JP3948924B2 - Freezer refrigerator - Google Patents

Freezer refrigerator Download PDF

Info

Publication number
JP3948924B2
JP3948924B2 JP2001312056A JP2001312056A JP3948924B2 JP 3948924 B2 JP3948924 B2 JP 3948924B2 JP 2001312056 A JP2001312056 A JP 2001312056A JP 2001312056 A JP2001312056 A JP 2001312056A JP 3948924 B2 JP3948924 B2 JP 3948924B2
Authority
JP
Japan
Prior art keywords
refrigerator
evaporator
freezer
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001312056A
Other languages
Japanese (ja)
Other versions
JP2003121016A (en
Inventor
秀樹 大湯
純一 布留川
竜彦 山口
恭也 舘野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001312056A priority Critical patent/JP3948924B2/en
Publication of JP2003121016A publication Critical patent/JP2003121016A/en
Application granted granted Critical
Publication of JP3948924B2 publication Critical patent/JP3948924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵室用蒸発器と冷凍室用蒸発器とを備える冷凍冷蔵庫に関する。
【0002】
冷凍冷蔵庫は、冷凍室と冷蔵室との背面側に形成されたダクト内に蒸発器及びファンをそれぞれ備えており、冷凍サイクルの凝縮器から蒸発器に冷媒が供給され、ダクト内を通過する冷気を蒸発器で熱交換して冷やし、その冷気を前記ファンを介して吹き出し口から冷凍室及び冷蔵室にそれぞれ吹き出すようにしてある。
【0003】
この冷凍サイクルは、例えば、図3に示すように冷媒ガスを圧縮する圧縮機1と、冷媒ガスを液化する凝縮器2を備え、凝縮器2の下流側には三方弁3が設けられる。この三方弁3を切り替えることにより、冷蔵室R側に設けられた蒸発器4(R蒸発器)及び冷凍室F側に設けられた蒸発器5(F蒸発器)の両蒸発器4,5、又は、F蒸発器5のみに冷媒を供給する。そして、F蒸発器5から圧縮機1に冷媒が戻る。冷媒は、冷凍サイクル中を循環する。蒸発器4,5で生成された冷気は、ファン8,9により庫内を循環する。
【0004】
つまり、この冷凍冷蔵庫は、冷蔵室用蒸発器4と冷凍室用蒸発器5の両蒸発器に冷媒を流す第1モードと、前記冷凍室用蒸発器5のみに冷媒を流す第2モードとを備える。
【0005】
そして、通常運転時には、適宜、三方弁3を切り替えて、冷媒を必要な蒸発器に流している。
【0006】
冷凍冷蔵庫の冷却運転により、庫内が十分に冷却されると圧縮機1がオフとなり冷却運転をオフとする。
【0007】
この冷却運転のオフ時、三方弁3は冷媒の流路を両方とも閉じる。これは、冷媒の流れを止め、冷凍室用蒸発器5内に冷媒を留め、この冷媒による熱交換(冷却作用)を維持させている。つまり、圧縮機1のオフ時には、冷媒流路を閉じて、冷媒を冷凍室用蒸発器5内に冷媒を留め、冷凍室用のファン9を1〜2分間回し続けて冷却動作を続けている。
【0008】
これにより、冷蔵庫の省エネルギー化を図っている。
【0009】
【発明が解決しようとする課題】
ところが、このような冷凍冷蔵庫では、冷媒流路を閉じるため、高圧側と低圧側の圧力も維持される。
【0010】
このため、圧縮機1の起動トルクは、この高い差圧の時にも良好に動作するものとしなければならなかった。
【0011】
従来では、インバータ駆動により圧縮機1を駆動して、高トルクを得ていた。また、商用電源の直接供給により駆動する場合は、高トルクの圧縮機2を採用しなければならなかった。しかし、この場合には圧縮機が高価になるのみならず、消費電力が増大して省エネに逆行してしまう。
【0012】
つまり、圧縮機のオフ時に冷媒の流路を閉じる省エネ方式は、インバータ駆動方式の圧縮機のみでしか実用性がなかった。
【0013】
本発明は、このような現状に鑑みなされたもので、どのような駆動方式の圧縮機であっても、省エネが行える冷凍冷蔵庫を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は、冷蔵室用蒸発器(4)と冷凍室用蒸発器(5)の両蒸発器(4,5)に冷媒を流す第1モード前記冷凍室用蒸発器(5)のみに冷媒を流す第2モードとを冷媒の流路を切り換えることにより行う弁手段(3)を備え、前記弁手段 (3) は、圧縮機 (1) のオフ時に前記流路を閉じる冷凍冷蔵庫において、
前記オフ時に前記流路を閉じて冷凍室のファン (9) を継続して回転させると共に、所定時間後にこの回転を停止させ、この回転停止後に、前記弁手段 (3) を制御して前記第1モードの流路を開けることを特徴とする。
【0018】
【発明の実施の形態】
本発明に係る冷凍冷蔵庫の実施形態について説明する。ここでは、前述した従来例と同一部材は同じ符号を用いる。
【0019】
図1は冷凍冷蔵庫の一例を示すもので、冷蔵室Rと冷凍室Fとを備える。冷蔵室Rの背面側にはダクト6が形成され、このダクト6内にR蒸発器4とRファン8とが配設される。冷凍室Fも同様に背面側にダクト7が形成されてF蒸発器5とFファン9とが配設されている。
【0020】
冷蔵室Rでは、ダクト6内の冷気がR蒸発器4を通過する際に冷媒との間で熱交換により冷却され、その冷気がRファン8を介して冷蔵室Rに形成された複数の吹き出し口10から庫内に吹き出される。また、冷気の一部は、上部ダクト6aを通って先端部のグリル12から下向きに吹き出される。これにより、通常運転時は冷蔵室Rの温度が約3℃になるように運転されている。庫内に吹き出された冷気は下方の戻り口13からダクト6内に流入し、再びR蒸発器4で冷却された後に庫内に吹き出される。
【0021】
冷凍室Fにおいてもほぼ同様に、ダクト7内の冷気がF蒸発器5を通過する際に冷媒との間で熱交換により冷却される。その冷気がFファン9を介して冷凍室Fに形成された複数の吹き出し口11から庫内に吹き出される。これにより、通常運転時は、冷凍室Fの温度が約−18℃になるように運転されている。庫内に吹き出された冷気は下方の戻り口14からダクト7内に流入し、再びF蒸発器5で冷却された後に冷凍室内に吹き出される。
【0022】
本実施形態での冷凍サイクルは、従来と同様であり、図2のように圧縮機1に凝縮器2が接続され、この凝縮器2の下流側に三方弁3が設けられ、冷蔵室R側に設置されるR蒸発器4と三方弁3とがキャピラリーAで接続される。冷凍室F側に設置されるF蒸発器5と三方弁3とがキャピラリーBで接続される。R蒸発器4とF蒸発器5とが接続される。F蒸発器5と圧縮機1とが接続された構成になっている。
【0023】
冷媒ガスは、圧縮機1で圧縮された後に凝縮器2で液化され、三方弁3を切り替えることにより両蒸発器4,5又はF蒸発器5のみに供給される。尚、16は凝縮器用ファンである。
【0024】
これらの部品1,3,8,9,16は、制御回路17により制御される。尚、18は冷蔵室用の温度センサ、19は冷凍室室用の温度センサ、20は外気温センサである。
【0025】
この冷凍冷蔵庫における制御回路17による制御について説明する。
【0026】
通常冷却運転時は、従来と同様に第1、第2モードを切り替えて適切な冷却を行う。
【0027】
第1モードでは、三方弁3のキャピラリーAに通じる側の弁を開き、キャピラリーBに通じる側の弁を閉じて凝縮器2からの液化冷媒をR蒸発器4とF蒸発器5に供給する。冷媒は、F蒸発器5を経て圧縮機1に戻される。
【0028】
第2モードとは、三方弁3のキャピラリーAに通じる側の弁を閉じ、キャピラリーBに通じる側の弁を開けて凝縮器2からの液化冷媒をF蒸発器5のみに供給する。冷媒ガスは、圧縮機1に戻される。
【0029】
圧縮機1の停止中に、冷凍室用温度センサ19及び冷蔵室用温度センサ18で室温を調べる。
【0030】
例えば、冷凍室冷却運転開始温度が−15℃で、冷蔵室(R)の冷却運転開始温度が6℃とする。
【0031】
ここで、冷凍室用温度センサ19で検知した冷凍室用温度が、−12℃であり、冷蔵室用温度センサ18で検知した冷蔵室温度が7℃であると、第1モードで冷却運転を行う。冷却運転中に、冷蔵室が充分に冷えれば(例えば、2℃)、第2モードに切換え、冷凍室が充分に冷える(例えば、−20℃)まで冷却運転を続けて、停止する。
【0032】
また、圧縮機1の停止中に、冷凍室用温度センサ19で検知した冷凍室用温度が、−12℃であり、冷蔵室用温度センサ18で検知した冷蔵室温度が4℃であると、第2モードで冷却運転を行う。
【0033】
このような、冷却運転により、庫内(冷凍室)が充分に冷えると圧縮器1をオフとする。この時、三方弁3を制御して両方の流路を閉状態とする。これにより、冷媒の流れを止める。
【0034】
Fファン9の回転は、圧縮機1のオフ後も1分間継続して回転させ、冷媒を昇華させて、冷却動作を続ける。
【0035】
そして、このFファン9の回転停止後に、三方弁3を制御して冷蔵室側開ける。蔵室側を開けて、差圧を減少させる。又、この差圧の減衰は、実用的には数分間必要である。この実施形態では、三方弁3による開放は、Fファン9の回転停止直後に行っている。さらに、この実施形態の圧縮機1は、商用電源の直接供給により駆動されるタイプであり、インバータ駆動ではない。
【0036】
【発明の効果】
本発明によれば、冷凍冷蔵庫において、生産コストの高騰を防ぐと共に省エネが行える冷凍冷蔵庫を提供することができる。
【図面の簡単な説明】
【図1】冷凍冷蔵庫の一例を示す概略断面図である。
【図2】本発明に係る冷凍サイクルを説明するためのブロックである。
【図3】従来例おける冷凍サイクルのプロック図である。
【符号の説明】
1…圧縮機、
2…凝縮器、
3…三方弁、
4…R蒸発器、
5…F蒸発器、
8…Rフアン、
9…Fファン、
16…凝縮器用ファン、
17…制御回路、
A、B…キャピラリー、
R…冷蔵室、
F…冷凍室。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator-freezer provided with an evaporator for a refrigerator compartment and an evaporator for a freezer compartment.
[0002]
The refrigerator-freezer is provided with an evaporator and a fan in ducts formed on the back side of the freezer compartment and the refrigerator compartment, respectively, and refrigerant is supplied from the condenser of the refrigeration cycle to the evaporator, and the cold air passing through the duct Is cooled by exchanging heat with an evaporator, and the cold air is blown out from the outlet through the fan to the freezer compartment and the refrigerator compartment.
[0003]
This refrigeration cycle includes, for example, a compressor 1 that compresses refrigerant gas and a condenser 2 that liquefies the refrigerant gas, as shown in FIG. 3, and a three-way valve 3 is provided downstream of the condenser 2. By switching this three-way valve 3, both evaporators 4, 5, evaporator 4 (R evaporator) provided on the refrigerator compartment R side and evaporator 5 (F evaporator) provided on the freezer compartment F side, Alternatively, the refrigerant is supplied only to the F evaporator 5. Then, the refrigerant returns from the F evaporator 5 to the compressor 1. The refrigerant circulates in the refrigeration cycle. The cold air generated by the evaporators 4 and 5 is circulated in the cabinet by the fans 8 and 9.
[0004]
That is, this refrigerator-freezer has a first mode in which a refrigerant flows through both evaporators 4 and 5 and a second mode in which the refrigerant flows only through the freezer 5. Prepare.
[0005]
During normal operation, the three-way valve 3 is appropriately switched to allow the refrigerant to flow to the necessary evaporator.
[0006]
When the inside of the refrigerator is sufficiently cooled by the cooling operation of the refrigerator, the compressor 1 is turned off and the cooling operation is turned off.
[0007]
When this cooling operation is turned off, the three-way valve 3 closes both refrigerant flow paths. This stops the flow of the refrigerant, keeps the refrigerant in the freezer compartment evaporator 5, and maintains heat exchange (cooling action) by this refrigerant. That is, when the compressor 1 is turned off, the refrigerant flow path is closed, the refrigerant is retained in the freezer compartment evaporator 5, and the freezer compartment fan 9 is continuously rotated for 1-2 minutes to continue the cooling operation. .
[0008]
Thereby, energy saving of the refrigerator is achieved.
[0009]
[Problems to be solved by the invention]
However, in such a refrigerator-freezer, since the refrigerant flow path is closed, the pressure on the high-pressure side and the low-pressure side is also maintained.
[0010]
For this reason, the starting torque of the compressor 1 must operate well even at this high differential pressure.
[0011]
Conventionally, the compressor 1 is driven by an inverter to obtain a high torque. Moreover, when driving by direct supply of commercial power, the high torque compressor 2 had to be adopted. However, in this case, not only the compressor becomes expensive, but also the power consumption increases and the energy saving is reversed.
[0012]
That is, the energy-saving method that closes the refrigerant flow path when the compressor is off is only practical with an inverter-driven compressor.
[0013]
This invention is made | formed in view of such a present condition, and it aims at providing the refrigerator-freezer which can save energy even if it is a compressor of what kind of drive system.
[0014]
[Means for Solving the Problems]
The present invention provides the first mode in which the refrigerant flows through the evaporators (4, 5) of the refrigerator compartment evaporator (4) and the freezer compartment evaporator (5) and the refrigerant only in the freezer compartment evaporator (5). Valve means (3) for switching the flow path of the refrigerant to the second mode in which the refrigerant flows , wherein the valve means (3) is a refrigerator-freezer that closes the flow path when the compressor (1) is turned off .
The flow path is closed at the time of turning off and the fan (9) in the freezer compartment is continuously rotated, and the rotation is stopped after a predetermined time, and after the rotation is stopped, the valve means (3) is controlled to control the first means . A one-mode flow path is opened.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a refrigerator-freezer according to the present invention will be described. Here, the same reference numerals are used for the same members as in the conventional example described above.
[0019]
FIG. 1 shows an example of a refrigerator-freezer, which includes a refrigerator compartment R and a freezer compartment F. A duct 6 is formed on the back side of the refrigerator compartment R, and an R evaporator 4 and an R fan 8 are disposed in the duct 6. Similarly, in the freezer compartment F, a duct 7 is formed on the back side, and an F evaporator 5 and an F fan 9 are provided.
[0020]
In the refrigerator compartment R, the cold air in the duct 6 is cooled by heat exchange with the refrigerant when passing through the R evaporator 4, and the cold air is blown through the R fan 8 to form a plurality of blowouts formed in the refrigerator compartment R. It is blown out from the mouth 10 into the cabinet. A part of the cold air is blown downward from the grill 12 at the tip through the upper duct 6a. Thus, during normal operation, the refrigerator compartment R is operated at a temperature of about 3 ° C. The cold air blown into the chamber flows into the duct 6 from the lower return port 13 and is cooled again by the R evaporator 4 and then blown into the chamber.
[0021]
In the freezer compartment F, in a similar manner, the cold air in the duct 7 is cooled by heat exchange with the refrigerant when passing through the F evaporator 5. The cold air is blown out into the refrigerator through a plurality of outlets 11 formed in the freezer compartment F via the F fan 9. Thus, during normal operation, the freezer compartment F is operated so that the temperature is about -18 ° C. The cold air blown into the refrigerator flows into the duct 7 from the lower return port 14, is cooled again by the F evaporator 5, and then blown into the freezer compartment.
[0022]
The refrigeration cycle in the present embodiment is the same as the conventional one. A condenser 2 is connected to the compressor 1 as shown in FIG. 2, a three-way valve 3 is provided downstream of the condenser 2, and the refrigerator compartment R side. The R evaporator 4 and the three-way valve 3 installed in are connected by a capillary A. The F evaporator 5 installed on the freezer compartment F side and the three-way valve 3 are connected by a capillary B. The R evaporator 4 and the F evaporator 5 are connected. The F evaporator 5 and the compressor 1 are connected.
[0023]
The refrigerant gas is compressed by the compressor 1 and then liquefied by the condenser 2, and is supplied only to both the evaporators 4 and 5 or the F evaporator 5 by switching the three-way valve 3. Reference numeral 16 denotes a condenser fan.
[0024]
These components 1, 3, 8, 9, 16 are controlled by the control circuit 17. Reference numeral 18 denotes a temperature sensor for the refrigerator compartment, 19 denotes a temperature sensor for the freezer compartment, and 20 denotes an outside air temperature sensor.
[0025]
Control by the control circuit 17 in this refrigerator-freezer will be described.
[0026]
During the normal cooling operation, the first and second modes are switched as in the conventional case to perform appropriate cooling.
[0027]
In the first mode, the valve on the side communicating with the capillary A of the three-way valve 3 is opened, the valve communicating with the capillary B is closed, and the liquefied refrigerant from the condenser 2 is supplied to the R evaporator 4 and the F evaporator 5. The refrigerant is returned to the compressor 1 via the F evaporator 5.
[0028]
In the second mode, the valve on the side communicating with the capillary A of the three-way valve 3 is closed, the valve on the side communicating with the capillary B is opened, and the liquefied refrigerant from the condenser 2 is supplied only to the F evaporator 5. The refrigerant gas is returned to the compressor 1.
[0029]
While the compressor 1 is stopped, the room temperature is checked by the freezer temperature sensor 19 and the refrigerator temperature sensor 18.
[0030]
For example, the freezing room cooling operation start temperature is −15 ° C., and the cooling operation start temperature of the refrigerator compartment (R) is 6 ° C.
[0031]
Here, if the freezer temperature detected by the freezer temperature sensor 19 is −12 ° C. and the cold room temperature detected by the freezer temperature sensor 18 is 7 ° C., the cooling operation is performed in the first mode. Do. During the cooling operation, if the refrigerator compartment is sufficiently cooled (for example, 2 ° C.), the mode is switched to the second mode, and the cooling operation is continued and stopped until the freezing chamber is sufficiently cooled (for example, −20 ° C.).
[0032]
Further, when the compressor 1 is stopped, the freezer temperature detected by the freezer temperature sensor 19 is −12 ° C., and the cold room temperature detected by the cold room temperature sensor 18 is 4 ° C., Cooling operation is performed in the second mode.
[0033]
When the interior (freezer compartment) is sufficiently cooled by such a cooling operation, the compressor 1 is turned off. At this time, the three-way valve 3 is controlled to close both flow paths. Thereby, the flow of the refrigerant is stopped.
[0034]
The rotation of the F fan 9 is continued for 1 minute after the compressor 1 is turned off, the refrigerant is sublimated, and the cooling operation is continued.
[0035]
Then, after the rotation of the F fan 9 is stopped, the three-way valve 3 is controlled to open the refrigerator compartment side. Open the refrigerated chamber side, to reduce the differential pressure. Further, the attenuation of the differential pressure is practically required for several minutes. In this embodiment, the three-way valve 3 is opened immediately after the F fan 9 stops rotating. Furthermore, the compressor 1 of this embodiment is a type driven by direct supply of commercial power, and is not driven by an inverter.
[0036]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, in the refrigerator-freezer, the refrigerator-freezer which can prevent an increase in production cost and can save energy can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a refrigerator-freezer.
FIG. 2 is a block for explaining a refrigeration cycle according to the present invention.
FIG. 3 is a block diagram of a refrigeration cycle in a conventional example.
[Explanation of symbols]
1 ... compressor,
2 ... condenser,
3 ... three-way valve,
4 ... R evaporator,
5 ... F evaporator,
8 ... R Juan,
9 ... F fans,
16… Condenser fan,
17 ... Control circuit,
A, B ... Capillary,
R ... Refrigerator room,
F ... Freezer room.

Claims (1)

冷蔵室用蒸発器(4)と冷凍室用蒸発器(5)の両蒸発器(4,5)に冷媒を流す第1モード前記冷凍室用蒸発器(5)のみに冷媒を流す第2モードとを冷媒の流路を切り換えることにより行う弁手段(3)を備え、前記弁手段 (3) は、圧縮機 (1) のオフ時に前記流路を閉じる冷凍冷蔵庫において、
前記オフ時に前記流路を閉じて冷凍室のファン (9) を継続して回転させると共に、所定時間後にこの回転を停止させ、この回転停止後に、前記弁手段 (3) を制御して前記第1モードの流路を開けることを特徴とする冷凍冷蔵庫。
The first mode in which the refrigerant flows through both the evaporators (4, 5) of the refrigerator compartment evaporator (4) and the freezer compartment evaporator (5), and the second mode in which the refrigerant flows only through the freezer compartment evaporator (5). and a mode provided with valve means (3) carried out by switching the flow path of the refrigerant, the valve means (3), in the flow path closed refrigerator when off the compressor (1),
The flow path is closed at the time of turning off and the fan (9) in the freezer compartment is continuously rotated, and the rotation is stopped after a predetermined time, and after the rotation is stopped, the valve means (3) is controlled to control the first means . A refrigerator-freezer characterized by opening a one-mode flow path.
JP2001312056A 2001-10-09 2001-10-09 Freezer refrigerator Expired - Fee Related JP3948924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001312056A JP3948924B2 (en) 2001-10-09 2001-10-09 Freezer refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001312056A JP3948924B2 (en) 2001-10-09 2001-10-09 Freezer refrigerator

Publications (2)

Publication Number Publication Date
JP2003121016A JP2003121016A (en) 2003-04-23
JP3948924B2 true JP3948924B2 (en) 2007-07-25

Family

ID=19130771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001312056A Expired - Fee Related JP3948924B2 (en) 2001-10-09 2001-10-09 Freezer refrigerator

Country Status (1)

Country Link
JP (1) JP3948924B2 (en)

Also Published As

Publication number Publication date
JP2003121016A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
KR20040020618A (en) Refrigerator
KR20040040153A (en) Cooling apparatus
JPH11173729A (en) Refrigerator
JP4178646B2 (en) refrigerator
JP2002081817A (en) Refrigerator
JP3847499B2 (en) Two-stage compression refrigeration system
US20200263916A1 (en) Refrigeration machine
JP3593474B2 (en) Refrigerator control method
JPH11148759A (en) Refrigerator equipped with two sets of evaporators
JPH08296942A (en) Freezer-refrigerator and its controlling method
JP3948924B2 (en) Freezer refrigerator
KR100390437B1 (en) method for controlling driving in the refrigerator with 2 evaporators
JP2002206840A (en) Refrigerator
KR100846114B1 (en) Controlling process for refrigerator
KR100425114B1 (en) defrosting method in the refrigerator with 2 evaporators
KR100288249B1 (en) Super-cooling system of direct cooling type refrigerator
KR100525400B1 (en) refrigerator
JP2003287331A (en) Refrigerator
JP3710353B2 (en) refrigerator
JPH09280668A (en) Composite refrigerant circuit equipment
KR20030000172A (en) Fan Control Method of Air Conditioner
JPH10197125A (en) Freezer and refrigerator
KR100370100B1 (en) Methode for controlling working of refrigerator
KR100305321B1 (en) refrigerator as cooling air curtain
KR19980015103A (en) Defrosting method of refrigerator and its device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R151 Written notification of patent or utility model registration

Ref document number: 3948924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees