗値を求めた。
【0034】
注4) 金属蒸着層の膜厚…透過電子顕微鏡(日立製作所製 型式H−7100FA)を用いて10万倍に拡大し,転写材の超薄切片の断面写真を撮影して錫蒸着層の厚さを測定した。
【0035】
注5) 金属蒸着層の平面様態および金属蒸着層間の距離…走査型電子顕微鏡を用いて10万倍に拡大して金属蒸着層の断面写真を撮影し,個々の蒸着層の最大長さの平均値および,隣合う独立した錫蒸着層間の最短距離の平均値を画像処理装置(日本アビオニクス社製である型式EXCELL II)から求めた。
【0036】
注6) 金属光沢度…デジタル変角光度計(スガ試験機製 型式UGV−50)を用いて測定し,光沢度が500%以上を○,400〜500%を△,400%以下を×,で表示した。
【0037】
注7) 静電気通電抑止性…超絶縁抵抗計(安藤電気製 型式VMG−1000を用いて印加電圧500V,1分間充電後の基材表面を触手し,異常を感じなかった場合は○,通電ショックを受けた場合×で表示した。
【0038】
【発明の効果】
本発明は特定の蒸着方法を採ることによって,金属蒸着層の厚さが金属光沢を発現するまでに至っても,相互に連結することなく独立を維持することが可能となり,従来の技術では達成できなかった美麗な金属光沢を保持しつつ,取扱いにあたって触手しても通電や電気ショックを受けることのない,新規な金属蒸着転写材料を提供することが可能となった。本発明の金属蒸着転写材料は,金属の有する通電性を回避しつつ,美麗な金属光沢を要求される家電製品やOA機器の表面装飾材等への利用価値が極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal vapor-deposited transfer material, which is a surface decoration material having functionality used in home appliances and OA equipment that is required to have a beautiful metallic luster and not to have an electric shock to the human body, and a manufacturing method thereof.
[0002]
[Prior art]
In order to give an excellent beauty to home appliances such as TV, audio, and video, it has been conventionally performed to give a metallic luster to the surface of a base material. As a method for imparting such a metallic luster, a method in which a metal foil typified by an aluminum foil is directly attached to a surface portion of a substrate has been conventionally performed. However, the decorating method of the base material surface by this method requires considerable skill when the base material has a curved surface or a complicated uneven structure, and it is quite difficult to form it beautifully.
[0003]
A metal thin film is formed by a known vacuum deposition method. That is, vacuum vapor deposition is directly performed on the surface of the target base material to give a metallic luster to the appearance. This method is much more economical because the metal layer is much thinner than the metal foil, but the substrate has a curved surface or a complex uneven structure. However, it was difficult to form a uniform thickness on the entire surface. As a solution to this problem, a method of forming a metal thin film by a vacuum deposition method on a transfer material and transferring and pasting it onto a base material that requires a beautiful feeling is performed. Compared to metal foil, a metallic thin film can provide a metallic luster, and even complicated substrates can be processed beautifully. Discomfort when tentacles were unbearable.
[0004]
In Japanese Examined Patent Publication No. 3-25353, as a transfer material having a metal vapor deposition layer that avoids an energization phenomenon, an island-like structure is provided in the vapor deposition layer using a metal such as Sn, Pb, Zn, etc. It describes that the interval is specified. By the way, since the islands are connected and integrated when the metal vapor deposition layer becomes thick, the thickness of the metal vapor deposition layer is represented by the light transmittance, and it is recommended that the light transmittance falls within the range of 10 to 15%. With this transmittance value, the thickness of the metal deposition layer was not enough to obtain a beautiful metallic luster, and the obtained transfer material had a dull feeling and a problem that the appearance was not beautiful. .
[0005]
[Problems to be solved by the invention]
The object of the present invention is to provide a metal vapor-deposited transfer material that solves the above-mentioned problems in the product and its use stage, which has not been solved in the scope of the prior art, that is, retains a beautiful metallic gloss performance, Moreover, even if it is a tentacle, there is no fear of being energized or shocked, and it can be applied well to substrates with complex shapes, and as a result, it can be mounted and used on various household appliances. An object of the present invention is to provide a metal vapor-deposited transfer material and a manufacturing method thereof.
[0006]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors, the above object has been advantageously achieved by the present invention having the following constitution.
[0007]
[1] In a metal vapor deposition transfer material in which a release layer is provided on the upper surface of a base film and a protective resin layer, a metal vapor deposition layer, and an adhesive layer are sequentially formed thereon, the visible light transmittance of the metal vapor deposition layer is 1%. More than and less than 10% and a surface resistance value of 10 5 Ω or more, and the metal vapor deposition layers have a uniform thickness within a range of 200 angstroms to 1000 angstroms, innumerably independently of each other, and 500 angstroms As described above, it is composed of a vapor deposition layer (Va) having a distribution of 5000 angstroms or less in length, and a granular vapor deposition layer (Vb) that is smaller than the vapor deposition layer (Va) and is independent of each other. The vapor deposition layer (Vb) having a fine grain size is 10 angstroms or more, less than 200 angstroms, 5 angstroms or more, and 500 angstroms or less. Distributed, (Va), the including mutually shortest distance between deposited metal to separate from 10 angstroms, be less than 100 angstroms, between the metal deposit on the shortest distance adjacent each independently (Vb) The distance is 50 angstroms or less on average, and (Va) occupies 50% or more and less than 100% of the plane area ratio with respect to (Vb). material.
[0008]
[2] The metal vapor-deposited transfer material according to the above [1], wherein the metal vapor-deposited layer is composed of one or more metals selected from the group consisting of Sn, Sb, Zn, Pb, and Bi.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The contents of the present invention will be described in detail below.
[0011]
The base film is not particularly limited as long as it has shape retention, and can be arbitrarily selected from polyester films, polyethylene films, polypropylene films such as polypropylene films generally used as a base material for transfer materials, or cloth, paper, non-woven fabric, etc. Selected.
[0012]
As a release layer. Phospholipid (lecithin), cellulose acetate, wax, fatty acid, fatty acid amide, fatty acid ester, rosin, acrylic resin, silicone, fluororesin, and the like are appropriately selected and used depending on the degree of ease of peeling. When the base film is flat, it has a thickness of 0.01 to 2 [mu] m, and more preferably 0.5 to 1 [mu] m. When the base film is a matt processed film with small unevenness or a hairline process, the thickness is increased to 1 to 3 μm to improve releasability and facilitate transfer processing.
[0013]
A protective resin layer is provided to protect the metal deposition layer. As the resin for the protective resin layer, a thermosetting resin, a thermoplastic resin, or a photocurable resin such as an ultraviolet ray having good adhesion is used for both the release layer and the metal vapor deposition layer. Specifically, it can be selected as appropriate depending on the type of vapor deposition metal and various performances required for the application (mechanical properties, heat resistance, solvent resistance, optical properties, weather resistance, etc.), such as acrylic resin, melamine resin. , Urethane resin, epoxy resin, alkyd resin, cellulose type, polyvinyl chloride type or the like can be used. In general, the thickness is about 0.2 to 5 μm, more preferably 1 to 3 μm. These resins have good transparency, but can be colored by adding dyes, pigments or matting agents. Further, by applying hologram processing to the surface of the protective resin layer, an iris color or a hologram effect can be imparted.
[0014]
The metal vapor deposition layer of the present invention is necessary to give a metallic luster, and in order to exhibit the excellent metal luster of the present invention, the metal vapor deposition layer should satisfy a visible light transmittance of 1% or more and less than 10%. is necessary. In general, when the metallic gloss value exceeds 500%, a beautiful metallic luster is obtained, and the metallic luster depends on the transmittance of the deposited layer, but the visible light transmittance is 10%. If it becomes above, the whole will show a dull feeling and the beauty as metallic luster will be remarkably impaired. When the visible light transmittance is less than 1%, the metallic luster is satisfied, but the surface of the base material is closely covered with the deposited metal, and the static electricity deterrence cannot be maintained.
[0015]
As a result of diligent investigations on the electric shock to the human body, the inventors of the present invention do not necessarily require the electric conductivity of the metal deposition layer to have been conventionally considered, and the surface resistance value is 10 5 Ω or more. It was found that if the properties of semiconductors are maintained, even if current is supplied, only a minute current that can be passed to the human body flows, and there is no practical problem. When the surface resistance value is less than 10 5 Ω, the current-carrying shock when touching the charged substrate surface becomes large and the discomfort is difficult to withstand.
[0016]
Furthermore, it is preferable to use a metal selected from the group consisting of Sn, Sb, Zn, Pb and Bi for the metal vapor deposition layer of the present invention. In order to have a good metallic luster, it is necessary to sufficiently cover the surface of the base material with a metal vapor deposition layer. However, if a metal having a boiling point higher than these metals is used, the vapor deposition ability is not sufficient.
[0017]
In forming a metal vapor deposition layer that retains the good metallic luster of the present invention and is avoided from the electric shock to the human body, the temperature of the cooling can of the vapor deposition apparatus during vapor deposition is set to 0 ° C. or more and 50 ° C. or less. and keep a will. The cooling can is a device that is installed inside the vacuum vapor deposition machine and performs forced cooling so that the substrate to be vapor deposited is not thermally damaged when it is vapor deposited. The vapor deposition is carried out while cooling to below ℃, preferably below -10 ℃, bringing the substrate into contact with the apparatus and cooling. The inventors of the present invention formed a metal vapor deposition layer to a thickness of 1% or more and less than 10% of light transmittance that expresses a metallic luster when the temperature of the cooling can is performed within the temperature range of the present invention exceeding the conventional common sense. also holds a surface resistance of more than 10 5 Omega, it was also Heading to obtain a metallized layer that no experienced by the current shock to the human body charged.
[0018]
The structure of the metal vapor deposition layer excellent in metallic luster of the present invention and avoided from the electric shock to the human body is as follows. For the thickness and distribution state of the metal vapor deposition layer, a cross-sectional photograph in the thickness direction of the metal vapor deposition layer by a transmission electron microscope is used. The shape of the planar shape can be clarified by scanning electron microscope photography. That is, the metal vapor deposition layer of the present invention has a uniform thickness within a range of 200 angstroms or more and 1000 angstroms or less independently of each other, and has a distribution with a length of 500 angstroms or more and 5000 angstroms or less. The vapor deposition layer (Va) is composed of granulated vapor deposition layers (Vb) that are smaller than the vapor deposition layer (Va) and independent from each other, and the micro granulation vapor deposition layer (Vb) is thick. 10 angstroms or more, less than 200 angstroms, 5 angstroms or more in length and less than 500 angstroms in length, including (Va) and (Vb). there, the distance between the metal deposit on the shortest distance adjacent each independently average There distributed below 50 Å, (Va) is characterized to be present accounted for in the plan area ratio less than 50% to 100% with respect to (Vb). The thickness of the vapor-deposited layer (Va) corresponds to the visible light transmittance, and is controlled by the degree of vacuum during vapor deposition, vapor deposition temperature, substrate speed, and vapor-deposited metal type, and exhibits a metallic luster. To play a role. When the thickness of the vapor deposition layer (Va) is less than 200 angstroms, the visible light transmittance becomes 10% or more, and the whole is affected by a dull feeling. If the thickness exceeds 1000 angstroms, the metallic luster is satisfied, but the surface of the base material is closely covered with the deposited metal, and it is impossible to maintain the static electricity deterrence. On the other hand, the shortest distance between vapor-deposited metals that are independent from each other is controlled by the temperature of the cooling can, but if the distance is within the range of the present invention, the tunnel current flows when the substrate is charged, but the amount of current remains very small. It has the function of avoiding energization shock to the human body.
[0019]
As the adhesive layer, a resin adhesive having good adhesiveness can be used for both the metal thin film layer and the material to be transferred. For example, acrylic ester, polyester, synthetic rubber, epoxy, polyurethane, ethylene-vinyl acetate, polyamide, polyvinyl chloride, halogenated polyolefin, nitrocellulose, and copolymers thereof can be generally used. . Depending on the application, various known adhesives or hot melt sheets that can be bonded by heating can be used. As the hot melt sheet, those of polyurethane, polyamide and polyvinyl chloride are preferably used. The thickness of the adhesive layer is selected in the range of 2 to 100 μm, preferably 5 to 30 μm for the adhesive, and 20 to 200 μm, preferably 50 to 100 μm for the hot melt sheet.
[0020]
【Example】
The embodiment of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.
[0021]
[Example 1]
Thickness 25μm of the biaxially oriented polyethylene terephthalate - to Tofirumu, the release layer (cellulose acetate resin, thickness 0.5 [mu] m) coated with a color gravure coater, was to put the drying. Next, a toluene solution containing methacrylic acid, 2-hydroxyethyl methacrylate, n-butyl methacrylate, and melamine resin is applied onto the release layer using the coater, dried, and cured with a resin to a thickness of 8 μm. A resin layer was obtained. Subsequently, Sn metal is vapor-deposited on the upper surface of the protective resin layer using a semi-continuous winding type vacuum vapor deposition apparatus under the conditions of vacuum degree: 2 × 10 −4 Torr, cooling can temperature: 10 ° C., An Sn vapor deposition layer having a visible light transmittance of 5% was obtained. A toluene solution of ethylene-vinyl acetate copolymer resin was further applied onto the vapor-deposited layer using the one-color gravure coater and dried to obtain an adhesive resin layer having a thickness of 2 μm. The obtained metal vapor deposition layer had a surface resistance of 10 11 Ω. This metal vapor-deposited transfer material had an appearance glossiness of 500% and a beautiful metallic luster. Moreover, there was no problem even if the normal handling was done without feeling the electric shock even if it touched the hand directly after the electrostatic charge was forced.
[0022]
When the cross section of the metal vapor deposition layer is magnified 100,000 times with a transmission electron microscope and the plane state with a scanning electron microscope, the vapor deposition layers are innumerable 500 angstroms to 3000 angstroms in length and 400 angstroms in thickness. (Va) and a granulated vapor deposition layer (Vb) having a length of 5 angstroms to 400 angstroms and a thickness of 10 to 100 angstroms which are smaller than the vapor deposition layer (Va) and are independent of each other. The distance between the metal deposits at the shortest distance adjacent to each other including the vapor deposition layers (Va) and (Vb) is distributed in an average of 50 angstroms, and the vapor deposition layer (Va) is It was observed that the plane area ratio accounted for 50% or more with respect to (Vb).
[0023]
[Example 2]
In the metal vapor deposition layer of Example 1, Sn metal was vapor deposited according to Example 1 except that the temperature of the cooling can was 2 ° C. and a Sn vapor deposition layer having a visible light transmittance of 2% was obtained. A transfer material was obtained. The obtained metal vapor deposition layer had a surface resistance value of 10 10 Ω. This metal vapor-deposited transfer material had an appearance glossiness of 590% and a beautiful metallic luster. Moreover, there was no problem without feeling an electric shock even if the electrostatic charge was forcibly performed and the normal handling was performed by directly touching the hand.
[0024]
When the cross section of the metal vapor deposition layer is magnified 100,000 times with a transmission electron microscope and the plane state with a scanning electron microscope, the vapor deposition layers are innumerable 500 angstroms to 4000 angstroms in length and 700 angstroms in thickness. (Va) and a granulated vapor deposition layer (Vb) having a length of 10 angstroms to 400 angstroms and a thickness of 10 to 100 angstroms which are smaller than the vapor deposition layer (Va) and are independent of each other. The distance between the metal deposits at the shortest distance adjacent to each other including the vapor deposition layers (Va) and (Vb) is distributed with an average distribution of 30 Å, and the vapor deposition layer (Va) is ( It was observed that 50% or more of the plane area ratio with respect to Vb) was present.
[0025]
[Comparative Example 1]
In the metal vapor deposition layer of Example 1, except that Sn metal vapor deposition was performed at a cooling can temperature of −10 ° C., a visible light transmittance of 8%, and a vapor deposition layer (Va) film thickness of 300 Å was obtained. Obtained the transfer material which vapor-deposited Sn metal according to Example 1. The obtained metal vapor deposition layer had a surface resistance value of 10 4 Ω or less. The appearance glossiness of this metal vapor-deposited transfer material was 450%. When I touched my hand directly after being forcibly charged, I was shocked. When the planar state of the metal vapor deposition layer was observed using a scanning electron microscope, it was found that the distance between the metal vapor depositions at the shortest distance adjacent to each other was 10 angstroms or less on average.
[0026]
[Comparative Example 2]
In the metal vapor deposition layer of Example 1, an attempt was made to obtain a transfer material on which Sn metal was vapor deposited according to Example 1 except that the Sn metal vapor deposition was performed at a cooling can temperature of 60 ° C. to obtain the Sn vapor deposition layer. It was. During the vapor deposition, the plastic film base material was damaged by so-called film burns or blurring, and a good product could not be obtained.
[0027]
[Comparative Example 3]
A transfer material obtained by depositing Sn metal according to Example 1, except that the vapor deposition of Sn metal in the metal vapor deposition layer of Example 1 gave a visible light transmittance of 20% and a film thickness of vapor deposition layer (Va) of 130 Å. Got. The obtained metal deposition layer had a surface resistance value of 10 16 Ω or more. This metal-deposited transfer material was not subjected to an electric shock even when it was touched directly after being electrostatically charged, but its appearance glossiness was 320%, and its appearance was dull and a good metal appearance. A glossiness was not obtained.
[0028]
[Comparative Example 4]
Comparative Example, except that in the metal vapor deposition layer of Example 1, an Sn metal vapor deposition was performed with a cooling can temperature of 10 ° C., a visible light transmittance of 0.1%, and a vapor deposition layer thickness of 1500 Å. According to 1, a transfer material on which Sn metal was vapor-deposited was obtained. The obtained metal vapor deposition layer had a surface resistance value of 10 4 Ω or less. This metal vapor-deposited transfer material had an appearance glossiness of 750% and an excellent metal glossiness. However, when it was forcibly electrostatically charged and touched directly with the hand, it received an electric shock and suffered significant discomfort. Observation of the cross section of the metal vapor deposition layer with a transmission electron microscope and the planar state of the metal vapor deposition layer using a scanning electron microscope revealed that the metal vapor deposition layer covered the entire substrate.
[0029]
[Comparative Example 5]
Example 1 is the same as Example 1 except that, in the metal vapor deposition layer of Example 1, a Sn vapor deposition was performed with a cooling can temperature of −10 ° C., a visible light transmittance of 15%, and a vapor deposition layer thickness of 180 Å. In accordance with the above, a transfer material on which Sn metal was deposited was obtained. The surface resistance of the obtained metallized layer was about 10 16 Omega. This metal-deposited transfer material was not subjected to an electric shock even when it was touched directly after being electrostatically charged, but its appearance glossiness was 380%, and a dull sensation on the appearance became obvious and a good metal A glossiness was not obtained.
[0030]
[Table 1]
Figure 0003951198
The measuring method of the physical property in Table 1 is as follows.
[0031]
Note 1) In Comparative Example 2, film blurring occurred during the vapor deposition process, and some evaluations were difficult.
[0032]
Note 2) Transmittance: The light transmittance of the tin vapor deposition layer was determined using a transmittance meter (Nippon Denshoku Industries Model NDH-1001DP).
[0033]
Note 3) Surface resistance value: Measure the volume resistance value after charging for 1 minute with an applied voltage of 500 V using a two-terminal electrode method with a distance of 41 mm between electrodes using a super insulation resistance meter (model VMG-1000 manufactured by Ando Electric). The surface resistance value was determined from the thickness of the deposited layer.
[0034]
Note 4) Thickness of the metal deposition layer: Thickness of the tin deposition layer using a transmission electron microscope (model H-7100FA, manufactured by Hitachi, Ltd.) Was measured.
[0035]
Note 5) Planar state of metal vapor deposition layer and distance between metal vapor deposition layers: Using a scanning electron microscope, magnified 100,000 times to take a cross-sectional photograph of the metal vapor deposition layer, and average the maximum length of each vapor deposition layer The value and the average value of the shortest distance between adjacent independent tin deposition layers were determined from an image processing apparatus (model EXCELL II manufactured by Nippon Avionics Co., Ltd.).
[0036]
Note 6) Metal gloss: Measured using a digital goniophotometer (model UGV-50, manufactured by Suga Test Instruments). Gloss is 500% or more, ○, 400-500% is △, 400% or less is ×, displayed.
[0037]
Note 7) Static electricity deterrence suppressiveness ... Super insulation resistance meter (Applied voltage 500V, manufactured with Ando Electric Model VMG-1000, touched the substrate surface after charging for 1 minute. When received, it is displayed as x.
[0038]
【The invention's effect】
By adopting a specific vapor deposition method, the present invention can maintain the independence without being connected to each other even when the thickness of the metal vapor deposition layer develops a metallic luster. It has become possible to provide a new metal vapor-deposited transfer material that retains the beautiful metallic luster that was not present and that is not subject to electrical conduction or electric shock even when touched by handling. The metal vapor-deposited transfer material of the present invention has a very high utility value for home appliances and OA equipment surface decoration materials that require a beautiful metallic luster while avoiding the electrical conductivity of the metal.

Claims (2)

ベースフィルムの上面に離型層を設け,その上に保護樹脂層,金属蒸着層,接着層を順次形成してなる金属蒸着転写材料において,金属蒸着層の可視光線透過率が1%以上かつ10%未満および表面抵抗値が105 Ω以上であり、金属蒸着層は,無数の互いに独立して,200オングストローム以上,1000オングストローム以下の範囲内で均一の厚さであって,500オングストローム以上,5000オングストローム以下の長さに分布を持った蒸着層(Va)と,その間隙に介在し,蒸着層(Va)より微小であって互いに独立した粒状化の蒸着層(Vb)より構成され,該微小粒状化の蒸着層(Vb)は厚さ10オングストローム以上,200オングストローム未満,長さ5オングストローム以上,500オングストローム未満に分布し,(Va),(Vb)を含め,互いに独立する蒸着金属間の最短距離は10オングストローム以上,100オングストローム未満であって,互いに独立して隣り合う最短距離にある金属蒸着物間の距離は平均で50オングストローム以下に分布して存在し,(Va)は(Vb)に対して平面面積比にして50%以上100%未満を占めて存在していることを特徴とする金属蒸着転写材料。In a metal vapor deposition transfer material in which a release layer is provided on the upper surface of a base film and a protective resin layer, a metal vapor deposition layer, and an adhesive layer are sequentially formed thereon, the visible light transmittance of the metal vapor deposition layer is 1% or more and 10 % less and the surface resistivity value is not less 10 5 Omega above, the metal deposition layer, independently of countless other, 200 angstroms, a uniform thickness within the range of not less than 1000 angstroms, 500 angstroms, 5000 It is composed of a vapor deposition layer (Va) having a distribution with a length of angstrom or less, and a granular vapor deposition layer (Vb) that is interposed between the vapor deposition layer (Va) and is smaller than the vapor deposition layer (Va) and independent of each other. The granulated vapor deposition layer (Vb) has a thickness of 10 angstroms or more, less than 200 angstroms, a length of 5 angstroms or more, and less than 500 angstroms. And, (Va), including (Vb), together shortest distance between deposited metal to separate from 10 angstroms, be less than 100 angstroms, the distance between the metal deposit on the shortest distance adjacent independently of one another are A metal vapor-deposited transfer material characterized in that it is distributed in an average of 50 angstroms or less, and (Va) occupies 50% or more and less than 100% as a plane area ratio to (Vb). 金属蒸着層が,Sn,Sb,Zn,Pb,Biよりなる群から選ばれた一種または二種以上の金属からなることを特徴とする請求項1記載の金属蒸着転写材料。  2. The metal vapor-deposited transfer material according to claim 1, wherein the metal vapor-deposited layer is made of one or more metals selected from the group consisting of Sn, Sb, Zn, Pb, and Bi.
JP15288197A 1997-05-27 1997-05-27 Metal evaporation transfer material Expired - Fee Related JP3951198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15288197A JP3951198B2 (en) 1997-05-27 1997-05-27 Metal evaporation transfer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15288197A JP3951198B2 (en) 1997-05-27 1997-05-27 Metal evaporation transfer material

Publications (2)

Publication Number Publication Date
JPH10324093A JPH10324093A (en) 1998-12-08
JP3951198B2 true JP3951198B2 (en) 2007-08-01

Family

ID=15550168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15288197A Expired - Fee Related JP3951198B2 (en) 1997-05-27 1997-05-27 Metal evaporation transfer material

Country Status (1)

Country Link
JP (1) JP3951198B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312232A (en) * 2000-04-27 2001-11-09 Three M Innovative Properties Co Display body having metallic luster
JP4775799B2 (en) * 2006-07-14 2011-09-21 東レフィルム加工株式会社 Method for producing sheet for metal thin film transfer material

Also Published As

Publication number Publication date
JPH10324093A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
CN104853912B (en) Interior film using uv-curable resin for metallic exterior effect, and method for manufacturing same
EP0191592A2 (en) Process for selective transfer of metallic foils to xerographic images
JPS60128401A (en) Production of recurrent reflecting pattern substance
US5789134A (en) Direct transfer electrographic imaging element and process
JPH0295893A (en) Metallic luster pattern transfer material
JPS5949919B2 (en) Transfer sheet with pattern
JP3951198B2 (en) Metal evaporation transfer material
JPS61222799A (en) Manufacture of decorative material
JPH05124394A (en) Leather expression transfer foil
JPH0590623A (en) Transfer material for solar battery
JP2677092B2 (en) Transfer foil
JPS6218448Y2 (en)
JP2571401B2 (en) Metallic gloss sheet with excellent moldability
JP2889639B2 (en) Electrically insulating metal deposited film
JPH0684110B2 (en) Polymeric binders for amino group-modified silicone lubricants for dye-donor elements used in thermal transfer of dyes
JPH01320196A (en) Transfer sheet
JP2538294Y2 (en) Decorative sheet
JP2601661Y2 (en) Transfer sheet
JPS6176397A (en) Heating transfer sheet
JPS62238784A (en) Metallic foil transfer sheet
JPS62255186A (en) Transferring method and transfer sheet used therefor
JPH0774431B2 (en) Thin film manufacturing method and releasable base film used in the manufacturing method
JPH03264390A (en) Insulating transfer foil
JPH01174584A (en) Tacky sheet of metallic gloss
JPH0890999A (en) Locally deposited transfer foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees