JP3951011B2 - Method for producing cyclic cyclophane, azacalix pyridine and use thereof - Google Patents

Method for producing cyclic cyclophane, azacalix pyridine and use thereof Download PDF

Info

Publication number
JP3951011B2
JP3951011B2 JP2002062665A JP2002062665A JP3951011B2 JP 3951011 B2 JP3951011 B2 JP 3951011B2 JP 2002062665 A JP2002062665 A JP 2002062665A JP 2002062665 A JP2002062665 A JP 2002062665A JP 3951011 B2 JP3951011 B2 JP 3951011B2
Authority
JP
Japan
Prior art keywords
pyridine
compound
cyclic
cyclic compound
azacalix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002062665A
Other languages
Japanese (ja)
Other versions
JP2003261568A (en
Inventor
貴樹 神原
▲隆▼一 山本
優子 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2002062665A priority Critical patent/JP3951011B2/en
Publication of JP2003261568A publication Critical patent/JP2003261568A/en
Application granted granted Critical
Publication of JP3951011B2 publication Critical patent/JP3951011B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、環状シクロファン、4,6の反復構成単位からなる環状化合物であるアザカリックスピリジン及びその製造法並びに利用法に関する。
【0002】
【従来の技術】
芳香環を構造中に有する環状化合物は安定かつ歪みをほとんど持たないことから環構造の内孔の大きさによって特定の分子を認識し包接することができることが知られている[例えば、「包接化合物」東京化学同人、25頁(1989)]。
【0003】
また、パラジウム錯体触媒を用いるハロゲン化芳香族化合物とアミンの反応では、種々の芳香族アミン類が効率よく得られることが知られており[例えば、有機合成化学協会誌、59巻、607頁(2001)]、製造法としては、例えば特開平-97451号明細書に提案されている。そして、この製造法を二官能性のジハロゲン化芳香属化合物とジアミノ化合物に適用することにより、重合体や環状化合物の製造が提案されている[例えば、J. Org. Chem., 64巻、8236頁(1999)]。
【0004】
【発明が解決しようとする課題】
しかし、芳香環を構造中に有する従来の環状化合物の包接特性はそのπ電荷移動や疎水性相互作用によるものであり、包接可能な原子及び分子は限定される。そのため、環状包接化合物を構成する分子構造を工夫することにより、従来の環状包接化合物にはない物性を備えた物質の開発が望まれている。例えば、芳香環を遷移金属に対して配位機能を有することが知られているピリジン等の複素六員環に置き換えた場合、環状構造の内側に遷移金属を包接した錯体が得られる[例えば、有機合成化学協会誌、56巻、604頁(1998)]。
【0005】
本発明は、これらの状況の下、新しい分子構造を有する環状化合物を探索すべく鋭意研究の結果完成したものである。
【0006】
本発明の課題は、遷移金属に対して配位機能を有することが知られているピリジン環とアミノ基を直接結合させた新規な環状化合物を提供することにある。
【0007】
また、本発明の他の課題は、従来の非環状キレート配位子や環状包接化合物とは異なる包接機能及び配位特性を有する環状包接化合物を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、環式化合物であって、
次の化学式:
【化2】

Figure 0003951011
(式中、Rは炭素数1〜6のアルキル基を示す。)
の化合物1又は2で表されることを特徴とするアザカリックスピリジンに係るものである。
【0009】
また、本発明は、包接錯体であって、上記化学式[化2]中の化合物1又は2で表されるアザカリックスピリジンを包接錯体のホスト分子とし、銅イオンをゲストとしていることを特徴とする包接錯体に係るものである。
【0010】
本発明者は、上記目的が、遷移金属に対して配位機能を有することが知られているピリジン環の2,6-位をアミノ基で架橋し、反復構成単位を6又は4結合させた[化2]で表される化合物1又は2で表されるアザカリックスピリジンによって達成されることを見出し、本発明に到達した。
【0011】
本発明によれば、ピリジン環とアミノ基を直接結合させることによって内孔に多数の孤立電子対を集約させた環状化合物を製造することができ、環の内側の塩基性を高め、ルイス酸性を有する原子及び分子との相互作用を向上させることが可能となる。
【0012】
さらに、環構造を構成する反復構成単位数を変えることによって配位座となるピリジン環内窒素及びアミノ基の幾何配置を制御もしくは固定化し、従来の非環状キレート配位子や環状包接化合物とは異なる包接機能及び配位特性を有する環状包接化合物を提供することができる。
【0013】
【発明の実施の形態】
本発明の実施の形態を説明する。
本発明の上記環状化合物は、ピリジンの2,6-位をハロゲンに置換した2,6-ジハロゲン化ピリジンとピリジンの2,6-位をアミノ基で置換した2,6-ジ(アルキルアミノ)ピリジン(アルキルは炭素数1〜6のアルキルを示す。)もしくはピリジンの2-位をハロゲンに、6-位をアミノ基で置換した2-ハロゲン化-6-アルキルアミノピリジン(アルキルは炭素数1〜6のアルキルを示す。)をパラジウム錯体触媒存在下で次の反応式:
【化3】
Figure 0003951011
(式中、Rはアルキル基を示す。)
で表される縮合反応によって製造される。
【0014】
上記の反応において、パラジウム錯体触媒には、反応直前に反応系で合成したものをそのまま用いるか、又は予め合成単離したものを用いることもできる。
【0015】
かかるパラジウム錯体触媒は、中性配位子存在下での還元反応及び配位子交換反応なる方法によって生成されるパラジウム錯体であり、その中性配位子としてはトリ-tert-ブチルホスフィン、ビスジフェニルホスフィノバイナフチル等を例示することができる。
【0016】
本発明では、4,6の反復構成単位からなる環状化合物であるアザカリックスピリジンを提供する。この環状化合物は、2,6-ジハロゲン化ピリジンと2,6-ジ(メチルアミノ)ピリジンもしくは2-ハロゲン化-6-メチルアミノピリジンをパラジウム錯体触媒存在下で縮合反応させることによって製造する。
【0017】
本発明によれば、アザカリックスピリジンの製造によって環状骨格内に孤立電子対を集約させ、ルイス酸性を有する原子及び分子を包接可能となり、新しい金属錯体触媒及び電荷移動錯体を提供できる。
【0018】
【実施例】
以下、本発明をさらに具体的かつ詳細に、実施例について説明する。
実施例1
トリス(ジベンジリデンアセトン)ジパラジウム0.0375 mmol、トリ-tert-ブチルホスフィン0.1125 mmolをトルエン150 mlに溶解し、ナトリウム-tert-ブトキシド2.25 mmolを加え、さらに0.75 mmolの2,6-ジブロモピリジンと0.75 mmolの2,6-ジ(メチルアミノ)ピリジンを加えて、70℃の反応温度で72時間反応させた。この反応により環状化合物であるアザカリックスピリジンが得られた。
【0019】
パラジウム錯体や副生成物である臭化ナトリウム及び非環状化合物を除くために、下記の(イ)から(ニ)の操作を行った。
(イ)アンモニア水(29%)で洗浄し、トルエンで抽出
(ロ)カラムクロマトグラフィー(アルミナ、溶出液:クロロホルム/酢酸エチルの2:1混合溶液)で分離精製
(ハ)カラムクロマトグラフィー(アルミナ、溶出液:クロロホルム)で分離精製
(ニ)カラムクロマトグラフィー(プロピルアミン修飾シリカゲル、溶出液:クロロホルム)で分離精製
【0020】
以上の精製操作により粉状環状化合物1を単離し、真空ラインを用いて乾燥した。この環状化合物1の元素分析値は炭素67.9%、水素5.7%、窒素26.1%、塩素0.1%であり、N-メチルアミノピリジンを反復構成単位とする環状化合物の計算値(炭素67.9%、水素5.7%、窒素26.4%)とほぼ一致した。
本実施例における環状化合物の収率は10%であった。
【0021】
上記の環状化合物はクロロホルム、アセトン、アセトニトリル、テトラヒドロフラン等の一般的な極性有機溶媒に可溶であった。そのため、質量分析(FAB MS)を行ったところ、m/z = 636に主のピークが観測され、N-メチルアミノピリジンを反復構成単位とし、反復構成単位数が6から成る環状化合物1の分子イオンピークと一致することがわかった。
【0022】
更に、化合物1をクロロホルム−メタノール混合溶媒から再結晶することにより単結晶を作成し、X線結晶構造解析を行ったところ、N-メチルアミノピリジンを反復構成単位とし、反復構成単位数が6から成る環状化合物1の分子構造と一致することが確認された。
【0023】
また、上記環状化合物1の1H NMRスペクトルは以下のシグナルを示した。
1H NMR (in CDCl3) d 7.37 (t, 6H), 6.35 (d, 12H), 3.46 (s, 18H)
【0024】
実施例2
トリス(ジベンジリデンアセトン)ジパラジウム0.0375 mmol、トリ-tert-ブチルホスフィン0.1125 mmolをトルエン150 mlに溶解し、ナトリウム-tert-ブトキシド2.25 mmolを加え、さらに0.75 mmolの2,6-ジブロモピリジンと0.75 mmolの2,6-ジ(メチルアミノ)ピリジンを加えて、70℃の反応温度で72時間反応させた。この反応により環状化合物であるアザカリックスピリジンが得られた。
【0025】
パラジウム錯体や副生成物である臭化ナトリウム及び非環状化合物を除くために、下記の(イ)から(ニ)の操作を行った。
(イ)アンモニア水(29%)で洗浄し、トルエンで抽出
(ロ)カラムクロマトグラフィー(アルミナ、溶出液:クロロホルム/酢酸エチルの2:1混合溶液)で分離精製
(ハ)カラムクロマトグラフィー(アルミナ、溶出液:クロロホルム)で分離精製
(ニ)カラムクロマトグラフィー(プロピルアミン修飾シリカゲル、溶出液:クロロホルム)で分離精製(実施例1とは異なる溶出速度のフラクションを分離精製)
【0026】
以上の精製操作により粉状環状化合物2を単離し、真空ラインを用いて乾燥した。
本実施例における環状化合物の収率は2%であった。
【0027】
上記の環状化合物はクロロホルム、アセトン、アセトニトリル、テトラヒドロフラン等の一般的な極性有機溶媒には可溶であった。そのため、質量分析(FAB MS)を行ったところ、m/z = 424に主のピークが観測され、N-メチルアミノピリジンを反復構成単位とし、反復構成単位数が4から成る環状化合物2の分子イオンピークと一致することがわかった。
【0028】
また、上記環状化合物2の1H NMRスペクトルは以下のシグナルを示した。
1H NMR (in CDCl3) d 7.35 (t, 4H), 6.35 (d, 8H), 3.20 (s, 12H)
【0029】
実施例3
トリス(ジベンジリデンアセトン)ジパラジウム0.05 mmol、トリ-tert-ブチルホスフィン0.15 mmolをトルエン30 mlに溶解し、ナトリウム-tert-ブトキシド3 mmolを加え、さらに1.1 mmolの2-ブロモ-6-メチルアミノピリジンを加えて、70℃の反応温度で72時間反応させた。この反応により環状化合物であるアザカリックスピリジンが得られた。以後の操作は実施例1と同様に行った。この反応により実施例1で得られたものと同一の環状化合物である粉状環状化合物1が収率8%で得られた。
【0030】
実施例4
実施例2で得られたアザカリックスピリジン(化合物2)のクロロホルム溶液に過塩素酸銅のエタノール溶液を加えたところ、薄茶色の沈殿物が生成した。この沈殿物を濾過・洗浄することにより、化合物2の銅錯体である化合物3を調製した。
【0031】
化合物3をアセトニトリルから再結晶することにより単結晶を作成し、X線結晶構造解析を行ったところ、環状構造内に銅イオンを一つ取り込んだ次の化学式:
【化4】
Figure 0003951011
で表される錯体が生成していることが確認された。このような現象は、本発明の環状化合物が遷移金属に対して包接可能なホスト分子として使用可能なことを示している。
【0032】
【発明の効果】
本発明の環状包接化合物であるアザカリックスピリジンは、有機溶媒に可溶であり、環状骨格内に孤立電子対を集約していることから、金属イオンや電子受容性分子を包接するホスト分子としての特性を有する。
【0033】
また、本発明の製造法により、2種類の反復構成単位数の異なる、すなわち環サイズの異なる環状化合物が提供できることから、ゲストとなる原子もしくは分子のサイズに応じた環状包接化合物を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cyclic cyclophane, azacalixpyridine, which is a cyclic compound composed of 4,6 repeating structural units, and a production method and use thereof.
[0002]
[Prior art]
It is known that a cyclic compound having an aromatic ring in its structure is stable and has almost no strain, and thus can recognize and include a specific molecule depending on the size of the inner pore of the ring structure [for example, “inclusion” Compound "Tokyo Kagaku Dojin, 25 (1989)].
[0003]
In addition, it is known that various aromatic amines can be efficiently obtained by the reaction of a halogenated aromatic compound and an amine using a palladium complex catalyst [for example, Journal of Synthetic Organic Chemistry, Vol. 59, page 607 ( 2001)], for example, is proposed in Japanese Patent Application Laid-Open No. 97451/1992. Then, production of a polymer or a cyclic compound has been proposed by applying this production method to a difunctional dihalogenated aromatic compound and a diamino compound [for example, J. Org. Chem., 64, 8236. Page (1999)].
[0004]
[Problems to be solved by the invention]
However, the inclusion characteristics of conventional cyclic compounds having an aromatic ring in the structure are due to their π charge transfer and hydrophobic interaction, and the atoms and molecules that can be included are limited. Therefore, it is desired to develop a substance having physical properties not found in conventional cyclic inclusion compounds by devising the molecular structure constituting the cyclic inclusion compound. For example, when the aromatic ring is replaced with a hetero 6-membered ring such as pyridine, which is known to have a coordination function with respect to the transition metal, a complex in which the transition metal is included inside the cyclic structure is obtained [for example, , Journal of Synthetic Organic Chemistry, Vol.56, p.604 (1998)].
[0005]
Under these circumstances, the present invention has been completed as a result of intensive studies to search for a cyclic compound having a new molecular structure.
[0006]
An object of the present invention is to provide a novel cyclic compound in which an amino group is directly bonded to a pyridine ring known to have a coordination function for a transition metal.
[0007]
Another object of the present invention is to provide a cyclic inclusion compound having an inclusion function and coordination characteristics different from those of conventional acyclic chelate ligands and cyclic inclusion compounds.
[0008]
[Means for Solving the Problems]
The present invention is a cyclic compound comprising:
The following chemical formula:
[Chemical 2]
Figure 0003951011
(In the formula, R represents an alkyl group having 1 to 6 carbon atoms.)
It is related to azacalix pyridine characterized by being represented by compound 1 or 2.
[0009]
Further, the present invention is an inclusion complex, characterized in that azacalixpyridine represented by the compound 1 or 2 in the chemical formula [Chemical Formula 2] is a host molecule of the inclusion complex and a copper ion is a guest. It is related to the inclusion complex.
[0010]
The present inventor has obtained the above object by bridging the 2,6-position of a pyridine ring, which is known to have a coordinating function with respect to a transition metal, with an amino group to bond 6 or 4 repeating structural units. It has been found that this can be achieved by azacalixpyridine represented by Compound 1 or 2 represented by [Chemical Formula 2], and the present invention has been achieved.
[0011]
According to the present invention, by directly bonding a pyridine ring and an amino group, a cyclic compound in which a large number of lone electron pairs are aggregated in the inner hole can be produced, the basicity inside the ring is increased, and Lewis acidity is increased. It becomes possible to improve the interaction with atoms and molecules.
[0012]
Furthermore, by changing or changing the number of repeating structural units constituting the ring structure, the geometrical arrangement of the pyridine ring nitrogen and amino group as the coordination position is controlled or fixed, and the conventional acyclic chelate ligand or cyclic inclusion compound Can provide cyclic inclusion compounds having different inclusion functions and coordination properties.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described.
The above cyclic compound of the present invention comprises 2,6-dihalogenated pyridine in which 2,6-position of pyridine is substituted with halogen, and 2,6-di (alkylamino) in which 2,6-position of pyridine is substituted with an amino group. Pyridine (alkyl represents alkyl having 1 to 6 carbon atoms) or 2-halogenated-6-alkylaminopyridine in which 2-position of pyridine is substituted with halogen and 6-position with amino group (alkyl is carbon 1) In the presence of a palladium complex catalyst.
[Chemical 3]
Figure 0003951011
(In the formula, R represents an alkyl group.)
It is manufactured by the condensation reaction represented by these.
[0014]
In the above reaction, as the palladium complex catalyst, one synthesized in the reaction system immediately before the reaction can be used as it is, or one synthesized and isolated in advance can also be used.
[0015]
Such a palladium complex catalyst is a palladium complex produced by a reduction reaction and a ligand exchange reaction in the presence of a neutral ligand, and the neutral ligand includes tri-tert-butylphosphine, bis A diphenylphosphino binaphthyl etc. can be illustrated.
[0016]
The present invention provides azacalix pyridine, which is a cyclic compound composed of 4,6 repeating structural units. This cyclic compound is produced by subjecting 2,6-dihalogenated pyridine and 2,6-di (methylamino) pyridine or 2-halogenated-6-methylaminopyridine to a condensation reaction in the presence of a palladium complex catalyst.
[0017]
According to the present invention, by producing azacalix pyridine, lone electron pairs can be aggregated in a cyclic skeleton, and atoms and molecules having Lewis acidity can be included, and a new metal complex catalyst and charge transfer complex can be provided.
[0018]
【Example】
Hereinafter, the present invention will be described more specifically and in detail with reference to examples.
Example 1
Tris (dibenzylideneacetone) dipalladium 0.0375 mmol, tri-tert-butylphosphine 0.1125 mmol are dissolved in 150 ml of toluene, sodium-tert-butoxide 2.25 mmol is added, and 0.75 mmol of 2,6-dibromopyridine and 0.75 mmol are added. 2,6-di (methylamino) pyridine was added and reacted at a reaction temperature of 70 ° C. for 72 hours. By this reaction, azacalixpyridine, which is a cyclic compound, was obtained.
[0019]
In order to remove the palladium complex and by-product sodium bromide and the non-cyclic compound, the following operations (a) to (d) were performed.
(B) Wash with aqueous ammonia (29%) and extract with toluene (b) Separation and purification by column chromatography (alumina, eluent: 2: 1 mixed solution of chloroform / ethyl acetate) (c) Column chromatography (alumina Separation and purification by eluent: chloroform) (d) Separation and purification by column chromatography (propylamine modified silica gel, eluent: chloroform)
Powdered cyclic compound 1 was isolated by the above purification operation and dried using a vacuum line. The elemental analysis values of this cyclic compound 1 are 67.9% carbon, 5.7% hydrogen, 26.1% nitrogen, 0.1% chlorine, and the calculated value of the cyclic compound having N-methylaminopyridine as a repeating structural unit (carbon 67.9%, hydrogen 5.7%). %, Nitrogen 26.4%).
The yield of the cyclic compound in this example was 10%.
[0021]
The above cyclic compound was soluble in common polar organic solvents such as chloroform, acetone, acetonitrile, and tetrahydrofuran. Therefore, when mass spectrometry (FAB MS) was performed, a main peak was observed at m / z = 636, N-methylaminopyridine was a repeating structural unit, and the molecule of cyclic compound 1 consisting of 6 repeating structural units It was found to be consistent with the ion peak.
[0022]
Further, a single crystal was prepared by recrystallizing Compound 1 from a chloroform-methanol mixed solvent, and X-ray crystal structure analysis was performed. As a result, N-methylaminopyridine was used as a repeating structural unit, and the number of repeating structural units was from 6. It was confirmed that this coincided with the molecular structure of cyclic compound 1.
[0023]
The 1 H NMR spectrum of the cyclic compound 1 showed the following signal.
1 H NMR (in CDCl 3 ) d 7.37 (t, 6H), 6.35 (d, 12H), 3.46 (s, 18H)
[0024]
Example 2
Tris (dibenzylideneacetone) dipalladium 0.0375 mmol, tri-tert-butylphosphine 0.1125 mmol are dissolved in 150 ml of toluene, sodium-tert-butoxide 2.25 mmol is added, and 0.75 mmol of 2,6-dibromopyridine and 0.75 mmol are added. 2,6-di (methylamino) pyridine was added and reacted at a reaction temperature of 70 ° C. for 72 hours. By this reaction, azacalixpyridine, which is a cyclic compound, was obtained.
[0025]
In order to remove the palladium complex and by-product sodium bromide and the non-cyclic compound, the following operations (a) to (d) were performed.
(B) Wash with aqueous ammonia (29%) and extract with toluene (b) Separation and purification by column chromatography (alumina, eluent: 2: 1 mixed solution of chloroform / ethyl acetate) (c) Column chromatography (alumina Separation and purification by eluent: chloroform) (d) Separation and purification by column chromatography (propylamine modified silica gel, eluent: chloroform) (Separation and purification of fractions with elution rates different from Example 1)
[0026]
Powdered cyclic compound 2 was isolated by the above purification operation and dried using a vacuum line.
The yield of the cyclic compound in this example was 2%.
[0027]
The above cyclic compound was soluble in common polar organic solvents such as chloroform, acetone, acetonitrile, and tetrahydrofuran. Therefore, when mass spectrometry (FAB MS) was performed, a main peak was observed at m / z = 424, N-methylaminopyridine was a repeating structural unit, and the molecule of cyclic compound 2 consisting of 4 repeating structural units It was found to be consistent with the ion peak.
[0028]
The 1 H NMR spectrum of the cyclic compound 2 showed the following signal.
1 H NMR (in CDCl 3 ) d 7.35 (t, 4H), 6.35 (d, 8H), 3.20 (s, 12H)
[0029]
Example 3
Tris (dibenzylideneacetone) dipalladium 0.05 mmol and tri-tert-butylphosphine 0.15 mmol are dissolved in 30 ml of toluene, sodium-tert-butoxide 3 mmol is added, and 1.1 mmol of 2-bromo-6-methylaminopyridine is added. And reacted at a reaction temperature of 70 ° C. for 72 hours. By this reaction, azacalixpyridine, which is a cyclic compound, was obtained. Subsequent operations were performed in the same manner as in Example 1. By this reaction, a powdery cyclic compound 1 which is the same cyclic compound as that obtained in Example 1 was obtained in a yield of 8%.
[0030]
Example 4
When an ethanol solution of copper perchlorate was added to the chloroform solution of azacalixpyridine (compound 2) obtained in Example 2, a light brown precipitate was formed. The precipitate was filtered and washed to prepare Compound 3, which is a copper complex of Compound 2.
[0031]
A single crystal was prepared by recrystallizing compound 3 from acetonitrile, and X-ray crystal structure analysis was performed. The following chemical formula in which one copper ion was incorporated in the cyclic structure:
[Formula 4]
Figure 0003951011
It was confirmed that a complex represented by Such a phenomenon indicates that the cyclic compound of the present invention can be used as a host molecule capable of inclusion with a transition metal.
[0032]
【The invention's effect】
Azacalix pyridine, which is a cyclic inclusion compound of the present invention, is soluble in an organic solvent and aggregates lone electron pairs in a cyclic skeleton. Therefore, as a host molecule for inclusion of metal ions and electron accepting molecules. It has the following characteristics.
[0033]
In addition, since the production method of the present invention can provide two types of cyclic compounds having different numbers of repeating structural units, that is, different ring sizes, it is possible to provide a cyclic inclusion compound corresponding to the size of atoms or molecules serving as a guest.

Claims (4)

環式化合物であって、
次の化学式:
Figure 0003951011
(式中、Rは炭素数1〜6のアルキル基を示す。)
の化合物1又は2で表されることを特徴とするアザカリックスピリジン。
A cyclic compound comprising:
The following chemical formula:
Figure 0003951011
(In the formula, R represents an alkyl group having 1 to 6 carbon atoms.)
Azacalix pyridine represented by the compound 1 or 2:
2,6-ジハロゲン化ピリジンと2,6-ジ(アルキルアミノ)ピリジン(アルキルは炭素数1〜6のアルキルを示す。)をパラジウム錯体触媒存在下で縮合反応させることを特徴とする請求項1記載の化合物1又は2で表されるアザカリックスピリジンの製造法。  2. A condensation reaction of 2,6-dihalogenated pyridine and 2,6-di (alkylamino) pyridine (wherein alkyl represents an alkyl having 1 to 6 carbon atoms) in the presence of a palladium complex catalyst. A process for producing an azacalixpyridine represented by the described compound 1 or 2. 2- ハロゲン化 -6- アルキルアミノピリジン ( アルキルは炭素数 1 6 のアルキルを示す。 ) をパラジウム錯体触媒存在下で縮合反応させることを特徴とする請求項 1 記載の化合物 1 又は 2 で表されるアザカリックスピリジンの製造法 Table with claim 1 Compound 1 or 2, wherein 2-halogenated-6-alkylamino pyridine (alkyl which. Represents an alkyl having 1 to 6 carbon atoms), characterized in that the condensation reaction in the presence of a palladium complex catalyst A method for producing azacalix pyridine . 包接錯体であって、請求項An inclusion complex comprising: 11 記載の化合物Listed compounds 11 又はOr 22 で表されるアザカリックスピリジンを包接錯体のホスト分子とし、銅イオンをゲストとしていることを特徴とする包接錯体。An inclusion complex characterized in that azacalixpyridine represented by the above formula is used as a host molecule of an inclusion complex and a copper ion is used as a guest.
JP2002062665A 2002-03-07 2002-03-07 Method for producing cyclic cyclophane, azacalix pyridine and use thereof Expired - Lifetime JP3951011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002062665A JP3951011B2 (en) 2002-03-07 2002-03-07 Method for producing cyclic cyclophane, azacalix pyridine and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002062665A JP3951011B2 (en) 2002-03-07 2002-03-07 Method for producing cyclic cyclophane, azacalix pyridine and use thereof

Publications (2)

Publication Number Publication Date
JP2003261568A JP2003261568A (en) 2003-09-19
JP3951011B2 true JP3951011B2 (en) 2007-08-01

Family

ID=29196330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002062665A Expired - Lifetime JP3951011B2 (en) 2002-03-07 2002-03-07 Method for producing cyclic cyclophane, azacalix pyridine and use thereof

Country Status (1)

Country Link
JP (1) JP3951011B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070043186A1 (en) * 2003-08-07 2007-02-22 Zhibin Guan Macrocyclic metal complexes and their uses as polymerization catylysts
JP5208391B2 (en) * 2005-09-09 2013-06-12 住友化学株式会社 Metal complex, light emitting material and light emitting device
EP1932851B1 (en) * 2005-09-09 2013-06-12 Sumitomo Chemical Company, Limited Metal complex, light-emitting material, and light-emitting device
JP5594821B2 (en) * 2010-03-08 2014-09-24 国立大学法人 筑波大学 Novel azacalix [3] pyridine and process for producing the same
JP7232016B2 (en) * 2018-11-15 2023-03-02 日本放送協会 Organic thin film, method for producing organic thin film, organic electroluminescence device, display device, lighting device, organic thin film solar cell, thin film transistor, coating composition

Also Published As

Publication number Publication date
JP2003261568A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
US6043370A (en) Method for producing arylamine
CN109153623B (en) Selective reduction of esters to alcohols
Hayasaka et al. Highly efficient olefin hydrosilylation catalyzed by iron complexes with iminobipyridine ligand
WO2008059771A1 (en) Process for producing fullerene derivative
EP3529253B1 (en) Process
JP3951011B2 (en) Method for producing cyclic cyclophane, azacalix pyridine and use thereof
Yin et al. Efficient synthesis of a hetero [4] rotaxane by a “threading-stoppering-followed-by-clipping” approach
Kantekin et al. Synthesis and characterization of new (E, E)-dioxime and its homo and heterotrinuclear complexes containing dioxadithiadiazamacrobicycle moiety
Leigh et al. An ammonium/bis-ammonium switchable molecular shuttle
CN111454150A (en) Synthesis method of (S) -2-aryl propionate compound
CN105272987A (en) Preparation method of 3-cyano-N-confused porphyrin compound
KR20160007581A (en) Pyridine- or pyrazine-containing compounds
Kiehne et al. Synthesis of 2, 8-disubstituted analogues of Tröger’s Base
CN114773390A (en) Corrosion inhibitor and preparation method thereof
JP4098867B2 (en) Method for producing arylamine
EP4245743A1 (en) Method for preparation of deuterated anthracene compound, reaction composition, deuterated anthracene compound, and composition
CA2252813C (en) 3- and 3,8-substituted 1,10-phenanthrolines and their use in electron and energy transfer processes
CN107603271B (en) Preparation method of long-chain alkoxy BODIPY compound
JP2022069882A (en) Novel compound and anion receptor
KR101092332B1 (en) Fluorescent Anion Receptor of Tweezer-type : Using Pyrene Amide Unit with Cationic Pyridinium Skeleton
Shi et al. Synthesis of highly charged ruthenium (II)-quaterpyridinium complexes: A bottom-up approach to monodisperse nanostructures
CN106366069B (en) A kind of preparation method of N- heteroaryl carbazole compound
JP2016088899A (en) 4,4',10,10'-bidihydro acridines and manufacturing method therefor
CN102070649A (en) Synthesis method of aryl thiophthene derivative
Han et al. Complexation of Triptycene‐Derived Macrotricyclic Host Containing Pyridine Groups with Paraquat Derivatives: A Switchable Process Controlled by Zn2+ Ions

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20020308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040521

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

R150 Certificate of patent or registration of utility model

Ref document number: 3951011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term