JP3951171B2 - Electron movable body forming material, electron movable body forming method, and electron movable body - Google Patents

Electron movable body forming material, electron movable body forming method, and electron movable body Download PDF

Info

Publication number
JP3951171B2
JP3951171B2 JP2002156564A JP2002156564A JP3951171B2 JP 3951171 B2 JP3951171 B2 JP 3951171B2 JP 2002156564 A JP2002156564 A JP 2002156564A JP 2002156564 A JP2002156564 A JP 2002156564A JP 3951171 B2 JP3951171 B2 JP 3951171B2
Authority
JP
Japan
Prior art keywords
electron
movable body
film
substrate
layer containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002156564A
Other languages
Japanese (ja)
Other versions
JP2003342285A (en
Inventor
新男 中村
美和 竹田
康文 藤原
俊光 茜
英明 町田
達也 大平
定央 野津
紀男 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRI Chemical Laboratorories Inc
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
TRI Chemical Laboratorories Inc
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRI Chemical Laboratorories Inc, Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical TRI Chemical Laboratorories Inc
Priority to JP2002156564A priority Critical patent/JP3951171B2/en
Publication of JP2003342285A publication Critical patent/JP2003342285A/en
Application granted granted Critical
Publication of JP3951171B2 publication Critical patent/JP3951171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば半導体や導体と言った電子移動が可能な電子移動可能体に関する。
【0002】
【発明が解決しようとする課題】
今日、電子材料分野における進歩は著しく、高速電子デバイス、発光デバイスからレーザーに至るまで多岐に応用されている。そして、近年、電子デバイスの分野では、ErPに代表されるランタノイド元素(Ln)とV族元素とからなる化合物を量子井戸とする二重障壁共鳴トンネルダイオードが期待されている。
【0003】
すなわち、Ga(1−x)InP/LnP/Ga(1−x)InPの如きのヘテロ構造を作成し、LnP層の厚さを厳密に制御してエピタキシャル成長することが出来たならば、半金属と半導体のコントロ−ルが可能となり、種々の超高速電子デバイスを展望することが出来ると考えられる。
【0004】
又、光の分野でも、LnのGaAsやGa(1−x)InPへの添加は通信システムにおける発光デバイスとしての応用が期待されており、特に、発光効率の安定化と発光効率の向上が待たれている。
【0005】
現在、GaAsに代表される化合物半導体の製造法は、有機金属化学気相成長法(MOCVD)が主流である。
【0006】
ところで、ランタノイド元素−V族元素のエピタキシャル成長やランタノイド元素の添加においても、良好なランタノイド有機金属原料が求められる。気化性が有るランタノイド有機金属は、β−ジケトネイトランタノイドが知られているが、このものは、固体であり、安定した蒸気が得られ難く、しかも分解性が悪いことから使用できない。そして、発光効率が良いランタノイド元素を添加した化合物半導体は得られていない。
【0007】
従って、本発明が解決しようとする課題は、高性能な電子移動可能体が得られる技術を提供することである。特に、波長安定性や発光効率が良く、発光波長の環境温度依存性が極めて小さなランタノイド元素を添加した電子移動可能体を提供することである。
【0008】
【課題を解決するための手段】
前記の課題を解決する為の研究を鋭意押し進めて行った結果、トリス−エチルシクロペンタジエニル−Lnを用いて構成された電子移動可能体が極めて高性能なものであることを見出すに至った。
【0009】
上記知見に基づいて本願発明が達成されたものであり、前記の課題は、
Ga,In,Pを含む層とGa,In,Pを含む層との間に電子移動可能体膜を有する電子移動可能体における前記電子移動可能体膜を形成する為の材料であって、
前記材料はトリス−エチルシクロペンタジエニル−Lnからなる
ことを特徴とする電子移動可能体形成材料によって解決される。
又、Ga,In,Pを含む層及びGa,Asを含む層と、Ga,Asを含む層及びGa,In,Pを含む層との間に、電子移動可能体膜を有する電子移動可能体における前記電子移動可能体膜を形成する為の材料であって、
前記材料はトリス−エチルシクロペンタジエニル−Lnからなる
ことを特徴とする電子移動可能体形成材料によって解決される。
又、電子移動可能体膜と電子移動可能体膜との間にGa,In,Pを含む層及び/又はGa,Asを含む層を有する電子移動可能体における前記電子移動可能体膜を形成する為の材料であって、
前記材料はトリス−エチルシクロペンタジエニル−Lnからなる
ことを特徴とする電子移動可能体形成材料によって解決される。
【0010】
又、Ga,In,Pを含む層とGa,In,Pを含む層との間に電子移動可能体膜を有する電子移動可能体を形成する方法であって、
トリス−エチルシクロペンタジエニル−Lnを分解・堆積させて電子移動可能体膜を形成する工程を具備する
ことを特徴とする電子移動可能体形成方法によって解決される。
又、Ga,In,Pを含む層及びGa,Asを含む層と、Ga,Asを含む層及びGa,In,Pを含む層との間に、電子移動可能体膜を有する電子移動可能体を形成する方法であって、
トリス−エチルシクロペンタジエニル−Lnを分解・堆積させて電子移動可能体膜を形成する工程を具備する
ことを特徴とする電子移動可能体形成方法によって解決される。
又、電子移動可能体膜と電子移動可能体膜との間にGa,In,Pを含む層及び/又はGa,Asを含む層を有する電子移動可能体における前記電子移動可能体膜を形成する方法であって、
トリス−エチルシクロペンタジエニル−Lnを分解・堆積させて電子移動可能体膜を形成する工程を具備する
ことを特徴とする電子移動可能体形成方法によって解決される。
【0011】
尚、分解は、熱、プラズマ、光、レ−ザ−の群の中から選ばれる手法、特に熱分解、光分解、反応分解、プラズマ分解、マイクロ波分解の群の中から選ばれる手法を用いて行われる。
【0012】
又、上記電子移動可能体形成方法により基体上に形成されてなる電子移動可能体によって解決される。
【0013】
この電子移動可能体は、例えばLn,LnN,LnP,LnAs,LnSbの群の中から選ばれる少なくとも一つからなる。或いは、Ln及び/又は酸素と結合したLnを含むGaAs又はGa(1−x)InP(xは0〜1の数)である。
【0014】
又、Ga,In,Pを含む層とGa,In,Pを含む層との間に、上記電子移動可能体形成方法により形成されてなる電子移動可能体膜を有することを特徴とする電子移動可能体によって解決される。
【0015】
又、Ga,In,Pを含む層及びGa,Asを含む層と、Ga,Asを含む層及びGa,In,Pを含む層との間に、上記電子移動可能体形成方法により形成されてなる電子移動可能体膜を有することを特徴とする電子移動可能体によって解決される。
【0016】
又、上記電子移動可能体形成方法により形成されてなる電子移動可能体膜と上記電子移動可能体形成方法により形成されてなる電子移動可能体膜との間に、Ga,In,Pを含む層及び/又はGa,Asを含む層を有することを特徴とする電子移動可能体によって解決される。
【0017】
上記Ga,In,Pを含む層は、例えばGa(1−x)InP(xは0〜1の間の数)である。
【0018】
尚、本願出願人は、先に、RLn〔R,R,Rはがエチルシクロペンタジエニル基((C)C−)、イソプロピルシクロペンタジエニル基((i−C)C−)、ノルマルブタンシクロペンタジエニル基((n−C)C−)などのアルキル基、シリコン系化合物の基、及びアミノ基の群の中から選ばれる基〕で表される化合物からなるランタニド系膜形成材料、及びこのランタニド系膜形成材料で構成された膜をゲート酸化膜として用いた半導体素子を提案(特願2000−280062)している。
【0019】
しかし、この提案(特願2000−280062)は、電子移動可能体に関するものではない。そればかりか、特願2000−280062の具体的実施例で挙げられている[(i−C)CLnを用いて電子移動可能体膜を形成した半導体素子は、[(C)CLnを用いて電子移動可能体膜を形成した半導体素子に比べて劣るものであった。
【0020】
【発明の実施の形態】
本発明になる電子移動可能体形成材料は、トリス−エチルシクロペンタジエニル−Lnからなる。
【0021】
本発明になる電子移動可能体形成方法は、トリス−エチルシクロペンタジエニル−Lnを分解させ、基体上に電子移動可能体を設ける方法である。トリス−エチルシクロペンタジエニル−Lnの分解は、熱、プラズマ、光、レ−ザ−の群の中から選ばれる手法、特に熱分解、光分解、反応分解、プラズマ分解、マイクロ波分解の群の中から選ばれる手法を用いて行われる。
【0022】
本発明になる電子移動可能体は、上記電子移動可能体形成方法により基体上に形成されてなる電子移動可能体である。電子移動可能体は、例えばLn,LnN,LnP,LnAs,LnSbの群の中から選ばれる少なくとも一つからなる。或いは、Ln及び/又は酸素と結合したLnを含むGaAs又はGa(1−x)InP(xは0〜1の数)である。Ln及び/又は酸素と結合したLnの含有割合は、特に、薄膜1cm当たり1015〜1022個である。
【0023】
又、本発明になる電子移動可能体は、Ga,In,Pを含む層とGa,In,Pを含む層との間に、上記電子移動可能体形成方法により形成されてなる電子移動可能体膜を有するものである。或いは、Ga,In,Pを含む層及びGa,Asを含む層と、Ga,Asを含む層及びGa,In,Pを含む層との間に、上記電子移動可能体形成方法により形成されてなる電子移動可能体膜を有するものである。特に、Ga,In,Pを含む層及びGa,Asを含む層と、Ga,Asを含む層及びGa,In,Pを含む層との間に、前記Ga,Asを含む層に隣接して上記電子移動可能体形成方法により形成されてなる電子移動可能体膜を有するものである。若しくは、上記電子移動可能体形成方法により形成されてなる電子移動可能体膜と上記電子移動可能体形成方法により形成されてなる電子移動可能体膜との間に、Ga,In,Pを含む層及び/又はGa,Asを含む層を有するものである。Ga,In,Pを含む層は、例えばGa(1−x)InP(xは0〜1の数)である。
【0024】
以下、更に具体的な実施例を挙げて説明する。
【0025】
【実施例1〜13】
[トリス−エチルシクロペンタジエニル−Lnの合成]
トリス−エチルシクロペンタジエニル−エルビウム(EtCpEr)が次のようにして合成された。。
【0026】
先ず、市販のエチルシクロペンタジエンと粉末状の金属ナトリウムとを溶媒中で反応させ、エチルシクロペンタジエニルナトリウムを合成した。この時の溶媒は、テトラヒドロフラン、ヘキサンなどであって、有機金属に不活性なものなら用いられる。又、粉末状の金属ナトリウムの代わりにNaH,NaNHでも可能である。アルキルリチウム等を用いてエチルシクロペンタジエニルリチウムを合成しても良い。
【0027】
合成されたエチルシクロペンタジエニルナトリウムと無水塩化エルビウムとを溶媒中で反応させ、EtCpErを合成した。この時の溶媒はテトラヒドロフラン、ヘキサンなどであって、有機金属に不活性なものなら用いられる。
【0028】
溶媒を濃縮後、残渣からEtCpErを溶媒抽出または蒸留抽出によって回収し、得られた粗生物を精密蒸留によって精製し、EtCpErを得た。
【0029】
このようにして得られたEtCpErは、TG−DTA分析によれば、気化特性が良好であることが判明した。又、融点は70℃以下であり、気化させる温度において液体であることも判った。
【0030】
又、化学組成も理論式と一致していた。更に、ICP−MASSによれば、金属不純物は検出限界以下の高純度品であることが確認された。
【0031】
尚、上記の合成が数回試みられた。その際の収率は35〜75%であった。これに対して、トリス−シクロペンタジエニル−エルビウム(CpEr)の収率は35%より低く、EtCpErの製造コストはCpErの製造コストよりも低いことが判った。
又、Erの代わりにCe,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Tm,Ybが用いられて同様に行われ、トリス−エチルシクロペンタジエニル−Lnが合成された。
【0032】
【実施例14】
図1は成膜装置(MOCVD)の概略図である。同図中、1a,1b,1c,1d,1eは原料容器、3は加熱器、4は分解反応炉、5は基板である。
【0033】
容器1a,1b,1c,1d,1eには、各々、トリエチルガリウム(TEG)、トリメチルインジウム(TMI)、EtCpEr、ターシャリ−ブチルアルシン(TBAs)、ターシャリ−ブチルフォスフィン(TBP)が入れられており、室温〜150℃の範囲の温度で保持されている。そして、キャリアガスとして水素が1〜2000ml/minの割合で吹き込まれた。分解反応炉4内は0.1atmにされ、基板温度は流す原料種によって450℃〜700℃に変化させた。初めにTBAsとTEGとが、次にTBPとTEGとTMIとが、その次にTBPとEtCpErとが、最後にTBPとTEGとTMIとが流された。このようにして、基板5上に薄膜が形成された。
【0034】
成膜後に基板を取り出し、膜の断面のSEM像を観測すると共に、SIMSプロファイルの結果とを合わせることによって、基板/GaAs/Ga(1−x)InP(xは0〜1の数)/ErP/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成されていることが確認された。
【0035】
【実施例15〜19】
実施例14において、TBPの代わりに水素、希釈酸素、アルキルヒドラジン、TBAs、トリメチルアンチモンをEtCpErと共に流した以外は同様に行った。
【0036】
そして、基板/GaAs/Ga(1−x)InP(xは0〜1の数)/Er/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用ヘテロ構造化合物(化合物半導体)の膜が基板上に作成された素子(実施例15)、
基板/GaAs/Ga(1−x)InP(xは0〜1の数)/Er/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例16)、
基板/GaAs/Ga(1−x)InP(xは0〜1の数)/ErN/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例17)、
基板/GaAs/Ga(1−x)InP(xは0〜1の数)/ErAs/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例18)、
基板/GaAs/Ga(1−x)InP(xは0〜1の数)/ErSb/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例19)を得た。
【0037】
【実施例20〜24】
実施例15〜19において、熱分解の代わりにプラズマ、光、レーザー、マイクロ波による分解手段を用いて同様に行い、同様な結果を得た。
【0038】
【実施例25〜36】
実施例14において、EtCpErの代わりにEtCpCe,EtCpPr,EtCpNd,EtCpPm,EtCpSm,EtCpEu,EtCpGd,EtCpTb,EtCpDy,EtCpHo,EtCpTm,EtCpYbが用いられて同様に行われた。
【0039】
そして、基板/GaAs/Ga(1−x)InP(xは0〜1の数)/CeP/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例25)、
基板/GaAs/Ga(1−x)InP(xは0〜1の数)/PrP/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例26)、
基板/GaAs/Ga(1−x)InP(xは0〜1の数)/NdP/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例27)、
基板/GaAs/Ga(1−x)InP(xは0〜1の数)/PmP/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例28)、
基板/GaAs/Ga(1−x)InP(xは0〜1の数)/SmP/Ga 1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例29)、
基板/GaAs/Ga(1−x)InP(xは0〜1の数)/EuP/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例30)、
基板/GaAs/Ga(1−x)InP(xは0〜1の数)/GdP/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例31)、
基板/GaAs/Ga(1−x)InP(xは0〜1の数)/TbP/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例32)、
基板/GaAs/Ga(1−x)InP(xは0〜1の数)/DyP/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例33)、
基板/GaAs/Ga(1−x)InP(xは0〜1の数)/HoP/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例34)、
基板/GaAs/Ga(1−x)InP(xは0〜1の数)/TmP/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例35)、
基板/GaAs/Ga(1−x)InP(xは0〜1の数)/YbP/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成された素子(実施例36)が得られた。
【0040】
【実施例37】
図1の成膜装置を用いた。容器1a,1b,1c,1d,1eには、各々、TEG,TMI,EtCpEr,TBAs,TBPが入れられており、室温〜150℃の範囲の温度で保持されている。そして、キャリアガスとして水素が1〜2000ml/minの割合で吹き込まれた。分解反応炉4内は0.1atmにされ、基板温度は流す原料種によって450℃〜700℃に変化させた。初めにTBAsとTEGとが、次にTBPとTEGとTMIとが、その次にTBAsとTEGとEtCpErとが、最後にTBPとTEGとTMIとが流された。尚、EtCpErを流す際、Ar希釈酸素(酸素濃度38ppm)を1〜50ml/minの割合で同時に供給した。
【0041】
このようにして、基板5上に薄膜が形成された。
【0042】
成膜後に基板を取り出し、膜の断面のSEM像を観測すると共に、SIMSプロファイルの結果とを合わせることによって、基板/GaAs/Ga(1−x)InP(xは0〜1の数)/GaAs:Er,O/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成されていることが確認された。尚、Erの濃度は約5×1017個/cmであった。
【0043】
この素子(発光デバイス)の発光スペクトルを観察した処、室温で波長1.5μm帯に高輝度でシャープな発光が観察された。又、その発光波長は環境温度に対して極めて安定であった。
【0044】
【実施例38】
実施例37において、GaInP膜とGaAs:Er,O膜との界面にErを添加していないGaAs膜を持つ、すなわち基板/GaAs/Ga(1−x)InP(xは0〜1の数)/GaAs/GaAs:Er,O/GaAs/Ga(1−x)InP(xは0〜1の数)の構造の電子デバイス用ヘテロ構造化合物(化合物半導体)の膜が基板上に作成されている素子を作成した。尚、GaAs膜はTBAsとTEGとを流すことによって成膜された。
【0045】
この素子(発光デバイス)は、実施例37の素子のものよりも発光効率に優れていた。
【0046】
【実施例39】
図1の成膜装置を用いた。容器1a,1b,1c,1d,1eには、各々、TEG,TMI,EtCpEr,TBAs,TBPが入れられており、室温〜150℃の範囲の温度で保持されている。そして、キャリアガスとして水素が1〜2000ml/minの割合で吹き込まれた。分解反応炉4内は0.1atmにされ、基板温度は流す原料種によって450℃〜700℃に変化させた。初めにTBPとEtCpErとが、次にTBPとTMIとが、最後にTBPとEtCpErとが流された。
【0047】
このようにして、基板5上に薄膜が形成された。
【0048】
成膜後に基板を取り出し、膜の断面のSEM像を観測すると共に、SIMSプロファイルの結果とを合わせることによって、基板/ErP/InP/ErPの構造の電子デバイス用(導電性)ヘテロ構造化合物の膜が基板上に作成されていることが確認された。
【0049】
【発明の効果】
高性能な電子デバイスが得られる。特に、波長安定性や発光効率が良く、発光波長の環境温度依存性が極めて小さなランタノイド元素を添加した電子デバイスが得られる。
【図面の簡単な説明】
【図1】成膜装置(MOCVD)の概略図
【符号の説明】
1a,1b,1c,1d,1e 原料容器
3 加熱器
4 分解反応炉
5 基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electron-movable body that can move electrons, such as a semiconductor or a conductor.
[0002]
[Problems to be solved by the invention]
Today, advances in the field of electronic materials are remarkable, and they are applied in a wide range from high-speed electronic devices and light-emitting devices to lasers. In recent years, in the field of electronic devices, double barrier resonant tunneling diodes having a quantum well of a compound composed of a lanthanoid element (Ln) typified by ErP and a group V element are expected.
[0003]
That is, if a heterostructure such as Ga (1-x) In x P / LnP / Ga (1-x) In x P can be created and the thickness of the LnP layer can be controlled strictly and epitaxially grown For example, it becomes possible to control semimetals and semiconductors, and it is considered that various ultrafast electronic devices can be prospected.
[0004]
In addition, in the field of light, addition of Ln to GaAs or Ga (1-x) In x P is expected to be applied as a light emitting device in a communication system, in particular, stabilization of light emission efficiency and improvement of light emission efficiency. Is waiting.
[0005]
At present, metal-organic chemical vapor deposition (MOCVD) is the mainstream method for producing compound semiconductors represented by GaAs.
[0006]
By the way, a good lanthanoid organometallic raw material is also demanded in the epitaxial growth of a lanthanoid element-group V element and the addition of a lanthanoid element. A lanthanoid organometal having a vaporization property is known to be a β-diketonate lanthanoid, but this is a solid, it is difficult to obtain a stable vapor, and it cannot be used because it has a poor decomposability. Further, a compound semiconductor to which a lanthanoid element with good luminous efficiency is added has not been obtained.
[0007]
Therefore, the problem to be solved by the present invention is to provide a technique for obtaining a high-performance electron movable body. In particular, an object of the present invention is to provide an electron transferable body to which a lanthanoid element is added, which has good wavelength stability and luminous efficiency and has extremely small dependence of the emission wavelength on the environmental temperature.
[0008]
[Means for Solving the Problems]
As a result of eagerly pursuing research for solving the above-mentioned problems, it has been found that an electron-movable body composed of tris-ethylcyclopentadienyl-Ln has extremely high performance. .
[0009]
The present invention has been achieved based on the above findings,
A material for forming the electron movable body film in an electron movable body having an electron movable body film between a layer containing Ga, In, and P and a layer containing Ga, In, and P,
The material is solved by an electron transferable body forming material characterized in that it comprises tris-ethylcyclopentadienyl-Ln.
An electron-movable body having an electron-movable body film between a layer containing Ga, In, P and a layer containing Ga, As and a layer containing Ga, As and a layer containing Ga, In, P A material for forming the electron transferable body film in
Said material consists of tris-ethylcyclopentadienyl-Ln
This is solved by an electron movable body forming material characterized in that.
Further, the electron-movable body film in the electron-movable body having a layer containing Ga, In, P and / or a layer containing Ga, As is formed between the electron-movable body film and the electron-movable body film. Material for
Said material consists of tris-ethylcyclopentadienyl-Ln
This is solved by an electron movable body forming material characterized in that.
[0010]
And a method of forming an electron transferable body having an electron transferable body film between a layer containing Ga, In, P and a layer containing Ga, In, P,
The object is solved by a method for forming an electron transferable body comprising the step of decomposing and depositing tris-ethylcyclopentadienyl-Ln to form an electron transferable body film .
An electron-movable body having an electron-movable body film between a layer containing Ga, In, P and a layer containing Ga, As and a layer containing Ga, As and a layer containing Ga, In, P A method of forming
Comprising the step of decomposing and depositing tris-ethylcyclopentadienyl-Ln to form an electron transferable body film.
This is solved by the method of forming an electron movable body.
Further, the electron-movable body film in the electron-movable body having a layer containing Ga, In, P and / or a layer containing Ga, As is formed between the electron-movable body film and the electron-movable body film. A method,
Comprising the step of decomposing and depositing tris-ethylcyclopentadienyl-Ln to form an electron transferable body film.
This is solved by the method of forming an electron movable body.
[0011]
Decomposition is performed using a method selected from the group of heat, plasma, light, and laser, particularly a method selected from the group of thermal decomposition, photolysis, reaction decomposition, plasma decomposition, and microwave decomposition. Done.
[0012]
In addition, the problem can be solved by an electron movable body formed on a substrate by the above-described method of forming an electron movable body.
[0013]
This electron transferable body consists of at least one selected from the group of Ln, LnN, LnP, LnAs, LnSb, for example. Alternatively, GaAs or Ga (1-x) In x P (x is a number from 0 to 1) containing Ln and / or Ln bonded to oxygen.
[0014]
An electron transfer comprising an electron transferable body film formed by the above-described electron transferable body forming method between a layer containing Ga, In, and P and a layer containing Ga, In, and P. Solved by possible body.
[0015]
In addition, a layer containing Ga, In, P and a layer containing Ga, As, and a layer containing Ga, As and a layer containing Ga, In, P are formed by the above-described method of forming an electron movable body. This is solved by an electron transportable body characterized by having an electron transportable body film.
[0016]
Further, a layer containing Ga, In, and P between the electron movable body film formed by the electron movable body forming method and the electron movable body film formed by the electron movable body forming method. And / or solved by an electron-movable body characterized by having a layer containing Ga, As.
[0017]
The layer containing Ga, In, and P is, for example, Ga (1-x) In x P (x is a number between 0 and 1 ).
[0018]
Incidentally, the present applicant has previously, R 1 R 2 R 3 Ln [R 1, R 2, R 3 Haga ethyl cyclopentadienyl group ((C 2 H 5) C 5 H 4 -), isopropyl cyclo pentadienyl ((i-C 3 H 7 ) C 5 H 4 -), normal butane cyclopentadienyl group ((n-C 4 H 9 ) C 5 H 4 -) alkyl radicals, such as, silicon compound A lanthanide-based film-forming material comprising a compound represented by the following formula: a group selected from the group of amino groups], and a semiconductor device using a film composed of the lanthanide-based film-forming material as a gate oxide film Proposed (Japanese Patent Application 2000-280062).
[0019]
However, this proposal (Japanese Patent Application No. 2000-280062) does not relate to an electronically movable body. In addition, a semiconductor element in which an electron transferable body film is formed using [(i-C 3 H 7 ) C 5 H 4 ] 3 Ln, which is mentioned in a specific example of Japanese Patent Application No. 2000-280062, [(C 2 H 5 ) C 5 H 4 ] 3 Ln was inferior to a semiconductor element in which an electron transferable body film was formed.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The electron transferable body forming material according to the present invention is composed of tris-ethylcyclopentadienyl-Ln.
[0021]
The method for forming an electron transferable body according to the present invention is a method for disposing tris-ethylcyclopentadienyl-Ln to provide an electron transferable body on a substrate. Tris-ethylcyclopentadienyl-Ln is decomposed by a method selected from the group consisting of heat, plasma, light, and laser, particularly thermal decomposition, photolysis, reaction decomposition, plasma decomposition, and microwave decomposition. It is performed using a method selected from
[0022]
The electron movable body according to the present invention is an electron movable body formed on a substrate by the electron movable body forming method. The electron movable body is made of at least one selected from the group of, for example, Ln, LnN, LnP, LnAs, and LnSb. Alternatively, GaAs or Ga (1-x) In x P (x is a number from 0 to 1) containing Ln and / or Ln bonded to oxygen. The content ratio of Ln combined with Ln and / or oxygen is particularly 10 15 to 10 22 per 1 cm 3 of the thin film.
[0023]
Further, the electron movable body according to the present invention is an electron movable body formed by the above-described method for forming an electron movable body between a layer containing Ga, In, and P and a layer containing Ga, In, and P. It has a film. Alternatively, it is formed between the layer containing Ga, In, P and the layer containing Ga, As and the layer containing Ga, As and the layer containing Ga, In, P by the above-described method of forming an electron movable body. It has an electron-transferable body film. In particular, a layer containing Ga, In, P and a layer containing Ga, As, and a layer containing Ga, As and a layer containing Ga, In, P are adjacent to the layer containing Ga, As, P. It has an electron transferable body film formed by the above-mentioned electron transferable body forming method. Alternatively, a layer containing Ga, In, and P between the electron movable body film formed by the electron movable body forming method and the electron movable body film formed by the electron movable body forming method. And / or a layer containing Ga and As. The layer containing Ga, In, and P is, for example, Ga (1-x) In x P (x is a number from 0 to 1).
[0024]
Hereinafter, more specific examples will be described.
[0025]
Examples 1 to 13
[Synthesis of Tris-ethylcyclopentadienyl-Ln]
Tris-ethylcyclopentadienyl-erbium (EtCp 3 Er) was synthesized as follows. .
[0026]
First, commercially available ethylcyclopentadiene and powdered metallic sodium were reacted in a solvent to synthesize ethylcyclopentadienyl sodium. The solvent at this time is tetrahydrofuran, hexane, or the like, and any one that is inert to the organic metal is used. Further, NaH and NaNH 2 can be used instead of powdered metal sodium. Ethylcyclopentadienyl lithium may be synthesized using alkyl lithium or the like.
[0027]
The synthesized ethylcyclopentadienyl sodium and anhydrous erbium chloride were reacted in a solvent to synthesize EtCp 3 Er. The solvent at this time is tetrahydrofuran, hexane or the like, and any one which is inert to the organic metal is used.
[0028]
After concentrating the solvent, the EtCp 3 Er from the residue recovered by solvent extraction or distillation extraction, the resulting crude product was purified by precision distillation to obtain EtCp 3 Er.
[0029]
EtCp 3 Er thus obtained was found to have good vaporization characteristics according to TG-DTA analysis. It was also found that the melting point was 70 ° C. or lower, and it was a liquid at the vaporizing temperature.
[0030]
The chemical composition also agreed with the theoretical formula. Furthermore, according to ICP-MASS, it was confirmed that the metal impurities are high-purity products having a detection limit or less.
[0031]
The above synthesis was tried several times. The yield at that time was 35 to 75%. In contrast, the yield of tris-cyclopentadienyl-erbium (Cp 3 Er) was found to be lower than 35%, and the production cost of EtCp 3 Er was lower than the production cost of Cp 3 Er.
Further, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Tm, and Yb are used in the same manner instead of Er, and tris-ethylcyclopentadienyl-Ln is synthesized. It was.
[0032]
Example 14
FIG. 1 is a schematic view of a film forming apparatus (MOCVD). In the figure, 1a, 1b, 1c, 1d, and 1e are raw material containers, 3 is a heater, 4 is a decomposition reaction furnace, and 5 is a substrate.
[0033]
The containers 1a, 1b, 1c, 1d, and 1e are filled with triethylgallium (TEG), trimethylindium (TMI), EtCp 3 Er, tertiary-butylarsine (TBAs), and tertiary-butylphosphine (TBP), respectively. It is held at a temperature in the range of room temperature to 150 ° C. Then, hydrogen was blown in as a carrier gas at a rate of 1 to 2000 ml / min. The inside of the decomposition reaction furnace 4 was set to 0.1 atm, and the substrate temperature was changed from 450 ° C. to 700 ° C. depending on the raw material species to be flowed. First, TBAs and TEG, then TBP, TEG, and TMI, then TBP, EtCp 3 Er, and finally TBP, TEG, and TMI were flowed. In this way, a thin film was formed on the substrate 5.
[0034]
The substrate is taken out after film formation, and the SEM image of the cross section of the film is observed, and by combining with the result of the SIMS profile, the substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1). It was confirmed that a film of a (conductive) heterostructure compound for electronic devices having a structure of / ErP / Ga (1-x) In x P (x is a number from 0 to 1) was formed on the substrate.
[0035]
Examples 15 to 19
In Example 14, the same procedure was performed except that hydrogen, diluted oxygen, alkylhydrazine, TBAs, and trimethylantimony were flowed together with EtCp 3 Er instead of TBP.
[0036]
An electronic device having a structure of substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1 ) / Er / Ga (1-x) In x P (x is a number from 0 to 1). A device in which a film of a heterostructure compound (compound semiconductor) for use is formed on a substrate (Example 15),
Electrons having a structure of substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1) / Er 2 O 3 / Ga (1-x) In x P (x is a number from 0 to 1) An element in which a film of a (conductive) heterostructure compound for a device was formed on a substrate (Example 16),
Substrate / GaAs / Ga (1-x ) In x P (x number of 0~1) / ErN / Ga (1 -x) In x P (x is a number from 0 to 1) for an electronic device structure ( A device in which a film of a conductive) heterostructure compound was formed on a substrate (Example 17),
For electronic devices having a structure of substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1 ) / ErAs / Ga (1-x) In x P (x is a number from 0 to 1) ( A device in which a film of a conductive) heterostructure compound was formed on a substrate (Example 18),
For electronic devices having a structure of substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1 ) / ErSb / Ga (1-x) In x P (x is a number from 0 to 1) ( An element (Example 19) in which a film of a conductive) heterostructure compound was formed on a substrate was obtained.
[0037]
Examples 20 to 24
In Examples 15-19, it carried out similarly using the decomposition means by a plasma, light, a laser, and a microwave instead of thermal decomposition, and obtained the same result.
[0038]
Examples 25-36
In Example 14, instead EtCp 3 Ce of EtCp 3 Er, EtCp 3 Pr, EtCp 3 Nd, EtCp 3 Pm, EtCp 3 Sm, EtCp 3 Eu, EtCp 3 Gd, EtCp 3 Tb, EtCp 3 Dy, EtCp 3 Ho EtCp 3 Tm and EtCp 3 Yb were used in the same manner.
[0039]
An electronic device having a structure of substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1 ) / CeP / Ga (1-x) In x P (x is a number from 0 to 1). A device in which a film of a (conductive) heterostructure compound is prepared on a substrate (Example 25),
For electronic devices having a structure of substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1 ) / PrP / Ga (1-x) In x P (x is a number from 0 to 1) ( A device in which a film of a conductive) heterostructure compound was formed on a substrate (Example 26),
For electronic devices having a structure of substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1 ) / NdP / Ga (1-x) In x P (x is a number from 0 to 1) ( A device in which a film of a conductive) heterostructure compound was formed on a substrate (Example 27),
For electronic devices having a structure of substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1 ) / PmP / Ga (1-x) In x P (x is a number from 0 to 1) ( A device in which a film of a conductive) heterostructure compound was formed on a substrate (Example 28),
For an electronic device having a structure of substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1 ) / SmP / Ga ( 1-x) In x P (x is a number from 0 to 1) ( A device in which a film of a conductive) heterostructure compound was formed on a substrate (Example 29),
Substrate / GaAs / Ga (1-x ) In x P (x number of 0~1) / EuP / Ga (1 -x) In x P (x is a number from 0 to 1) for an electronic device structure ( A device in which a film of a conductive) heterostructure compound was formed on a substrate (Example 30),
For electronic devices having a structure of substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1 ) / GdP / Ga (1-x) In x P (x is a number from 0 to 1) ( A device in which a film of a conductive) heterostructure compound was formed on a substrate (Example 31),
For electronic devices having a structure of substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1 ) / TbP / Ga (1-x) In x P (x is a number from 0 to 1) ( A device in which a film of a conductive) heterostructure compound was formed on a substrate (Example 32),
For electronic devices having a structure of substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1 ) / DyP / Ga (1-x) In x P (x is a number from 0 to 1) ( A device in which a film of a conductive) heterostructure compound is formed on a substrate (Example 33);
For electronic devices having a structure of substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1 ) / HoP / Ga (1-x) In x P (x is a number from 0 to 1) ( A device in which a film of a conductive) heterostructure compound was formed on a substrate (Example 34),
For electronic devices having a structure of substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1 ) / TmP / Ga (1-x) In x P (x is a number from 0 to 1) ( A device in which a film of a conductive) heterostructure compound was formed on a substrate (Example 35),
For electronic devices having a structure of substrate / GaAs / Ga (1-x) In x P (x is a number from 0 to 1 ) / YbP / Ga (1-x) In x P (x is a number from 0 to 1) ( A device (Example 36) in which a film of a conductive) heterostructure compound was formed on a substrate was obtained.
[0040]
Example 37
The film forming apparatus of FIG. 1 was used. The containers 1a, 1b, 1c, 1d, and 1e contain TEG, TMI, EtCp 3 Er, TBAs, and TBP, respectively, and are held at a temperature in the range of room temperature to 150 ° C. Then, hydrogen was blown in as a carrier gas at a rate of 1 to 2000 ml / min. The inside of the decomposition reactor 4 was set to 0.1 atm, and the substrate temperature was changed from 450 ° C. to 700 ° C. depending on the raw material species to be flowed. First, TBAs and TEG, then TBP, TEG, and TMI, then TBAs, TEG, EtCp 3 Er, and finally TBP, TEG, and TMI were flowed. In addition, when EtCp 3 Er was flowed, Ar diluted oxygen (oxygen concentration 38 ppm) was simultaneously supplied at a rate of 1 to 50 ml / min.
[0041]
In this way, a thin film was formed on the substrate 5.
[0042]
The substrate is taken out after the film formation, while observing the SEM image of a cross-section of the film, by combining the results of the SIMS profile, substrate / GaAs / Ga (1-x ) In x P (x is a number from 0 to 1) / GaAs: Er, O / Ga (1-x) In x P (x is a number from 0 to 1) structure for electronic device (conductive) heterostructure compound film is formed on the substrate confirmed. The Er concentration was about 5 × 10 17 pieces / cm 3 .
[0043]
When the emission spectrum of this element (light-emitting device) was observed, high-intensity and sharp light emission was observed in the wavelength band of 1.5 μm at room temperature. The emission wavelength was extremely stable with respect to the environmental temperature.
[0044]
Example 38
In Example 37, there is a GaAs film to which Er is not added at the interface between the GaInP film and the GaAs: Er, O film, that is, the substrate / GaAs / Ga (1-x) In x P (x is 0 to 1) . Number) / GaAs / GaAs: Er, O / GaAs / Ga (1-x) In x P (x is a number from 0 to 1) heterostructure compound (compound semiconductor) film for electronic devices is formed on the substrate. The element that has been created was created. The GaAs film was formed by flowing TBAs and TEG.
[0045]
This element (light-emitting device) was superior in luminous efficiency to that of the element of Example 37.
[0046]
Example 39
The film forming apparatus of FIG. 1 was used. The containers 1a, 1b, 1c, 1d, and 1e contain TEG, TMI, EtCp 3 Er, TBAs, and TBP, respectively, and are held at a temperature in the range of room temperature to 150 ° C. Then, hydrogen was blown in as a carrier gas at a rate of 1 to 2000 ml / min. The inside of the decomposition reaction furnace 4 was set to 0.1 atm, and the substrate temperature was changed from 450 ° C. to 700 ° C. depending on the raw material species to be flowed. TBP and EtCp 3 Er were flowed first, then TBP and TMI, and finally TBP and EtCp 3 Er.
[0047]
In this way, a thin film was formed on the substrate 5.
[0048]
The substrate is taken out after the film formation, and the SEM image of the cross section of the film is observed, and by combining with the result of the SIMS profile, the film of the substrate / ErP / InP / ErP structure (conductive) heterostructure compound for electronic devices It was confirmed that was produced on the substrate.
[0049]
【The invention's effect】
A high-performance electronic device can be obtained. In particular, it is possible to obtain an electronic device to which a lanthanoid element is added that has good wavelength stability and luminous efficiency and has extremely small dependence of the emission wavelength on the environmental temperature.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a film forming apparatus (MOCVD).
1a, 1b, 1c, 1d, 1e Raw material container 3 Heater 4 Decomposition reactor 5 Substrate

Claims (1)

Ga,In,Pを含む層とGa,In,Pを含む層との間に電子移動可能体膜を有する電子移動可能体における前記電子移動可能体膜を形成する為の材料であって、
前記材料はトリス−エチルシクロペンタジエニル−Lnからなる
ことを特徴とする電子移動可能体形成材料。
A material for forming the electron movable body film in an electron movable body having an electron movable body film between a layer containing Ga, In, and P and a layer containing Ga, In, and P,
The material for forming an electron transferable body is characterized in that the material is made of tris-ethylcyclopentadienyl-Ln.
JP2002156564A 2002-05-30 2002-05-30 Electron movable body forming material, electron movable body forming method, and electron movable body Expired - Lifetime JP3951171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002156564A JP3951171B2 (en) 2002-05-30 2002-05-30 Electron movable body forming material, electron movable body forming method, and electron movable body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002156564A JP3951171B2 (en) 2002-05-30 2002-05-30 Electron movable body forming material, electron movable body forming method, and electron movable body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006128789A Division JP5122082B2 (en) 2006-05-08 2006-05-08 Method for forming conductive heterostructure compound film for electronic device

Publications (2)

Publication Number Publication Date
JP2003342285A JP2003342285A (en) 2003-12-03
JP3951171B2 true JP3951171B2 (en) 2007-08-01

Family

ID=29772733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002156564A Expired - Lifetime JP3951171B2 (en) 2002-05-30 2002-05-30 Electron movable body forming material, electron movable body forming method, and electron movable body

Country Status (1)

Country Link
JP (1) JP3951171B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4312006B2 (en) * 2003-08-25 2009-08-12 株式会社Adeka Rare earth metal complex, raw material for thin film formation, and method for producing thin film

Also Published As

Publication number Publication date
JP2003342285A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP3124861B2 (en) Thin film growth method and semiconductor device manufacturing method
Malik et al. Precursor chemistry for main group elements in semiconducting materials
EP1755175B1 (en) Methods for producing trialkyl gallium
US8882910B2 (en) AlGaN substrate and production method thereof
JPH0280572A (en) Arsine, antimony and phosphine substituent
Bourret-Courchesne et al. Pyrolysis of dimethylhydrazine and its co-pyrolysis with triethylgallium
JP3951171B2 (en) Electron movable body forming material, electron movable body forming method, and electron movable body
JP4774776B2 (en) Method for producing trialkylgallium
JP5122082B2 (en) Method for forming conductive heterostructure compound film for electronic device
JP3470424B2 (en) Vapor growth method
JP4774774B2 (en) Method for producing trialkylgallium
JPH09134881A (en) Manufacture of nitride compound semiconductor
JPH09107124A (en) Method for manufacturing iii-v compound semiconductor
JP7332211B2 (en) Novel compound and manufacturing method
JP3557295B2 (en) Method for producing p-type II-VI compound semiconductor thin film
JPH0534819B2 (en)
KR100954448B1 (en) Manufacturing method of Hydrido aluminum borohydride trialkylamine complexes
JPH0334536A (en) Manufacture of iii-v compound semiconductor element
JP3479041B2 (en) Method for producing group III metal nitride thin film
JP4201969B2 (en) Method for producing group III nitride film
JP3047523B2 (en) Selective epitaxial growth method
Bretschneider et al. ZnS/Si/ZnS Quantum well structures for visible light emission
JPH01141899A (en) Vapor growth method for iii-v compound semiconductor
Johnson The Development of Novel-Single Source Precursors for the Growth of Zinc Oxide Thin Films via Atmospheric Pressure Metal Organic Chemical Vapor Deposition (AP-MOCVD) For Applications in Microelectronic Devices
JP2002175994A (en) Manufacturing method of gallium-nitride based compound semiconductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060626

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070411

R150 Certificate of patent or registration of utility model

Ref document number: 3951171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term