JP3950284B2 - Method for reinforcing concrete slabs - Google Patents

Method for reinforcing concrete slabs Download PDF

Info

Publication number
JP3950284B2
JP3950284B2 JP2000188999A JP2000188999A JP3950284B2 JP 3950284 B2 JP3950284 B2 JP 3950284B2 JP 2000188999 A JP2000188999 A JP 2000188999A JP 2000188999 A JP2000188999 A JP 2000188999A JP 3950284 B2 JP3950284 B2 JP 3950284B2
Authority
JP
Japan
Prior art keywords
floor slab
girder
stringer
tension cable
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000188999A
Other languages
Japanese (ja)
Other versions
JP2002004226A (en
Inventor
俊昭 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000188999A priority Critical patent/JP3950284B2/en
Publication of JP2002004226A publication Critical patent/JP2002004226A/en
Application granted granted Critical
Publication of JP3950284B2 publication Critical patent/JP3950284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Bridges Or Land Bridges (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、既設の橋梁の鉄筋コンクリート床版の補強方法に関する。
【0002】
【従来技術及び問題点】
現在、我が国では総延長約7500kmの道路橋があり、その適切な維持管理が重要な課題となっている。特に車両の重量が大型化されたことに伴って、許容応力度の引き上げが行われ、補修・補強を必要とするコンクリート床版が急増している。コンクリート床版の補修・補強方法としては、鋼板接着工法,上面又は下面での床版増厚工法,床版の打ち換え工法,縦桁増設工法等がある。例えば縦桁増設工法では、図1のように橋梁1の既設の縦桁2に隣接させて新たにコンクリート製の縦桁5を増設するもので、耐荷力を増大させ作用応力度を低減するのに効果があるが、死荷重が増加するうえ、工事に交通規制を必要とし、工期も長い。他の従来法もそれぞれ一長一短があり、何れも工事中に少なくとも片側の通行を遮断する必要がある。
【0003】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、道路橋の通行を遮断することなく、短工期でかつ安価に橋梁を補修することを目的とする。
本発明のコンクリート床版の補強方法では、既設主桁 (4) に両端部が支持された仮設横桁 (13) を設け、仮設横桁 (13) に載置されたジャッキ (13a) により床版 (3) を押上げた状態で緊張ケーブル (11) を張設し、床版 (3) の下面に接着された新設縦桁 (10) に前記緊張ケーブル (11) によって揚力を付与した後、ジャッキ及び仮設横桁を撤去する。軽量でかつ十分な強度を得るためには、非硬化型連続炭素繊維製又はガラス繊維強化プラスチック製の緊張用ケーブルを用いることが好ましい。新設縦桁を非硬化型連続炭素繊維製又はガラス繊維強化プラスチック製にすると、死荷重が更に低減し、耐久性が向上する。
【0004】
【作用】
床版3の劣化は、橋梁1を通過する車両等の重量により床版3に撓み変形が繰り返し発生することに起因する。そこで本発明では縦桁を増設して床版3を下から押上げ撓み変形を軽減することによって経時的な劣化の進行を抑制する。
本発明に従ったコンクリート床版の補強方法は、たとえば図2に示すように橋軸方向に伸びた縦桁2,2をもつ橋梁1に適用される。既設縦桁2,2はI型鋼等の既設主桁4,4を介して橋脚(図示せず)に支えられている。
まず断面I字状の新設縦桁10を補強される既設橋梁1の縦桁2,2の中央で橋軸方向に床版3の下面に当接するように配置する。次に緊張ケーブル11が既設縦桁2又は既設の主桁4の上部から、新設縦桁10の下部に設けたケーブルサドル12を経由して他方の既設縦桁2又は既設主桁4の上部に差渡される。緊張ケーブル11は橋軸方向に所定の間隔で多数差渡される。緊張ケーブル11は強い張力が掛けられた状態で張設されるため、新設縦桁10が上方に持ち上げられる。その結果、橋梁1を通過する車両等の重量に対して床版3の撓み応力が軽減され、撓み変形の繰り返しによる床版の劣化が抑えられる。
【0005】
本発明に従ったコンクリート床版の補強方法には、新設縦桁10及び緊張ケーブル11の材料として、好ましくは構造用新材料である炭素繊維やアラミド繊維,ガラス繊維素材等が用いられる。これら新材料は従来の土木構造材料に比べ、非常に軽量で強度もあるため、これら新材料を用いることにより、補強工事による死荷重の増大が抑制され、構造物自体の小型化や長大化、また施工の省人化・省力化等のさまざまな効果が期待される。また耐久性・耐食性も高いため、施工時にコンクリートの巻立て等の防錆処理が不要になり、施工後も維持管理が楽になる。具体的には、非硬化型連続炭素繊維(UCCF;Unresin Continuous Carbon Fibers)やガラス繊維強化プラスチック(GFRP;Glass Fiber Reinforced Plastic)が用いられる。UCCFには、強度・弾性率が高く比重が小さい,耐食性・耐薬品性に優れる,可撓性のため輸送に有利である等の特長がある。GFRPには、耐熱性が高く不燃性である,電気絶縁性が高い,色材を自由に選べる等の特長がある。
【0006】
【実施の形態】
本発明に従ったコンクリート床版の補強方法の一例として、幅12.6m,全長22m,I型鋼製の既設縦桁2の高さ1.2m,既設縦桁数6本,既設縦桁間隔2.1mである橋梁1を補強する場合を説明する(図3)。
補強材の新設縦桁10には、高さ65cm,長さ22.2m,断面積220cm2のGFRP製I型縦桁(一本当り重量880kg)が5本用いられる。新設縦桁10は床版3の下面にエポキシモルタルで接着され、対傾構の位置ではL型金具(図示せず)を用いてボルト接合する。緊張ケーブル11は断面積1cm2のUCCF製とし、一端を既設主桁4の上部にアンカ14により固定し、新設縦桁10下面に設けたケーブルサドル12を経由して他端を他方の既設主桁4の上部にアンカ14により固定し、一定の張力を掛けた状態で張設する(図4)。アンカ14は、たとえば鋼製のラッパ状のパイプが用いられる。このアンカ14を既設主桁4のウェブ上部にあけた穴に挿通し、緊張ケーブル11をアンカ14に挿通した後、緊張ケーブル11の端部に結びコブをつくることで完全に緊張ケーブル11はウェブに固定される。緊張ケーブル11は直接既設主桁4のウェブに接触しないので損傷することなく耐久性が向上する。好ましくは挿通した緊張ケーブル11とアンカ14との間にエポキシ樹脂等を充填する。
緊張ケーブル11の張設に際しては、床板3を押上げた状態にしておくことが好ましい。たとえば、図5のように既設主桁4の下部に支持された仮設横桁13を設置し、仮設横桁13の上に載置したジャッキ13aにより床版3を押上げることができる。また、緊張ケーブル11の途中にターンバックルを設けて張力を調整することもできる。緊張ケーブル11が張設された後、ジャッキ13aは揚力を緩めて撤去される。これにより、緊張ケーブル11には床版3を押上げる適度の張力が掛けられる。仮設横桁13は補強工事終了後に撤去される。
緊張ケーブル11の張設間隔は、要求強度,荷重等を考慮して決められる。この例の場合には十分な強度を得るために、新設縦桁10一本当り橋軸方向に65cmの間隔で33本張設される。33本の各緊張ケーブル11は新設縦桁10の下端に設けられたケーブルサドル12により緊張ケーブル11一本当り100kgf程度の張力が掛かり、新設縦桁10一本には33本の各緊張ケーブル11の合計で1700kgf程度の揚力が与えられる。これにより、新設縦桁10一本の自重880kgfを差し引いても820kgf程度の揚力が床版3に与えられ、補強工事後の床版3の劣化を抑制することができる。
【0007】
新設縦桁10にコストの低いI形鋼も採用できる。この場合でも新設縦桁10の自重1300kgfを差し引いて400kg程度の揚力が床版3に与えられ、補強工事後の床版3の劣化を抑制することができる。しかし、UCCFやGFRP等の新材料製の新設縦桁10を用いるほうが耐食性の観点から好ましい。
【0008】
【発明の効果】
以上に説明したように、本発明のコンクリート床版の補強方法は、既設縦桁の間に新設縦桁を設け、新設縦桁の下部を両側の既設縦桁に固定した緊張材で引上げている。このため、死荷重の増加を抑制しながら床版の補強をし、劣化を防止することができる。補強工事は簡単な構造で全て橋の下で行なえるので通行規制をする必要もなく、新たにコンクリートを打設する必要もないので工期も短縮できる。
【図面の簡単な説明】
【図1】 従来工法の一例を示すモデル図
【図2】 本発明に従った補強工事を説明する橋軸直角方向断面図
【図3】 本発明に従った補強工事の一例を説明する斜視断面図
【図4】 ケーブル端部を既設縦桁に固定する構造例
【図5】 補強工事の施工中の状態
【符号の説明】
1:橋梁 2:既設縦桁 3:床版 4:既設主桁 5:縦桁10:新設縦桁 11:緊張ケーブル 12:ケーブルサドル 13:仮設横桁 13a:ジャッキ
[0001]
[Industrial application fields]
The present invention relates to a method for reinforcing an existing bridge reinforced concrete slab.
[0002]
[Prior art and problems]
Currently, there is a road bridge with a total length of about 7500 km in Japan, and its proper maintenance is an important issue. In particular, with the increase in the weight of vehicles, the allowable stress level has been raised, and concrete slabs that require repair and reinforcement are rapidly increasing. As concrete floor slab repair / reinforcement methods, there are a steel plate bonding method, a floor slab thickening method on the upper or lower surface, a floor slab replacement method, a stringer expansion method, and the like. For example, in the method of expanding a girder, a concrete girder 5 is newly added adjacent to the existing girder 2 of the bridge 1 as shown in FIG. 1 to increase the load carrying capacity and reduce the acting stress. Although it is effective, the dead load increases, traffic regulation is required for construction, and the construction period is long. Each of the other conventional methods has advantages and disadvantages, and it is necessary to block traffic on at least one side during construction.
[0003]
[Means for Solving the Problems]
The present invention has been devised to solve such a problem, and an object thereof is to repair a bridge in a short construction period and at a low cost without blocking the passage of a road bridge.
In the method for reinforcing a concrete floor slab of the present invention, a temporary cross girder (13) having both ends supported on an existing main girder (4 ) is provided, and the floor is placed by a jack (13a) placed on the temporary cross girder (13). After tension plate (11) is stretched in the state where plate (3) is pushed up, lift is applied to the newly installed stringer (10) bonded to the lower surface of floor slab (3 ) by means of tension cable (11) . Remove jacks and temporary cross beams. In order to obtain light weight and sufficient strength, it is preferable to use a tension cable made of non-curing continuous carbon fiber or glass fiber reinforced plastic. When the newly installed stringer is made of non-curing continuous carbon fiber or glass fiber reinforced plastic, the dead load is further reduced and the durability is improved.
[0004]
[Action]
The deterioration of the floor slab 3 is caused by repeated deformation of the floor slab 3 due to the weight of a vehicle or the like passing through the bridge 1. Therefore, in the present invention, the progress of deterioration over time is suppressed by increasing the stringers and reducing the bending deformation by pushing up the floor slab 3 from below.
The concrete slab reinforcing method according to the present invention is applied to a bridge 1 having longitudinal girders 2 and 2 extending in the direction of the bridge axis as shown in FIG. 2, for example. The existing stringers 2 and 2 are supported by bridge piers (not shown) via existing main girders 4 and 4 such as I-shaped steel.
First, the new vertical girder 10 having an I-shaped cross section is arranged at the center of the vertical beams 2 and 2 of the existing bridge 1 to be reinforced so as to contact the lower surface of the floor slab 3 in the bridge axis direction. Next, the tension cable 11 passes from the upper part of the existing stringer 2 or the existing main beam 4 to the upper part of the other existing stringer 2 or the existing main beam 4 via the cable saddle 12 provided in the lower part of the newly installed stringer 10. Passed over. A number of tension cables 11 are passed at predetermined intervals in the bridge axis direction. Since the tension cable 11 is stretched in a state where a strong tension is applied, the new stringer 10 is lifted upward. As a result, the bending stress of the floor slab 3 is reduced with respect to the weight of the vehicle or the like passing through the bridge 1, and deterioration of the floor slab due to repeated bending deformation is suppressed.
[0005]
In the method for reinforcing a concrete floor slab according to the present invention, carbon fiber, aramid fiber, glass fiber material or the like, which is preferably a new structural material, is used as a material for the newly installed stringer 10 and the tension cable 11. Since these new materials are extremely light and strong compared to conventional civil engineering structural materials, the use of these new materials suppresses the increase in dead load due to reinforcement work, and makes the structures themselves smaller and longer, In addition, various effects such as labor saving and labor saving of construction are expected. In addition, because it has high durability and corrosion resistance, rust prevention treatment such as winding concrete is unnecessary during construction, and maintenance is easy after construction. Specifically, uncured continuous carbon fibers (UCCF) and glass fiber reinforced plastics (GFRP) are used. UCCF has features such as high strength and elastic modulus, low specific gravity, excellent corrosion resistance and chemical resistance, and flexibility for transportation. GFRP has features such as high heat resistance and nonflammability, high electrical insulation, and the ability to freely select color materials.
[0006]
[Embodiment]
As an example of a method for reinforcing a concrete floor slab according to the present invention, a width of 12.6 m, a total length of 22 m, a height of an existing stringer 2 made of I-type steel of 1.2 m, an existing stringer number of six, an existing stringer interval The case where the bridge 1 which is 2.1 m is reinforced is demonstrated (FIG. 3).
Five new GFRP I-type beams (weight 880 kg each) having a height of 65 cm, a length of 22.2 m, and a cross-sectional area of 220 cm 2 are used for the new stringer 10 of the reinforcing material. The newly installed stringer 10 is bonded to the lower surface of the floor slab 3 with epoxy mortar, and is bolted using an L-shaped bracket (not shown) at the position of the tilted structure. The tension cable 11 is made of UCCF having a cross-sectional area of 1 cm 2 , one end is fixed to the upper part of the existing main girder 4 by an anchor 14, and the other end is connected to the other existing main via a cable saddle 12 provided on the lower surface of the newly installed vertical girder 10. It fixes to the upper part of the girder 4 with the anchor 14, and it tensions in the state which applied fixed tension (FIG. 4). As the anchor 14, for example, a steel trumpet pipe is used. The anchor cable 14 is inserted into the hole formed in the upper part of the web of the existing main girder 4, the tension cable 11 is inserted into the anchor 14, and then the end of the tension cable 11 is tied to form a hump so that the tension cable 11 is completely connected to the web. Fixed to. Since the tension cable 11 does not directly contact the web of the existing main girder 4, durability is improved without being damaged. Preferably, an epoxy resin or the like is filled between the inserted tension cable 11 and the anchor 14.
When the tension cable 11 is stretched, it is preferable to keep the floor plate 3 pushed up. For example, as shown in FIG. 5, a temporary horizontal girder 13 supported under the existing main girder 4 can be installed, and the floor slab 3 can be pushed up by a jack 13 a placed on the temporary horizontal girder 13. Further, a tension can be adjusted by providing a turnbuckle in the middle of the tension cable 11. After the tension cable 11 is stretched, the jack 13a is removed with the lift lifted. As a result, an appropriate tension for pushing up the floor slab 3 is applied to the tension cable 11. The temporary cross beam 13 is removed after the reinforcement work is completed.
The tension interval of the tension cable 11 is determined in consideration of required strength, load, and the like. In the case of this example, in order to obtain sufficient strength, 33 new stringers 10 are stretched at intervals of 65 cm in the bridge axis direction. Each of the 33 tension cables 11 is tensioned by about 100 kgf per tension cable 11 by a cable saddle 12 provided at the lower end of the newly installed stringer 10, and each of the 33 stringer cables 11 has 33 tension cables 11. A total lift of about 1700 kgf is given. Thereby, even if the own weight 880 kgf of the newly installed stringer 10 is subtracted, a lift of about 820 kgf is given to the floor slab 3, and deterioration of the floor slab 3 after the reinforcement work can be suppressed.
[0007]
Low cost I-shaped steel can be used for the newly installed stringer 10. Even in this case, the lift of about 400 kg is given to the floor slab 3 by subtracting the own weight 1300 kgf of the newly installed stringer 10, and the deterioration of the floor slab 3 after the reinforcement work can be suppressed. However, it is preferable from the viewpoint of corrosion resistance to use a new stringer 10 made of a new material such as UCCF or GFRP.
[0008]
【The invention's effect】
As described above, the method for reinforcing a concrete floor slab of the present invention is provided with a newly installed stringer between existing stringers, and the lower part of the newly installed stringer is pulled up by a tension material fixed to the existing stringers on both sides. . For this reason, it is possible to reinforce the floor slab while suppressing an increase in dead load and prevent deterioration. Reinforcement work can be performed under a bridge with a simple structure, so there is no need to restrict traffic and there is no need to place new concrete, so the construction period can be shortened.
[Brief description of the drawings]
FIG. 1 is a model diagram showing an example of a conventional construction method. FIG. 2 is a cross-sectional view perpendicular to a bridge axis explaining a reinforcement work according to the present invention. FIG. 3 is a perspective cross section explaining an example of a reinforcement work according to the present invention. Figure [Figure 4] Example of structure to fix cable end to existing stringer [Figure 5] State during reinforcement work [Explanation of symbols]
1: Bridge 2: Existing vertical girder 3: Floor slab 4: Existing main girder 5: Vertical girder 10: New vertical girder 11: Tension cable 12: Cable saddle 13: Temporary horizontal girder 13a: Jack

Claims (1)

既設主桁(4)に両端部が支持された仮設横桁(13)を設け、仮設横桁(13)に載置されたジャッキ(13a)により床版(3)を押上げた状態で非硬化型連続炭素繊維製又はガラス繊維強化プラスチック製の緊張ケーブル(11) を張設し、非硬化型連続炭素繊維製又はガラス繊維強化プラスチック製で床版 (3) の下面に接着された新設縦桁 (10) に前記緊張ケーブル (11) によって揚力を付与した後、ジャッキ及び仮設横桁を撤去することを特徴とするコンクリート床版の補強方法。Existing main beam (4) to provide a temporary crossbeam having both ends supported (13), temporary crossbeam (13) placed the deck by a jack (13a) (3) non with push-up clogs state A new vertical cable made of curable continuous carbon fiber or glass fiber reinforced plastic tension cable (11) and bonded to the bottom surface of floor slab (3) made of non-cured continuous carbon fiber or glass fiber reinforced plastic. A method for reinforcing a concrete floor slab , characterized by removing a jack and a temporary horizontal girder after applying lift to the girder (10) by the tension cable (11) .
JP2000188999A 2000-06-23 2000-06-23 Method for reinforcing concrete slabs Expired - Fee Related JP3950284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000188999A JP3950284B2 (en) 2000-06-23 2000-06-23 Method for reinforcing concrete slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000188999A JP3950284B2 (en) 2000-06-23 2000-06-23 Method for reinforcing concrete slabs

Publications (2)

Publication Number Publication Date
JP2002004226A JP2002004226A (en) 2002-01-09
JP3950284B2 true JP3950284B2 (en) 2007-07-25

Family

ID=18688695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000188999A Expired - Fee Related JP3950284B2 (en) 2000-06-23 2000-06-23 Method for reinforcing concrete slabs

Country Status (1)

Country Link
JP (1) JP3950284B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198055A (en) * 2006-01-27 2007-08-09 Mitsui Eng & Shipbuild Co Ltd Bridge structure made of synthetic floor plate
JP4551340B2 (en) * 2006-02-13 2010-09-29 三井住友建設株式会社 Continuous viaduct
JP5345447B2 (en) * 2009-05-26 2013-11-20 株式会社 ダイアテック Beam reinforcement method
JP6475091B2 (en) * 2015-05-29 2019-02-27 東日本旅客鉄道株式会社 Steel girder reinforcement structure
CN111236048A (en) * 2020-03-12 2020-06-05 中铁工程设计咨询集团有限公司 Suspension bridge stiffening beam
CN114622497B (en) * 2022-04-08 2023-04-25 西安公路研究院有限公司 Bridge rapid rush-repair method without increasing dead weight of main beam

Also Published As

Publication number Publication date
JP2002004226A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
US11634877B2 (en) Method for removal of temporary support system for road bridge pre-fabricated small box girder-type concealed bent cap, and equipment therefor
CN213038218U (en) Predictive continuous rigid frame bridge capable of supplementing tensioning prestress
CN105839510A (en) Steel-ultra-high-performance concrete combined continuous beam bridge structure and construction method thereof
US5471694A (en) Prefabricated bridge with prestressed elements
JP3440422B2 (en) Bridge construction method and bridge construction device
CN113463494B (en) Track beam and construction method thereof
JP3950284B2 (en) Method for reinforcing concrete slabs
CN104562944B (en) Long span steel-concrete composite beam cable-stayed bridge limit steel case anchoring temporarily system
KR100592196B1 (en) large number bracket in which supporter was installed is used and it is a bridge, multiplex point installed so that support might be carried out support bracket and its installation method
KR101330177B1 (en) Deck panel using reinforced strand
KR100310245B1 (en) Continuous Superstructure of Bridge Upper Structure
CN111155450A (en) Steel wire rope reinforcing system and method for bearing capacity of hogging moment area of continuous beam
JP2744955B2 (en) Reinforcement structure and reinforcement method of hinge part of gel bar bridge
CN204530507U (en) Long span steel-concrete composite beam cable-stayed bridge limit steel case anchoring temporarily system
CN211849013U (en) Steel wire rope reinforcing system for bearing capacity of hogging moment area of continuous beam
KR100558089B1 (en) Apparatus for repairing and reinforcing box-typed concrete structures by increasing the section of concrete structures, and repairing and reinforcing method using the apparatus
KR101381974B1 (en) Concrete deck slab assembly, Method for making the same and Temporary bridge using the same
KR20100022703A (en) Composite slab using deck plate made by glass fiber reinforced polymer
JP2002332645A (en) Foundation structure of rail for ground-traveling crane and laying method for foundation
KR100569226B1 (en) Bottom plate reinforcement method of continuous bridge by inclined tension material
JPH0338245Y2 (en)
JPH0542553B2 (en)
CN111395167B (en) Construction method of continuous rigid frame bridge
JP7198160B2 (en) Wall balustrade reinforcement method and reinforcement structure
CN217203443U (en) Prestressed steel strand concrete crossing plate structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Effective date: 20040129

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A621 Written request for application examination

Effective date: 20041005

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20061102

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070420

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees