JP3948350B2 - Release agent-containing urethane-modified polyester resin for toner, electrostatic charge image developing toner using the same, and two-component electrophotographic developer - Google Patents

Release agent-containing urethane-modified polyester resin for toner, electrostatic charge image developing toner using the same, and two-component electrophotographic developer Download PDF

Info

Publication number
JP3948350B2
JP3948350B2 JP2002161021A JP2002161021A JP3948350B2 JP 3948350 B2 JP3948350 B2 JP 3948350B2 JP 2002161021 A JP2002161021 A JP 2002161021A JP 2002161021 A JP2002161021 A JP 2002161021A JP 3948350 B2 JP3948350 B2 JP 3948350B2
Authority
JP
Japan
Prior art keywords
toner
polyester resin
release agent
resin
modified polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002161021A
Other languages
Japanese (ja)
Other versions
JP2004004386A (en
Inventor
智己 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2002161021A priority Critical patent/JP3948350B2/en
Publication of JP2004004386A publication Critical patent/JP2004004386A/en
Application granted granted Critical
Publication of JP3948350B2 publication Critical patent/JP3948350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、電子写真、静電印刷等において静電荷像を現像するために用いられるトナー、現像剤及びこれに用いる離型剤含有ウレタン変性ポリエステル樹脂に関するもので、更に詳しくは帯電性、耐ブロッキング性、耐オフセット性のいずれもが良好であり、かつ巻き付き防止性、離型剤分散性にも優れた静電荷像現像用トナー、現像剤及びこれに用いる離型剤含有ウレタン変性ポリエステル樹脂に関する。
【0002】
【従来の技術】
オフィスオートメーションの発展に伴い、電子写真法を利用した複写機やレーザープリンターの需要は急速に増加しており、それらの性能に対する要求も高度化している。一般に、電子写真法を用いて可視画像を得るには、セレン、アモルファスシリコン、有機半導体などの感光体を帯電した後露光し、トナーを含有する現像剤を用いて現像を行い、感光体上に形成されたトナー像を転写紙に転写した後熱ロールなどを用いて定着する方法が採られている。このとき、現像された画像にカブリがなく、十分な画像濃度を有する鮮明な画像が形成される必要があることは勿論であるが、近年特に、高速化、省エネルギー化、あるいは安全性の向上の見地から、より低い温度での定着処理を可能とすることが強く要請されており、またトナーも低温定着性の優れたものが求められている。トナーの定着性を改善するためには、一般に溶融時のトナーの粘度を低下させて定着基材との接着面積を大きくする必要があり、そのため従来使用するトナーのバインダー樹脂のガラス転移点(Tg)を低下させる、あるいは分子量を小さくすることが行われている。しかしながら、ガラス転移点の低い樹脂は一般に耐ブロッキング性が良くないため、トナーの使用時あるいは貯蔵時に粉体として安定して存在させることが難しいし、またトナー画像を熱ロール定着方式により定着する際には定着時に熱ロールと溶融状態のトナーとが直接接触するが、この時熱ロール上に移行したトナーが次に送られてくる転写紙等を汚す、いわゆるオフセット現象が生じやすいという欠点がある。そしてこの傾向は、樹脂の分子量が小さい場合ほど顕著に現れる。
【0003】
また、近年電子写真方式での画像形成方式として、コンピューターやファクシミリからの情報を出力できるデジタル方式が脚光を浴びている。このデジタル方式の露光においては、露光手段としてレーザーが用いられているため、従来のアナログ方式に比べ微細な線画を出力でき、より繊細な画像を得るべく粒径の小さいトナーが要求されている。しかし、トナーの粒径を小さくした場合、離型剤の分散性が悪いと離型剤が抜け落ち、微粉として回収される率が大きくなる。一般的に粉砕工程で生じた微粉は回収され、原料としてリサイクルされており、微粉の離型剤含有量が多いと、リサイクルすることが困難になるので好ましくない。
また、コピー機内でキャリアとの攪拌中に離型剤がトナー表面から抜け落ち、帯電量を不安定にしたり、感光体上でフィルミングを起こしたりする原因となる。
これらの問題を改良するため、離型剤はトナー中に細かく均一に分散していることが望ましいが、離型剤は一般的に低分子量のポリプロピレンやポリエチレンが用いられているため、総じてポリエステルなどに相溶性は悪いものが多く、このため離型剤の分散粒径は大きくなりがちである。
【0004】
また、荷電性、定着性の観点から、スチレンアクリル系樹脂やエポキシ系樹脂に代えて、バインダー樹脂としてポリエステル樹脂を用いたトナーが種々提案されている(例えば、特開昭61−284771号公報、特開昭62−291668号公報、特公平7−101318号公報、特公平8−3663号公報、米国特許第4,833,057号明細書等)。しかし、ポリエステル樹脂は、一般にトナーのバインダー樹脂としてよく用いられているスチレンアクリル系樹脂に比べて表面張力が大きく、このため熱ロールへの紙の巻き付けが起き易くなるという問題を有している。また、バインダー樹脂としてポリエステル樹脂を用いる場合、トナーの負帯電性は一般に末端カルボキシル基濃度の高さに比例して高くなるが、末端カルボキシル基濃度を高くした場合耐湿性が劣り、高湿時に水分の影響を受けトナーの帯電量が低下し、現像画像品質の低下が起こるという問題がある。更には、トナーの取り扱いを含め複写機においてはメンテナンスフリーとすることも要求されており、長期間安定した現像画像を得ることのできるトナーの要望も高い。
【0005】
【発明が解決するための課題】
本発明は、これら従来の問題点がなく、かつ従来からトナーに要望されている上記諸特性を満たす静電荷像現像用トナー、現像剤及びトナー用離型剤含有ウレタン変性ポリエステル樹脂を提供すべくなされたものである。即ち、本発明の目的は、帯電性、画像濃度、低温定着性、耐オフセット性、耐ブロッキング性の何れもが良好でかつ、巻きつき防止性と離型剤の分散性が良好な離型剤含有ウレタン変性ポリエステル樹脂及び静電荷像現像用トナー、現像剤を提供することであり、特に本発明の目的は、高温高湿あるいは低温低湿時においても、常に安定した高濃度の現像画像を得ることができる静電荷像現像用トナー、現像剤を提供することである。本発明の他の目的は、長期間安定した現像画像を形成することができる静電荷像現像用トナー、現像剤を提供することである。本発明の更に他の目的は、静電荷像現像用トナー、現像剤に用いられる離型剤含有ウレタン変性ポリエステル樹脂を提供することである。
【0006】
【課題を解決するための手段】
本発明者等は、これらの課題を解決するために鋭意検討した結果、特定のポリエステル樹脂を原料として用い、これを多価イソシアネートと反応させる際に、特定の離型剤を添加することにより形成された、特定の離型剤含有ウレタン変性ポリエステル樹脂を静電荷像現像用トナーに用いることにより上記目的を達成することができることを見い出し、本発明を完成したものである。即ち、本発明は、次の(1)〜(4)の発明に関する。
(1)少なくとも重量平均分子量が7300〜15100であるポリエステル樹脂(A)と重量平均分子量が3000〜5000であるポリエステル樹脂(B)と多価イソシアネート化合物とを混合し反応せしめる際に、ゲルパーミエーションクロマトグラフィー(GPC)によって測定される数平均分子量(Mn)が1500〜3000のプロピレンホモポリマーを離型剤として添加することにより得られ、前記ポリエステル樹脂(A)と前記ポリエステル樹脂(B)とのトータル酸価が5〜20KOHmg/gであることを特徴とするトナー用離型剤含有ウレタン変性ポリエステル樹脂。
(2)前記離型剤の前記ウレタン変性ポリエステル樹脂中の平均分散粒径が1μm以下であることを特徴とする(1)に記載のトナー用離型剤含有ウレタン変性ポリエステル樹脂。
(3)(1)または(2)に記載されるトナー用離型剤含有ウレタン変性ポリエステル樹脂と着色剤とを少なくとも含有することを特徴とする静電荷像現像用トナー。
(4)(3)に記載される静電荷像現像用トナーとキャリアとを含有することを特徴とする二成分系電子写真用現像剤。
【0007】
【発明の実施の形態】
以下本発明を更に詳細に説明する。上記するように、本発明のトナー用離型剤含有ウレタン変性ポリエステル樹脂は、高分子化用ポリエステル樹脂(A)、低分子ポリエステル樹脂(B)、多価イソシアネート化合物及び離型剤を原料として用いるものである。
【0008】
高分子化用ポリエステル樹脂(A)については、少なくとも1種のジオールと少なくとも1種のジカルボン酸と全原料モノマーを基準にして0.5〜20モル%の量の少なくとも1種の三価以上の多価アルコールとを少なくとも用い重縮合して製造されることが好ましく、重縮合時に更に全原料モノマーを基準にして2〜20モル%の量の少なくとも1種の長鎖脂肪族モノカルボン酸又は長鎖脂肪族モノアルコールを更に存在させることがより好ましい。また、水酸基価が40〜70 KOH mg/g であることが好ましい。
【0009】
高分子化用ポリエステル樹脂(A)を製造するために用いられるジオールとしては、従来ポリエステル樹脂を製造する際に用いられているものが何れも用いられうるが、好ましいものは、例えばエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−ブチレングリコール、1,4−ブチレングリコール、2,3−ブタンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、水添ビスフェニールA、ビスフェニールA・エチレンオキサイド付加物、ビスフェニールA・プロピレンオキサイド付加物のようなビスフェノール誘導体などである。ビスフェニールA・エチレンオキサイド付加物、ビスフェニールA・プロピレンオキサイド付加物は、例えば下記一般式で示されるものが好ましいものとして挙げられる。
【0010】
【化1】

Figure 0003948350
【0011】
一方、ジカルボン酸としては、従来ポリエステル樹脂を製造する際に用いられているものをいずれも用いることができ、好ましいものとしては、例えばマロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、アゼライン酸などのアルキルジカルボン酸類、マレイン酸、フマル酸、シトラコン酸、イタコン酸などの不飽和ジカルボン酸、フタル酸、テレフタル酸、イソフタル酸、無水フタル酸などのベンゼンジカルボン酸類、これらジカルボン酸の無水物或いは低級アルキルエステルなどを挙げることができる。また、三価以上の多価アルコール成分としては、グリセリン、2−メチルプロパントリオール、トリメチロールプロパン、トリメチロールエタン、ソルビット、ソルビタンなどを例示することができる。三価以上の多価アルコール成分は、通常全原料モノマーを基準にして0.5モル%未満である場合には高分子化しづらく、耐オフセット性が不十分なものとなりがちであり、また逆に20モル%を超えるとゲル化しやすくなり重縮合し難くなるため、0.5〜20モル%の量で用いることが好ましく、2〜20モル%がより好ましい。
【0012】
また、長鎖脂肪族モノカルボン酸としては、オクタン酸、デカン酸、ドデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の炭素数が8から22の脂肪族モノカルボン酸が挙げられ、分岐や不飽和基を有していてもよい。更に、長鎖脂肪族モノアルコールとしては、オクタノール、デカノール、ドデカノール、ミリスチルアルコール、パルミチルアルコール、ステアリルアルコールなどの炭素数が8から22の脂肪族モノアルコールが挙げられる。長鎖脂肪族モノカルボン酸または長鎖脂肪族モノアルコールの使用量は、全原料モノマーを基準にして2〜20モル%の量が好ましく、2モル%未満では巻き付き防止性や離型剤分散の効果は少なく、20モル%を超える量ではモノ官能基化合物が重合を阻害し、高分子化しにくくなるため好ましくない。長鎖脂肪族は、ガラス転移点を下げる性質があるため、ガラス転移点調節のため、安息香酸やナフタレンカルボン酸などの芳香族モノカルボン酸を用いてもよい。なお、必要であれば、三価以上の多価カルボン酸を用いることも可能であり、高分子化用ポリエステル樹脂(A)の原料として三価以上の多価カルボン酸が排除されるものではない。
【0013】
一方、低分子ポリエステル樹脂(B)は、その製造法、合成原料の如何を問わず、何れのものも用いることができるが、水酸基価が10 KOHmg/g 以下で、かつ重量平均分子量が3,000〜5,000であることが好ましい。ここにおいて、低分子ポリエステル樹脂(B)の重量平均分子量が3,000未満であると、形成されたトナーのオフセット性に問題が生じ好ましくない。また、定着性の観点から重量平均分子量が5,000以下の方がより好ましい。この低分子ポリエステル樹脂(B)として好ましいものとしては、少なくとも1種のジオールと少なくとも1種のジカルボン酸、必要に応じ少なくとも1種のモノカルボン酸を用いて製造された線状ポリエステル樹脂が挙げられる。低分子ポリエステル樹脂(B)の製造に用いられるジオール及びジカルボン酸として好ましい化合物としては、上記高分子化用ポリエステル樹脂(A)を製造するための原料として挙げられたものと同じものを挙げることができる。また、モノカルボン酸としては、オクタン酸、デカン酸、ドデカン酸、ミリスチル酸、パルミチン酸、ステアリン酸などの炭素数が8〜22の脂肪族モノカルボン酸、安息香酸などの芳香族モノカルボン酸などを例示することができ、特に安息香酸が好ましい。
【0014】
上記高分子化用ポリエステル樹脂(A)及び低分子ポリエステル樹脂(B)を得る際の重縮合反応は、窒素ガス等の不活性ガス中での、例えば無溶剤下高温重縮合、溶液重縮合等の公知の方法により行うことができる。反応に際してのカルボン酸(ジカルボン酸、モノカルボン酸など)とアルコール(モノアルコール、ジオール、三官能アルコールなど)の使用割合は、前者のカルボキシル基に対する後者の水酸基の割合で0.7〜1.4であることが一般的である。
【0015】
本発明のトナー用離型剤含有ウレタン変性ポリエステル樹脂は、高分子化用ポリエステル樹脂(A)及び低分子ポリエステル樹脂(B)を多価イソシアネート化合物と反応させ、その際に離型剤を添加することにより製造されるが、その際低分子ポリエステル樹脂(B)の量が多くなると、静電荷像現像用トナーのバインダー樹脂として用いたときトナーのオフセット性が悪くなる傾向があり、また高分子化用ポリエステル樹脂(A)の量が多くなると、トナーの低温定着性が悪くなる傾向がある。このため、高分子化用ポリエステル樹脂(A)と低分子ポリエステル樹脂(B)の混合比は重量割合で、高分子化用ポリエステル樹脂(A):低分子ポリエステル樹脂(B)が3〜5:7〜5であるものが最も好ましい。
また、高分子化用ポリエステル樹脂(A)と低分子ポリエステル樹脂(B)とのトータル酸価が20 KOH mg/g を超えると、得られた離型剤含有ウレタン変性ポリエステル樹脂を含有するトナーの帯電量が低く、また高温高湿時でなくとも十分な濃度を有する現像画像を形成することが困難な場合がある。またトータル酸価が5 KOH mg/gよりも小さくなると離型剤の分散粒径が大きくなってしまい、均一に分散することが困難になってしまう場合がある。
【0016】
一方、上記多価イソシアネート化合物としては、例えばヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチレンジイソシアネートなどのジイソシアネート、下記(1)〜(5)で表されるイソシアネートを挙げることができる。
【0017】
【化2】
Figure 0003948350
【0018】
これら多価イソシアネートの使用量は、通常全ポリエステル樹脂の水酸基1当量あたり、イソシアネート基として0.2〜1.2当量の量であり、好ましくは0.3〜1.0当量の量である。
【0019】
本発明で好ましく用いることのできる離型剤はプロピレンホモポリマーである。
プロピレンホモポリマーの分子量は、数平均分子量(Mn)が1500〜3000であることが好ましい。数平均分子量(Mn)が1500よりも小さいと、熱的影響を過度に受けやすく、耐ブロッキング性、画像濃度低下などの現像性に劣るようになってしまう場合があり、一方数平均分子量(Mn)が3000よりも大きいと、外部からの熱を効果的に利用できず、優れた定着性、耐オフセット性を得るのが困難になってしまう場合がある。
これにより本発明の特性を有するポリエチレンホモポリマーは、ウレタンポリエステル樹脂との混合においても相溶性に優れ、良好な分散状態を得ることができる。これによりウレタン変性ポリエステル樹脂中の該離型剤の平均分散粒径が1.0μm以下と良好な平均分散粒径が得られる。
【0020】
本発明の離型剤の粒子径は100μm以下であることが好ましい。100μmよりも大きいとワックス分散粒径が大きくなってしまうポリエステル樹脂への分散、分配が困難になってしまい、トナーの品位に支障をきたしてしまう。
【0021】
離型剤の添加量はウレタン変性ポリエステル樹脂100重量部に対して0.5〜10重量部が好ましい。更に好ましくは1〜6重量部である。1重量部以下では離型剤を添加する効果は得られず、一方10重量部よりも多くなるとウレタン変性ポリエステル樹脂との相溶性に問題を生じてしまうことがある。また離型剤が過剰になると、離型剤がトナー中に偏在し、トナーを微粉砕する際に離型剤が遊離し、遊離した離型剤による感光体、現像スリーブ、キャリアへのフィルミングなどの問題が発生してしまう可能性がある。
【0022】
これらの反応は、高分子化用ポリエステル樹脂(A)、低分子ポリエステル樹脂(B)及び多価イソシアネート化合物を混合し、更に離型剤を添加して、溶融混合することにより行われるれるが、高分子化用ポリエステル樹脂(A)の溶融物と低分子ポリエステル樹脂(B)の溶融物を混練し、この混練物に多価イソシアネート化合物と離型剤とを添加し、溶融混練する方法が好ましい。この溶融混合を行うための具体的方法としては高分子化用ポリエステル樹脂(A)と低分子ポリエステル樹脂(B)との混合物を二軸押出機に一定スピードで注入し、同時に多価イソシアネートと離型剤も一定速度で注入する、或いは二軸押出機の送り方向に対し順次低分子ポリエステル樹脂(B)、高分子化用ポリエステル樹脂(A)、多価イソシアネート及び離型剤を注入し、例えば100〜200℃の温度で混練搬送しながら反応及び混合を行わせるなどの方法が採用できる。このとき、二軸押出機に投入、或いは注入される反応原料である低分子ポリエステル樹脂(B)及び高分子化用ポリエステル樹脂(A)は、各々ポリエステル樹脂反応容器から冷却することなくそのまま直接押出機に注入するようにしてもよいし、また一旦製造した樹脂を冷却、破砕或いはビーズ化したものを二軸押出機に供給することによりおこなってもよい。しかし、本発明では、離型剤含有ウレタン変性ポリエステル樹脂を製造する方法がこれら具体的に例示された方法に限られるわけではなく、従来公知の方法例えば反応容器中に原料を仕込み、溶液状態となる温度に加熱し、混合するような方法など適宜の方法で行うことができることは勿論である。本発明に用いられ離型剤含有ウレタン変性ポリエステル樹脂は、0.1〜25%のゲル分を含有するものが好ましい。このゲル分は、樹脂5gを酢酸エチル100mlに4時間混合し、その後1昼夜放置した後、上澄液をスポイトにて静かに採取し、得られた溶解ポリマー量を不揮発分にて測定して得られたものである。
【0023】
本発明において結着樹脂、離型剤成分などの分子量分布はGPCにより次の条件で測定される。
【0024】
装 置:GPC−150C(ウォーターズ社)
カラム:GMH−HT30cm2連(東ソ−社製)
温 度:135℃
溶 媒:o−ジクロロベンゼン(0.1%アイオノール添加)
流 速:1.0ml/min
試 料:0.15%の試料を0.4ml注入
【0025】
以上の条件で測定し、試料の分子量算出にあたっては単分散ポリスチレン標準試料により作成した分子量較正曲線を使用する。さらに、Mark−Houwink粘度式から導き出される換算式でポリエチレン換算することによって算出される。
【0026】
なお、本発明において、酸価は、樹脂1gを中和するために必要な水酸化カリウムのmg数をいい、また、水酸基価は、樹脂の水酸基と無水フタル酸とを反応させ、その反応に要した酸を、該樹脂1g当り中和するために必要な水酸化カリウムのmg数をいう。
【0027】
ウレタン変性ポリエステル樹脂中の離型剤の分散粒径の測定については以下の手順で試料を作製し透過型電子顕微鏡を用いて分散粒径を求めた。離型剤含有ウレタン変性ポリエステル樹脂を電子線に対して強度の強い樹脂、例えばエポキシ樹脂で包含して試料を固定した後、ミクロトームを用いて透過型電子顕微鏡観察用の試料を作製した。この時ミクロトームのナイフはダイアモンドナイフを用いた。またオスミウムを用いて離型剤部分の染色を行なった。得られた試料を透過型電子顕微鏡で観察し、ウレタン変性ポリエステル樹脂中に分散される離型剤の粒径を測定した。この時粒径を測定する方法としては写真を用いて測定するだけでなく画像解析装置を用いても良い。本発明においては任意の100個の分散している離型剤を抽出して粒径(最大長径)を求めその平均値を求め、平均粒径とした。
【0028】
ウレタン変性ポリエステル樹脂中の離型剤の分散粒径は1μm以下であることが好ましい。さらに好ましくは0.8μm以下である。離型剤の分散粒径は1μm以下であればトナー中に良好な離型剤の分散を施すことができ、良好な品質が得られる。1μm以下であればウレタン変性ポリエステル中に均一に分散して、トナー化しても良好な分散性、分配性を保持することができる。
一方1μmより大きくなるとウレタン変性ポリエステル樹脂中に離型剤の良好な分散を施すことが困難になり、さらに個々のトナー粒子に均一に離型剤を分配することが困難になってしまう。分配不良が生じる場合は、特に粒径の細かい分級微粉の方に離型剤含有量が多く、また単独の離型剤が存在している。
このように離型剤の分散、分配不良が生じてしまうとかぶりが増大する等良好な画像が得られなかったり、分配不良による配合量の偏りのためトナー製造時に分級微粉のリサイクルができなくなってしまいコスト高に繋がってしまう等の問題が生じてしまう。
【0029】
本発明の静電荷像現像用トナーにおいては、上記離型剤含有ウレタン変性ポリエステル樹脂の他に、必要に応じそれ以外の公知の他のバインダー樹脂、荷電制御剤、着色剤、他の離型剤、外添剤等トナーを製造する際に通常用いられる材料を含有せしめることができる。
【0030】
上記離型剤含有ウレタン変性ポリエステル樹脂とともに用いることのできる他のバインダー樹脂としては、従来静電荷像現像用トナーのバインダー樹脂として公知のものであればいずれでもよく、例えば、ポリスチレン、ポリ−p−クロルスチレン、ポリビニルトルエンなどのスチレン及びその置換体の単重合体;スチレン−p−クロルスチレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタレン共重合体、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸エステル共重合体、スチレン−α−クロルメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルエーテル共重合体、スチレン−ビニルエチルエーテル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−アクリロニトリル−インデン共重合体などのスチレン系共重合体;ポリ塩化ビニル、フェノール樹脂、天然変性フェノール樹脂、天然樹脂変性マレイン酸樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸ビニル、シリコーン樹脂、上記ウレタン変性ポリエステル樹脂以外のポリエステル樹脂、ポリウレタン、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、ポリビニルブチラール、テルペン樹脂、クマロンインデン樹脂、石油系樹脂、架橋されたスチレン系共重合体などの樹脂が挙げられる。
【0031】
本発明に用いられる着色剤としては、従来トナー粒子の着色剤として用いられている染料および顔料のいずれのものをも用いることができ、以下に示す黒、イエロー、マゼンタ、シアンの各着色剤が好適に用いられる。また磁性トナーの場合は磁性粉も着色剤として用いられる。
【0032】
黒の着色剤としては、カーボンブラック、アニリンブラック、アセチレンブラック、鉄黒等が好適に用いられる。本発明において使用できるカーボンブラックはファーネスブラックとチャンネルブラックの2種類に大別することができる。これらの種類、添加量により、トナーの電気的物性、摩擦帯電性が影響を受ける。これらの着色剤は、単独で或いは2種以上を混合して使用することができ、通常結着樹脂の100重量部に対し、0.1〜20重量部、好ましくは0.3〜10重量部の添加量がよい。
【0033】
また磁性トナーに用いる磁性粉の場合は、マグネタイト、マグヘマイト、フェライト等の酸化鉄または二価金属と酸化鉄との化合物、鉄、コバルト、ニッケルのような金属或いはこれらの金属のアルミニウム、コバルト、銅、鉛、マグネシウム、スズ、亜鉛、アンチモン、ベリリウム、ビスマス、カドミウム、カルシウム、マンガン、セレン、チタン、タングステン、バナジウムのような金属の合金の粉体及びこれらの混合物があげられる。これらの磁性材料は平均粒径が0.05〜2.0μm、好ましくは0.1〜0.5μm程度のものが望ましく、磁性トナー中に含有させる量としては結着樹脂100重量部に対して5〜150重量部、好ましくは10〜120重量部である。また必要に応じて磁性材料と着色剤を併用して用いることもできる。着色剤としては、例えばカーボンブラック、銅フタロシアニン、鉄黒などが用いられる。
【0034】
イエローの着色剤としては、縮合アゾ化合物、イソインドリノン化合物、アントラキノン化合物、アゾ金属錯化合物、メチン化合物、アリルアミド化合物に代表される化合物が用いられる。具体的には、C.I.ピグメントイエロー12、13、14、15、17、62、74、83、93、94、95、97、109、110、111、120、127、128、129、147、168、174、176、180、181、191等が好適に用いられる。これら着色剤は、単独で或いは2種以上を混合して使用することができ、通常結着樹脂の100重量部に対し、0.1〜20重量部、好ましくは0.3〜10重量部の添加量がよい。
【0035】
マゼンタの着色剤としては、縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物が用いられる。具体的には、C.I.ピグメントレッド2、3、5、6、7、23、48:2、48:3、48:4、57:1、81:1、122、144、146、166、169、177、184、185、202、206、220、221、254等が好適に用いられる。これら着色剤は、単独で或いは2種以上を混合して使用することができ、通常結着樹脂の100重量部に対し、0.1〜20重量部、好ましくは0.3〜10重量部の添加量がよい。
【0036】
シアンの着色剤としては、銅フタロシアニン化合物及びその誘導体、アントラキノン化合物、塩基染料レーキ化合物等が利用できる。具体的には、C.I.ピグメントブルー1、7、15、15:1、15:2、15:3、15:4、60、62、66等が好適に用いられる。これら着色剤は、単独で或いは2種以上を混合して使用することができ、通常結着樹脂の100重量部に対し、0.1〜20重量部、好ましくは0.3〜10重量部の添加量がよい。
【0037】
また着色剤を結着樹脂に分散させる方法としては、フラッシュ法により予め着色剤を高濃度に含む樹脂チップを製造し、これを結着樹脂と混合、混練する方法などを含め、従来から公知のいずれの方法をも採用することができる。
【0038】
またトナー中の帯電量を安定に制御する目的で荷電制御剤を使用することもできる。荷電制御剤としては、従来静電荷像現像用トナーの荷電制御剤として知られたものの何れのものも使用できる。荷電制御剤は、現像されるべき静電潜像担持体上の静電荷像の極性に応じて、正荷電制御剤または負荷電制御剤が選択されるが、正荷電制御剤としては、例えば、ニグロシン染料、脂肪酸金属誘導体、トリフェニルメタン系染料、4級アンモニウム塩(例えば、トリブチルベンジルアンモニウム−1−ヒドロキシ−4−ナフトスルホン酸塩、テトラブチルベンジルアンモニウムテトラフルオロボレート)、ジオルガノスズオキサイド(例えば、ジブチルスズオキサイド、ジオクチルスズオキサイド、ジシクロヘキシルスズオキサイド)、ジオルガノスズボレート(ジブチルスズボレート、ジオクチルスズボレート、ジシクロヘキシルスズボレート)等が挙げられ、これらは単独であるいは二種以上組合わせて用いることができる。これらの中でも、ニグロシン系、4級アンモニウム塩及びトリフェニルメタン系染料が好ましい。一方、負荷電制御剤としては、カルボキシル基を有する化合物、例えばサリチル酸あるいはサリチル酸誘導体の金属塩や金属キレート(錯体)、金属錯塩染料、脂肪酸石鹸、ナフテン酸金属塩等が挙げられる。これら荷電制御剤は、通常結着樹脂100重量部に対して0.1〜8重量部、好ましくは0.5〜6重量部の割合で使用される。
【0039】
本発明の静電荷像現像用トナーの調製方法については特に制限はなく、従来公知の方法により適宜調製することができる。トナー調整法の一例を示すと、前記のトナー構成成分を、乾式ブレンダー、ヘンシェルミキサー、ボールミル等により予備混合し、しかる後、この混合物を熱ロールニーダー、一軸または二軸のエクストルーダー等の熱混練機によって溶融混練し、得られた混練物を冷却後ハンマーミルなどの粉砕機を用いて機械的に粗粉砕し、次いでジェット粉砕機などで微粉砕した後、必要に応じ所望の粒径に分級する方法により製造する方法が好ましい方法として挙げられる。
【0040】
本発明のトナーの粒径としては、重量平均粒径が3〜15μmのものが好ましい。特に、5μm以下の粒径を有するトナー粒子が12〜60個数%含有され、8〜12.7μmの粒径を有するトナー粒子が1〜33個数%含有され、16μm以上の粒径を有するトナー粒子が2.0重量%以下含有され、トナーの重量平均粒径が4〜10μmであることが、現像特性の上からはより好ましい。なお、トナーの粒度分布測定は、例えばコールターカウンターを用いて測定することができる。
【0041】
本発明の現像剤が絶縁性磁性トナーである場合には、1010Ω・cm以上、好ましくは1013Ω・cm以上の電気抵抗を有することが好ましい。このようにして調製された静電荷像現像用トナーは、必要に応じ外添剤と混合される。
【0042】
本発明のトナーは、さらに必要に応じて離型剤、滑剤、流動化剤、研磨剤、導電性付与剤、画像剥離防止剤等のトナーの製造に当たり使用されている公知の添加剤を外添剤として使用することができる。
具体的には、滑剤としては、例えばポリテトラフルオロエチレン、ステアリン酸亜鉛などが、流動化剤としては、例えばポリメチルメタクリレート、ポリスチレン、シリコーン、疎水化処理されたあるいは疎水化処理されていないシリカ、アルミナ、チタニア、マグネシア、非晶質珪素−アルミニウム共酸化物、非晶質珪素−チタニウム共酸化物などの微粉末が、研磨剤としては、例えばチタン酸ストロンチウム、チタン酸カルシウム、炭酸カルシウム、酸化クロム、炭化珪素、タングステンカーバイドなどの微粉体が挙げられる。また、導電性付与剤として酸化スズの如き金属酸化物等を加えることもできる。しかし、これらは外添剤の一例を示したにすぎないものであり、本発明の静電荷像現像用トナーの外添剤が上記具体的に例示されたものに限定されるものではない。これら外添剤である滑剤、流動化剤、研磨剤などの使用量は、トナー100重量部当り、滑剤は、0.1〜2重量部、流動化剤は、0.05〜1重量部、研磨剤は、0.2〜5重量部が好ましい。また、これら外添剤はトナーに対し荷電制御性をも有することが多いので、トナーの荷電特性に応じ適宜のものを選択使用すればよい。
【0043】
本発明のトナーは、キャリアと混合して二成分現像剤として用いることもできるし、トナー中に磁性粉を含有させた一成分現像剤或いはマイクロトーニング現像剤として用いることもできる。本発明のトナーが二成分現像剤として用いられる場合、キャリアとしては、従来公知のキャリアがいずれも使用できる。このようなキャリアとしては、例えば鉄粉等の強磁性金属あるいは強磁性金属の合金粉、酸化鉄などの金属酸化物、ニッケル、銅、亜鉛、マグネシウム、バリウム等の元素から構成されるフェライト粉、マグネタイト粉などの磁性粉からなる磁性粉キャリア、これら磁性粉をスチレン・メタクリレート共重合体、スチレン重合体、シリコーン樹脂等の樹脂で被覆した磁性粉樹脂コートキャリア、磁性粉とバインダー樹脂からなるバインダーキャリア、樹脂被覆されたあるいは樹脂被覆されていないガラスビーズなどが挙げられる。これらのキャリアは、通常20〜200μm、好ましくは30〜150μm程度の粒径のものが用いられる。
【0044】
なお、磁性粉樹脂コートキャリアの被覆樹脂としては、例えば、ポリエチレン、シリコーン樹脂、フッ素系樹脂、スチレン系樹脂、アクリル系樹脂、スチレン−アクリル系樹脂、ポリ酢酸ビニル、セルロース誘導体、マレイン酸樹脂、エポキシ樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ臭化ビニル、ポリ臭化ビニリデン、ポリカーボネート、ポリエステル、ポリプロピレン、フェノール樹脂、ポリビニルアルコール、フマル酸エステル樹脂、ポリアクリロニトリル、ポリビニルエーテル、クロロプレンゴム、アセタール樹脂、ケトン樹脂、キシレン樹脂、ブタジエンゴム、スチレン−ブタジエン共重合体、ポリウレタンなどが使用できる。これらのなかでは、スペントトナーの形成が少ないためフッ素含有樹脂、シリコーン含有樹脂が特に好ましい。
この磁性粉樹脂コートキャリアには、導電性微粒子(カーボンブラック、導電性金属酸化物、金属粉体)、無機充填材(シリカ、窒化ケイ素、窒化ホウ素、アルミナ、ジルコニア、炭化ケイ素、炭化ホウ素、酸化チタン、クレイ、タルク、ガラス繊維)、前記例示の荷電制御剤などを、必要に応じ含有させてもよい。キャリア芯材に対する樹脂被覆膜厚は、0.1〜5μm程度が好ましい。
【0045】
【実施例】
以下、実施例により発明を更に具体的に説明する。しかし、以下の実施例は単に本発明を説明するためのものであり、本発明がこれら実施例に記載されたものに限定されるわけではない。
【0046】
高分子化用ポリエステル樹脂(A)の製造
製造例A
15リットルの四つ口フラスコに、還流冷却器、水分離装置、窒素ガス導入管、温度計及び攪拌装置を取り付け、ビスフェノールA・プロピレンオキサイド付加物(三井化学製ポリオールKB300)40.6モル%、トリメチロールプロパン10.2モル%、ステアリン酸4.8モル%、イソフタル酸44.4モル%の量仕込み、フラスコ内に窒素を導入しながら、180〜240℃で脱水縮合を行った。反応生成物の酸価及び水酸基価が所定の値に達したところで反応生成物をフラスコより抜き出し、冷却、粉砕して、高分子化用ポリエステル樹脂A1を得た。得られた高分子化用ポリエステル樹脂A1の物性値を表1に示す。
【0047】
製造例A2〜A4
原料に用いるカルボン酸化合物及びアルコール化合物の種類及び量(モル比)を表1のものとすることを除いて、製造例A1に従い、高分子化用ポリエステル樹脂A2〜A4を製造した。得られた高分子化用ポリエステル樹脂の物性値を表1に示す。
【0048】
【表1】
Figure 0003948350
【0049】
低分子ポリエステル樹脂(B)の製造
製造例B1〜B2
原料に用いるカルボン酸化合物及びアルコール化合物の種類及び量(モル比)を表2のものとすることを除いて、製造例A1に従い、低分子ポリエステル樹脂B1〜B2を製造した。得られた低分子ポリエステル樹脂B1〜B2の物性値を表2に示す。
【0050】
【表2】
Figure 0003948350
【0051】
使用した離型剤W1〜W4
使用した離型剤の特性値を表3に示す。
【0052】
【表3】
Figure 0003948350
【0053】
離型剤含有ウレタン変性ポリエステル樹脂の製造
実施例1
高分子化用ポリエステル樹脂A1及び低分子ポリエステル樹脂B1を、A1が40重量%、B1が60重量%の割合で用い、かつ低分子ポリエステル樹脂B1をまず6kg/hrの流量で二軸混練機(栗本鉄工所製、KEX−40)に供給し、これに高分子化用ポリエステル樹脂A1を4kg/hrの流量で供給して溶融混練搬送し、この混練搬送中の樹脂混合物に、更にトリレンジイソシアネートを320g/hrの流量で供給して(NCO/OH当量比は0.82に相当。NCO/OH当量比)=(供給トリレンジイソシアネートのNCO基当量/hr)/(供給樹脂のOH基当量/hr)であり、((320/176)x2/((55.3x4+4.8x6)/56.11)=0.816 )、更に離型剤W1を200g/hrの流量で供給して混練を続けて反応を行い、押出後冷却することにより離型剤含有ウレタン変性ポリエステル樹脂C1を得た。この離型剤含有ウレタン変性ポリエステル樹脂C1の物性を表4に示す。
【0054】
【表4】
Figure 0003948350
【0055】
実施例2〜5、参考例1、比較例1
表4に示す条件以外は実施例1に従い、離型剤含有ウレタン変性ポリエステル樹脂C2〜C7を得た。この離型剤含有ウレタン変性ポリエステル樹脂C2〜C7の物性値を表4に示す。
【0056】
比較例2
離型剤を添加しないこと以外は実施例1と同様にして、離型剤を含有しないウレタン変性ポリエステル樹脂C8を得た。
【0057】
離型剤含有ウレタン変性ポリエステル樹脂の評価
実施例6
離型剤含有ウレタン変性ポリエステル樹脂C1 60.5重量部 磁性体(マグネタイト) 38.0重量部 電荷調整剤(含金属系クロム染料;スピロンブラック 1.5重量部 TRH、保土ヶ谷化学社製)をヘンシェルミキサーで混合した後、二軸加熱混練機に投入して混練し、押し出されてきたものを室温で冷却し、ハンマーミルで粗粉砕した後ターボミル粉砕機で微粉砕し、気流式風力分級機に導き平均粒径11.0μm、6.4μm以下の粒径を有するものが1.0体積%以下、20.0μm以上に粒径を有するものが1.0体積%以下の磁性トナー用微粉末を得た。このトナー用微粉末100重量部に対し、疎水性シリカ(アエロジルR−974、日本アエロジル社製)を0.3重量部添加、混合して一成分磁性トナーを得た。この一成分磁性トナーの帯電性及び画出し評価を行い、表5の結果を得た。表5に示すように、本実施例のトナーは、帯電量及び画像濃度共に良好である。
【0058】
【表5】
Figure 0003948350
【0059】
なお、各評価は次のように行われた。
(帯電量)一成分トナー1gとノンコートフェライトキャリア19gを50ccのポリビンに入れ、30分混合した後、ブローオフ粉体帯電量測定装置(東芝ケミカル社製)を用いトナーの帯電量を測定した。
【0060】
(画出し試験)複写機としてキャノン社製NP−6650を用い、常温、常湿(23℃、50%)(N/N)において30,000枚の複写を行い、また高温、高湿(30℃、85%)(H/H)において30,000枚の複写を行い、各々1枚目及び30,000枚或いは30,000枚目の画像濃度及びかぶりを測定した。
【0061】
(定着下限温度)試験機としてキャノン社製NP−6650を用いて定着を行い、低温オフセットが発生せず定着している下限の温度を、定着下限温度とした。
【0062】
(オフセット発生温度)高温オフセットの発生した温度をオフセット発生温度とした。
【0063】
(耐ブロッキング性)現像剤50gを広口瓶に入れ、50℃×24時間放置し、放置後室温に戻し、現像剤中の大きな塊の有無を目視評価した。
〇・・・大きな塊なし。
□・・・大きな塊があるが、簡単にほぐれる。
×・・・簡単にほぐれない大きな塊がある。
【0064】
(トナー中の離型剤平均分散粒径)トナーをエポキシ樹脂で包含して試料を固定した後、ミクロトームを用いて透過型電子顕微鏡観察用の試料を作製した。この時ミクロトームのナイフはダイアモンドナイフを用い、オスミウムを用いて離型剤部分の染色を行なった。得られた試料を透過型電子顕微鏡で観察し、トナー中に分散される離型剤の粒径を画像解析装置にて測定した。この時任意の100個の分散している離型剤を抽出して粒径(最大長径)を求めその平均値を求め、平均粒径とした。
【0065】
(巻き付き防止性)定着下限温度付近での紙の熱ロールへの巻き付きを観察して評価し、巻き付きが大きいものを×、巻き付きが少ないものを□、巻き付かないものを〇とした。
【0066】
(トナー中の離型剤の分配性)トナー粉砕、分級工程において得られたトナー微粉末(分級品)及びそれより粒度の細かい分級微粉について、離型剤の含有量を求めて分配性の確認を行なった。離型剤含有量においてトナー微粉末と分級微粉との差がなければ分配性は良好であり、その差が大きいものは分配性が悪く、分級微粉を再度リサイクルすることが困難になってしまう。ここではDSC(示差走査熱量計)を用いて、既知の離型剤量含有トナーサンプル(0.1%、0.2%、0.3%)について離型剤の融点ピークの熱量を利用して検量線を作成し、定量分析を行ないサンプル中の離型剤の含有量を測定した。そして分級微粉中の離型剤量/トナー微粉末中の離型剤量の比を求め、その値が0.9より小さいものは分配不良を起こしていて、0.9以上は分配性が良好であるとした。
【0067】
実施例7〜10、参考例2
ウレタン変性ポリエステル樹脂C1に代えてウレタン変性ポリエステル樹脂C2〜C6を用いることを除き、実施例6に従い、一成分磁性トナーを得た。実施例6と同様にして、得られたトナーの評価を行い、表5の結果を得た。表5から明らかなように、実施例7〜10及び参考例2のトナーはいずれも帯電量及び現像画像濃度、耐久性、環境安定性に優れていることが分かる。
【0068】
比較例3
ウレタン変性ポリエステル樹脂C1に代えてウレタン変性ポリエステル樹脂C7を用いることを除き、実施例6に従い、一成分磁性トナーを得た。実施例6と同様にして、得られた現像剤の評価を行い、表5の結果を得た。表5から明らかなように、比較例3の現像剤は、実施例6〜10のものに比べ画像濃度、かぶりともに劣っていた。またトナー中の離型剤の分配不良が見られた。
【0069】
比較例4
ウレタン変性ポリエステル樹脂C8 58.5重量部、 磁性体(マグネタイト) 38.0重量部、 電荷調整剤(含金属系クロム染料;スピロンブラック TRH、保土ヶ谷化学社製)1.5重量部、離型剤W1 2.0重量部をヘンシェルミキサーで混合した後、二軸加熱混練機に投入して混練し、押し出されてきたものを室温で冷却し、ハンマーミルで粗粉砕した後ターボミル粉砕機で微粉砕し、実施例6と同様に磁性トナー用微粉末を得、更に一成分磁性トナーを得た。この一成分磁性トナーの帯電性及び画出し評価を行い、表5の結果を得た。表5に示すように、本比較例のトナーは、画像濃度が低下し、かぶりも多かった。またトナー中の離型剤の分配不良が見られた。
【0070】
比較例5
Figure 0003948350
上記原材料をヘンシェルミキサーで混合した後、二軸加熱混練機に投入して混練し、押し出されてきたものを室温で冷却し、ハンマーミルで粗粉砕した後ターボミル粉砕機で微粉砕し、実施例6と同様に磁性トナー用微粉末を得、更に一成分磁性トナーを得た。この一成分磁性トナーの帯電性及び画出し評価を行い、表5の結果を得た。表5に示すように、本比較例のトナーは、かぶりが多く、トナー中の離型剤の分配不良が見られた。
【0071】
比較例6
Figure 0003948350
上記原材料をヘンシェルミキサーで混合した後、二軸加熱混練機に投入して混練し、押し出されてきたものを室温で冷却し、ハンマーミルで粗粉砕した後ターボミル粉砕機で微粉砕し、実施例6と同様に磁性トナー用微粉末を得、更に一成分磁性トナーを得た。この一成分磁性トナーの帯電性及び画出し評価を行い、表5の結果を得た。表5に示すように、本比較例のトナーは、かぶりが多くまたトナー中の離型剤の分配不良が見られた。
【0072】
実施例11
Figure 0003948350
上記材料をヘンシェルミキサーで均一に混合した後、二軸加熱混練機に投入し混練、押し出されてきたものを室温で冷却し、ハンマーミルで粗粉砕してチップを得た。次いで、これをターボミル粉砕機で微粉砕し、分級機に導き、11.5μmに平均粒度を有する部分を取り出して、トナー用微粉末を得た。次いで、このトナー用微粉末100重量部に対し、疎水性シリカ微粉体0.3重量部を添加、混合して負帯電性黒トナーを得た。得られたトナー5部と平均粒径50μmのシリコーン樹脂コートのキャリア95部とをボールミルを用いて混合し現像剤を作製した。次にこのトナーと現像剤を用いて、市販のフルカラー複写機キヤノン社製CLC−550により、23℃、50%RHの環境下で実写試験を行なった。得られたトナーおよび現像剤を用いたところ、3万枚実写後でもカブリは少なく、画像濃度も安定しており、機内のトナー飛散、画像汚れも見られなかった。初期および3万枚複写時の画像濃度は各々1.41および1.38であり、また初期および3万枚複写時のカブリは各々0.6および0.6であった。
【0073】
なお、画像濃度はマクベス光度計を用いて行い、1.35以上の濃度であればよい。なお、カブリはフォトボルトにて、反射率を測定することにより行った。1.2%以下が良好な値である。また、トナーの機内飛散は、複写機の転写チャージャー上に飛散トナーが存在するか否かを確認することにより行った。転写チャージャー上にトナー飛散がみられる場合、これに伴い画像汚れが発生する。
【0074】
実施例12
Figure 0003948350
上記材料をヘンシェルミキサーで均一に混合した後、二軸加熱混練機に投入し混練、押し出されてきたものを室温で冷却し、ハンマーミルで粗粉砕してチップを得た。次いで、これをターボミル粉砕機で微粉砕し、分級機に導き、11.5μmに平均粒度を有する部分を取り出して、トナー用微粉末を得た。次いで、このトナー用微粉末100重量部に対し、疎水性シリカ微粉体0.3重量部を添加、混合して負帯電性シアントナーを得た。得られたトナー5部と平均粒径50μmのシリコーン樹脂コートのキャリア95部とをボールミルを用いて混合し現像剤を作製した。次にこのトナーと現像剤を用いて、市販のフルカラー複写機キヤノン社製CLC−550により、23℃、50%RHの環境下で実写試験を行なった。得られたトナーおよび現像剤を用いたところ、3万枚実写後でもカブリは少なく、画像濃度も安定しており、機内のトナー飛散、画像汚れも見られなかった。初期および3万枚複写時の画像濃度は各々1.41および1.41であり、また初期および3万枚複写時のカブリは各々0.6および0.7であった。
【0075】
【発明の効果】
上述したように、本発明においては、特定の酸価、水酸基価、分子量を有する高分子化用ポリエステル樹脂(A)及び低分子ポリエステル樹脂(B)を多価イソシアネート化合物と反応させて得られた低酸価のウレタン変性ポリエステル樹脂(C)を静電荷像現像用トナーに含有せしめることにより、低酸価のポリエステル樹脂を用いるにもかかわらず帯電性に優れたトナーを製造することができ、またポリエステル樹脂が低酸価であるため耐湿性にすぐれ、高温、高湿時にも良好な現像画像を形成することができ、しかも低温定着性、耐オフセット性、耐ブロッキング性の何れもが良好で、巻きつき防止性や離型剤の分散性の優れた静電荷像現像用トナーを得ることができ、どのような複写環境においても長期間安定した現像を行うことができるという優れた効果を有する。[0001]
[Industrial application fields]
The present invention relates to a toner used for developing an electrostatic image in electrophotography, electrostatic printing, and the like, a developer, and a release agent-containing urethane-modified polyester resin used in the toner. The present invention relates to a toner for developing an electrostatic charge image, a developer, and a release agent-containing urethane-modified polyester resin used in the toner, both having excellent property and offset resistance, and having excellent anti-wrapping properties and release agent dispersibility.
[0002]
[Prior art]
With the development of office automation, the demand for copiers and laser printers that use electrophotography is increasing rapidly, and the demands on their performance are also increasing. In general, in order to obtain a visible image using electrophotography, a photosensitive member such as selenium, amorphous silicon, or an organic semiconductor is charged and exposed to light, and then developed using a developer containing toner, and then the photosensitive member is formed on the photosensitive member. A method is adopted in which the formed toner image is transferred to transfer paper and then fixed using a heat roll or the like. At this time, it is a matter of course that the developed image is free from fogging and a clear image having a sufficient image density needs to be formed. In recent years, in particular, speeding up, energy saving, or improvement in safety have been achieved. From the standpoint, there is a strong demand for enabling a fixing process at a lower temperature, and a toner having excellent low-temperature fixability is also required. In order to improve the fixing property of the toner, it is generally necessary to reduce the viscosity of the toner at the time of melting to increase the adhesion area with the fixing substrate. Therefore, the glass transition point (Tg) of the binder resin of the conventionally used toner is required. ) Or molecular weight is reduced. However, since resins having a low glass transition point generally have poor blocking resistance, it is difficult to stably exist as a powder when using or storing toner, and when fixing a toner image by a hot roll fixing method. However, there is a drawback in that a so-called offset phenomenon is likely to occur because the toner transferred to the heat roll at this time fouls transfer paper and the like to be sent next. . This tendency becomes more prominent as the molecular weight of the resin is smaller.
[0003]
In recent years, a digital system capable of outputting information from a computer or a facsimile has attracted attention as an image forming system in an electrophotographic system. In this digital exposure, since a laser is used as the exposure means, a finer line image can be output compared to the conventional analog method, and a toner having a small particle diameter is required to obtain a more delicate image. However, when the particle size of the toner is reduced, if the dispersibility of the release agent is poor, the release agent falls off and the rate of collection as fine powder increases. In general, the fine powder generated in the pulverization step is collected and recycled as a raw material, and if the content of the release agent in the fine powder is large, it is difficult to recycle, which is not preferable.
Further, the release agent falls off from the toner surface during stirring with the carrier in the copying machine, causing the charge amount to become unstable and causing filming on the photoreceptor.
In order to improve these problems, it is desirable that the release agent is finely and uniformly dispersed in the toner. However, since the release agent is generally made of polypropylene or polyethylene having a low molecular weight, polyester or the like is generally used. In many cases, the compatibility is poor, and the dispersed particle size of the release agent tends to be large.
[0004]
From the viewpoint of chargeability and fixability, various toners using a polyester resin as a binder resin instead of a styrene acrylic resin or an epoxy resin have been proposed (for example, JP-A-61-284771, JP-A-62-291668, JP-B-7-101318, JP-B-8-3663, U.S. Pat. No. 4,833,057). However, the polyester resin has a problem that the surface tension of the polyester resin is larger than that of a styrene acrylic resin which is generally used as a binder resin of a toner, so that the paper is easily wound around the hot roll. In addition, when a polyester resin is used as the binder resin, the negative chargeability of the toner generally increases in proportion to the height of the terminal carboxyl group concentration. As a result, there is a problem that the charge amount of the toner is reduced due to the influence of the toner and the quality of the developed image is lowered. Furthermore, the copying machine including the handling of toner is also required to be maintenance-free, and there is a high demand for toner that can provide a stable developed image for a long period of time.
[0005]
[Problem to be Solved by the Invention]
The present invention is intended to provide a toner for developing an electrostatic charge image that does not have these conventional problems and satisfies the above-mentioned properties that have been conventionally required for toner, a developer, and a urethane-modified polyester resin containing a release agent for the toner. It was made. That is, an object of the present invention is to provide a release agent that has good chargeability, image density, low-temperature fixability, offset resistance, and blocking resistance, and has good anti-wrapping properties and good dispersibility of the release agent. The present invention provides a urethane-containing polyester resin, a toner for developing an electrostatic charge image, and a developer, and in particular, an object of the present invention is to always obtain a stable and high-density developed image even at high temperature and high humidity or low temperature and low humidity. It is an object of the present invention to provide a toner and a developer for developing an electrostatic charge image. Another object of the present invention is to provide an electrostatic image developing toner and developer capable of forming a stable developed image for a long period of time. Still another object of the present invention is to provide a release agent-containing urethane-modified polyester resin used for a toner and a developer for developing an electrostatic image.
[0006]
[Means for Solving the Problems]
  As a result of intensive investigations to solve these problems, the present inventors have used a specific polyester resin as a raw material, and formed it by adding a specific release agent when reacting with a polyvalent isocyanate. It has been found that the above object can be achieved by using the specific release agent-containing urethane-modified polyester resin for the toner for developing an electrostatic image, and the present invention has been completed. That is, the present invention provides the following (1) to(4)Relates to the invention.
(1) At leastThe weight average molecular weight is 7300-15100With polyester resin (A)The weight average molecular weight is 3000 to 5000When the polyester resin (B) and the polyvalent isocyanate compound are mixed and reacted, a propylene homopolymer having a number average molecular weight (Mn) of 1500 to 3000 measured by gel permeation chromatography (GPC) is used as a release agent. Obtained by addingThe total acid value of the polyester resin (A) and the polyester resin (B) is 5 to 20 KOHmg / g.A urethane-modified polyester resin containing a release agent for toner.
(2)The release agent has an average dispersed particle size in the urethane-modified polyester resin of 1 μm or less.(1)A urethane-modified polyester resin containing a release agent for toner according to the description.
(3) In (1) or (2)A toner for developing an electrostatic charge image, comprising at least a release agent-containing urethane-modified polyester resin and a colorant as described above.
(4) (3)A two-component electrophotographic developer comprising: the electrostatic image developing toner described in 1) and a carrier.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below. As described above, the release agent-containing urethane-modified polyester resin for toner of the present invention uses a polyester resin for polymerization (A), a low-molecular polyester resin (B), a polyvalent isocyanate compound, and a release agent as raw materials. Is.
[0008]
For the polyester resin for polymerization (A), at least one trivalent or higher amount in an amount of 0.5 to 20 mol% based on at least one diol, at least one dicarboxylic acid, and all raw material monomers. It is preferably produced by polycondensation using at least a polyhydric alcohol, and at the time of polycondensation, at least one long-chain aliphatic monocarboxylic acid or a long amount of 2 to 20 mol% based on the total raw material monomers. More preferably, a chain aliphatic monoalcohol is further present. Moreover, it is preferable that a hydroxyl value is 40-70 KOH mg / g.
[0009]
As the diol used for producing the polyester resin for polymerization (A), any of those conventionally used for producing a polyester resin can be used. Preferred examples include ethylene glycol, 1 , 2-propylene glycol, 1,3-propylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 2,3-butanediol, diethylene glycol, triethylene glycol, dipropylene glycol, 1,5-pentanediol Bisphenols such as 1,6-hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, hydrogenated bisphenyl A, bisphenyl A / ethylene oxide adduct, bisphenyl A / propylene oxide adduct Such as derivativesPreferred examples of the bisphenyl A · ethylene oxide adduct and the bisphenyl A · propylene oxide adduct include those represented by the following general formula.
[0010]
[Chemical 1]
Figure 0003948350
[0011]
On the other hand, as the dicarboxylic acid, any of those conventionally used for producing polyester resins can be used, and preferred examples thereof include malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, and azelain. Alkyl dicarboxylic acids such as acids, unsaturated dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid and itaconic acid, benzene dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid and phthalic anhydride, anhydrides of these dicarboxylic acids or And lower alkyl esters. Examples of the trihydric or higher polyhydric alcohol component include glycerin, 2-methylpropanetriol, trimethylolpropane, trimethylolethane, sorbit, sorbitan, and the like. A trihydric or higher polyhydric alcohol component is usually less polymerized when it is less than 0.5 mol% based on the total amount of raw material monomers, and tends to have insufficient offset resistance. If it exceeds 20 mol%, gelation tends to occur and polycondensation is difficult, so it is preferably used in an amount of 0.5 to 20 mol%, more preferably 2 to 20 mol%.
[0012]
Examples of the long-chain aliphatic monocarboxylic acid include aliphatic monocarboxylic acids having 8 to 22 carbon atoms such as octanoic acid, decanoic acid, dodecanoic acid, myristic acid, palmitic acid, stearic acid, and the like. It may have a saturated group. Further, examples of the long-chain aliphatic monoalcohol include aliphatic monoalcohols having 8 to 22 carbon atoms such as octanol, decanol, dodecanol, myristyl alcohol, palmityl alcohol, stearyl alcohol and the like. The amount of the long-chain aliphatic monocarboxylic acid or long-chain aliphatic monoalcohol used is preferably 2 to 20 mol% based on the total amount of raw material monomers. The effect is small, and an amount exceeding 20 mol% is not preferable because the monofunctional group compound inhibits polymerization and becomes difficult to polymerize. Since long-chain aliphatics have a property of lowering the glass transition point, aromatic monocarboxylic acids such as benzoic acid and naphthalenecarboxylic acid may be used for adjusting the glass transition point. If necessary, a trivalent or higher polyvalent carboxylic acid can be used, and a trivalent or higher polyvalent carboxylic acid is not excluded as a raw material for the polymerizing polyester resin (A). .
[0013]
On the other hand, any low molecular polyester resin (B) can be used regardless of the production method and the synthetic raw material, but the hydroxyl value is 10 KOHmg / g or less and the weight average molecular weight is 3, It is preferable that it is 000-5,000. Here, when the weight average molecular weight of the low molecular weight polyester resin (B) is less than 3,000, a problem occurs in the offset property of the formed toner, which is not preferable. From the viewpoint of fixability, the weight average molecular weight is more preferably 5,000 or less. Preferable examples of the low molecular weight polyester resin (B) include linear polyester resins produced using at least one diol and at least one dicarboxylic acid and, if necessary, at least one monocarboxylic acid. . Preferred examples of the diol and dicarboxylic acid used in the production of the low molecular weight polyester resin (B) include the same compounds as those exemplified as the raw materials for producing the above-mentioned polymerizing polyester resin (A). it can. Examples of the monocarboxylic acid include aliphatic monocarboxylic acids having 8 to 22 carbon atoms such as octanoic acid, decanoic acid, dodecanoic acid, myristic acid, palmitic acid and stearic acid, and aromatic monocarboxylic acids such as benzoic acid. And benzoic acid is particularly preferable.
[0014]
The polycondensation reaction for obtaining the above polymerizing polyester resin (A) and low molecular weight polyester resin (B) is, for example, high temperature polycondensation without solvent, solution polycondensation, etc. in an inert gas such as nitrogen gas. It can carry out by the well-known method. The ratio of carboxylic acid (dicarboxylic acid, monocarboxylic acid, etc.) and alcohol (monoalcohol, diol, trifunctional alcohol, etc.) used in the reaction is 0.7 to 1.4 in terms of the ratio of the latter hydroxyl group to the former carboxyl group. It is general that it is.
[0015]
The release agent-containing urethane-modified polyester resin for toner of the present invention is obtained by reacting a polyester resin for polymerization (A) and a low-molecular polyester resin (B) with a polyvalent isocyanate compound, and adding a release agent at that time. However, when the amount of the low molecular weight polyester resin (B) is increased, the offset property of the toner tends to be deteriorated when used as a binder resin for the toner for developing an electrostatic charge image. When the amount of the polyester resin (A) for use increases, the low-temperature fixability of the toner tends to deteriorate. Therefore, the mixing ratio of the polymerizing polyester resin (A) to the low molecular weight polyester resin (B) is a weight ratio, and the polymerizing polyester resin (A): the low molecular weight polyester resin (B) is 3 to 5: Most preferred is 7-5.
Further, when the total acid value of the high molecular weight polyester resin (A) and the low molecular weight polyester resin (B) exceeds 20 KOH mg / g, the obtained toner containing the release agent-containing urethane-modified polyester resin In some cases, it is difficult to form a developed image having a low charge amount and having a sufficient density even at high temperatures and high humidity. On the other hand, if the total acid value is smaller than 5 KOH mg / g, the dispersed particle size of the release agent becomes large, and it may be difficult to uniformly disperse.
[0016]
On the other hand, examples of the polyvalent isocyanate compound include diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, and tetramethylene diisocyanate, and isocyanates represented by the following (1) to (5). Can be mentioned.
[0017]
[Chemical 2]
Figure 0003948350
[0018]
These polyvalent isocyanates are generally used in an amount of 0.2 to 1.2 equivalents, preferably 0.3 to 1.0 equivalents, as isocyanate groups per equivalent of hydroxyl groups of all polyester resins.
[0019]
The release agent that can be preferably used in the present invention is a propylene homopolymer.
As for the molecular weight of the propylene homopolymer, the number average molecular weight (Mn) is preferably 1500 to 3000. If the number average molecular weight (Mn) is less than 1500, the film may be excessively affected by heat, resulting in poor developability such as blocking resistance and image density reduction, while the number average molecular weight (Mn) ) Is greater than 3000, the external heat cannot be used effectively, and it may be difficult to obtain excellent fixing properties and offset resistance.
Thereby, the polyethylene homopolymer having the characteristics of the present invention is excellent in compatibility even when mixed with the urethane polyester resin, and can obtain a good dispersion state. Thereby, the average dispersed particle size of the release agent in the urethane-modified polyester resin is 1.0 μm or less, and a good average dispersed particle size is obtained.
[0020]
The particle size of the release agent of the present invention is preferably 100 μm or less. If it is larger than 100 μm, it becomes difficult to disperse and distribute the polyester resin in which the wax dispersion particle size becomes large, which impairs the quality of the toner.
[0021]
The addition amount of the release agent is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the urethane-modified polyester resin. More preferably, it is 1 to 6 parts by weight. If the amount is less than 1 part by weight, the effect of adding a release agent cannot be obtained. On the other hand, if the amount exceeds 10 parts by weight, there may be a problem in compatibility with the urethane-modified polyester resin. If the release agent becomes excessive, the release agent is unevenly distributed in the toner, and the release agent is liberated when the toner is finely pulverized. Filming of the released release agent on the photoreceptor, developing sleeve, and carrier is performed. Such a problem may occur.
[0022]
These reactions are carried out by mixing the polymerizing polyester resin (A), the low molecular weight polyester resin (B) and the polyvalent isocyanate compound, further adding a release agent, and melt mixing. A method of kneading a melt of the polyester resin for polymerization (A) and a melt of the low molecular weight polyester resin (B), adding a polyvalent isocyanate compound and a release agent to the kneaded material, and melt-kneading is preferable. . As a specific method for carrying out this melt mixing, a mixture of a polyester resin for polymerization (A) and a low molecular weight polyester resin (B) is injected into a twin-screw extruder at a constant speed, and at the same time separated from a polyvalent isocyanate. The mold agent is also injected at a constant speed, or the low-molecular polyester resin (B), the polymerizing polyester resin (A), the polyvalent isocyanate and the release agent are sequentially injected in the feed direction of the twin-screw extruder. A method of causing the reaction and mixing while kneading and conveying at a temperature of 100 to 200 ° C. can be employed. At this time, the low-molecular polyester resin (B) and the polymerizing polyester resin (A), which are reaction raw materials charged or injected into the twin-screw extruder, are directly extruded without cooling from the polyester resin reaction vessel. You may make it inject | pour into a machine, and you may carry out by supplying what the resin once manufactured cooled, crushed or beaded to a twin-screw extruder. However, in the present invention, the method for producing the release agent-containing urethane-modified polyester resin is not limited to these specifically exemplified methods, and a conventionally known method such as charging a raw material into a reaction vessel, Of course, it can be performed by an appropriate method such as a method of heating to a certain temperature and mixing. The release agent-containing urethane-modified polyester resin used in the present invention preferably contains 0.1 to 25% gel. For this gel, 5 g of resin was mixed with 100 ml of ethyl acetate for 4 hours, and then allowed to stand for 1 day. Then, the supernatant was gently collected with a dropper, and the amount of the obtained dissolved polymer was measured with a nonvolatile content. It is obtained.
[0023]
In the present invention, the molecular weight distribution of the binder resin, the release agent component, etc. is measured by GPC under the following conditions.
[0024]
Equipment: GPC-150C (Waters)
Column: GMH-HT 30 cm 2 series (manufactured by Tosoh Corporation)
Temperature: 135 ° C
Solvent: o-dichlorobenzene (0.1% ionol added)
Flow velocity: 1.0ml / min
Sample: 0.4ml injection of 0.15% sample
[0025]
Measurement is performed under the above conditions, and a molecular weight calibration curve prepared from a monodisperse polystyrene standard sample is used in calculating the molecular weight of the sample. Furthermore, it calculates by converting into polyethylene by the conversion formula derived | led-out from the Mark-Houwink viscosity formula.
[0026]
In the present invention, the acid value refers to the number of mg of potassium hydroxide required to neutralize 1 g of the resin, and the hydroxyl value refers to the reaction between the hydroxyl group of the resin and phthalic anhydride. This refers to the number of mg of potassium hydroxide necessary to neutralize the required acid per gram of the resin.
[0027]
For the measurement of the dispersed particle size of the release agent in the urethane-modified polyester resin, a sample was prepared by the following procedure, and the dispersed particle size was determined using a transmission electron microscope. After fixing the sample by including the release agent-containing urethane-modified polyester resin with a resin having a strong strength against an electron beam, for example, an epoxy resin, a sample for transmission electron microscope observation was prepared using a microtome. At this time, a diamond knife was used as the microtome knife. Moreover, the release agent part was dye | stained using osmium. The obtained sample was observed with a transmission electron microscope, and the particle size of the release agent dispersed in the urethane-modified polyester resin was measured. At this time, as a method of measuring the particle size, not only using a photograph, but also an image analysis apparatus may be used. In the present invention, any 100 dispersed release agents are extracted to determine the particle size (maximum major axis), and the average value is obtained as the average particle size.
[0028]
The dispersed particle size of the release agent in the urethane-modified polyester resin is preferably 1 μm or less. More preferably, it is 0.8 μm or less. If the dispersed particle diameter of the release agent is 1 μm or less, good release agent dispersion can be performed in the toner, and good quality can be obtained. If it is 1 μm or less, it can be uniformly dispersed in the urethane-modified polyester, and good dispersibility and distribution can be maintained even if it is made into a toner.
On the other hand, if it exceeds 1 μm, it will be difficult to achieve good dispersion of the release agent in the urethane-modified polyester resin, and it will be difficult to evenly distribute the release agent to individual toner particles. When poor distribution occurs, the release agent content is particularly large in the finely classified fine powder, and a single release agent is present.
In this way, if the release agent is dispersed or poorly distributed, fogging will increase, and a good image will not be obtained. In other words, problems such as high costs arise.
[0029]
In the electrostatic image developing toner of the present invention, in addition to the above-mentioned release agent-containing urethane-modified polyester resin, other known other binder resins, charge control agents, colorants, and other release agents, if necessary. In addition, it is possible to include materials that are usually used in the production of toners such as external additives.
[0030]
As the other binder resin that can be used together with the release agent-containing urethane-modified polyester resin, any of those conventionally known as binder resins for toners for developing electrostatic images may be used. For example, polystyrene, poly-p- Homopolymers of styrene such as chlorostyrene and polyvinyltoluene and substituted products thereof; styrene-p-chlorostyrene copolymer, styrene-vinyltoluene copolymer, styrene-vinylnaphthalene copolymer, styrene-acrylic acid ester copolymer Polymer, styrene-methacrylic acid ester copolymer, styrene-α-chloromethyl methacrylate copolymer, styrene-acrylonitrile copolymer, styrene-vinyl methyl ether copolymer, styrene-vinyl ethyl ether copolymer, styrene- Vinyl methyl ketone copolymer Styrene copolymers such as styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-acrylonitrile-indene copolymer; polyvinyl chloride, phenol resin, natural modified phenol resin, natural resin modified maleic acid resin, Acrylic resin, methacrylic resin, polyvinyl acetate, silicone resin, polyester resin other than the above urethane-modified polyester resin, polyurethane, polyamide resin, furan resin, epoxy resin, xylene resin, polyvinyl butyral, terpene resin, coumarone indene resin, petroleum-based Examples thereof include resins and resins such as cross-linked styrene copolymers.
[0031]
As the colorant used in the present invention, any of dyes and pigments conventionally used as colorants for toner particles can be used, and the following black, yellow, magenta, and cyan colorants are used. Preferably used. In the case of a magnetic toner, magnetic powder is also used as a colorant.
[0032]
As the black colorant, carbon black, aniline black, acetylene black, iron black and the like are preferably used. The carbon black that can be used in the present invention can be roughly classified into two types, furnace black and channel black. The electrical properties and triboelectric charging properties of the toner are affected by these types and addition amounts. These colorants can be used alone or in admixture of two or more, and are usually 0.1 to 20 parts by weight, preferably 0.3 to 10 parts by weight with respect to 100 parts by weight of the binder resin. The addition amount of is good.
[0033]
In the case of magnetic powders used for magnetic toners, iron oxide such as magnetite, maghemite, and ferrite, or a compound of a divalent metal and iron oxide, a metal such as iron, cobalt, or nickel, or aluminum, cobalt, copper of these metals. Powders of metal alloys such as lead, magnesium, tin, zinc, antimony, beryllium, bismuth, cadmium, calcium, manganese, selenium, titanium, tungsten, vanadium, and mixtures thereof. These magnetic materials have an average particle diameter of 0.05 to 2.0 μm, preferably about 0.1 to 0.5 μm. The amount of the magnetic material contained in the magnetic toner is 100 parts by weight of the binder resin. 5 to 150 parts by weight, preferably 10 to 120 parts by weight. Further, if necessary, a magnetic material and a colorant can be used in combination. Examples of the colorant include carbon black, copper phthalocyanine, and iron black.
[0034]
As the yellow colorant, compounds represented by condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complex compounds, methine compounds, and allylamide compounds are used. Specifically, C.I. I. Pigment Yellow 12, 13, 14, 15, 17, 62, 74, 83, 93, 94, 95, 97, 109, 110, 111, 120, 127, 128, 129, 147, 168, 174, 176, 180, 181 and 191 are preferably used. These colorants can be used alone or in admixture of two or more, and are usually 0.1 to 20 parts by weight, preferably 0.3 to 10 parts by weight with respect to 100 parts by weight of the binder resin. The amount added is good.
[0035]
As the magenta colorant, condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinones, quinacridone compounds, basic dye lake compounds, naphthol compounds, benzimidazolone compounds, thioindigo compounds, and perylene compounds are used. Specifically, C.I. I. Pigment Red 2, 3, 5, 6, 7, 23, 48: 2, 48: 3, 48: 4, 57: 1, 81: 1, 122, 144, 146, 166, 169, 177, 184, 185, 202, 206, 220, 221, 254, etc. are preferably used. These colorants can be used alone or in admixture of two or more, and are usually 0.1 to 20 parts by weight, preferably 0.3 to 10 parts by weight with respect to 100 parts by weight of the binder resin. The amount added is good.
[0036]
As the cyan colorant, copper phthalocyanine compounds and derivatives thereof, anthraquinone compounds, basic dye lake compounds, and the like can be used. Specifically, C.I. I. Pigment Blue 1, 7, 15, 15: 1, 15: 2, 15: 3, 15: 4, 60, 62, 66 and the like are preferably used. These colorants can be used alone or in admixture of two or more, and are usually 0.1 to 20 parts by weight, preferably 0.3 to 10 parts by weight with respect to 100 parts by weight of the binder resin. The amount added is good.
[0037]
In addition, as a method of dispersing the colorant in the binder resin, a conventionally known method including a method in which a resin chip containing a colorant at a high concentration is manufactured in advance by a flash method, and this is mixed and kneaded with the binder resin. Either method can be adopted.
[0038]
In addition, a charge control agent can be used for the purpose of stably controlling the charge amount in the toner. As the charge control agent, any of those conventionally known as charge control agents for electrostatic charge image developing toners can be used. As the charge control agent, a positive charge control agent or a negative charge control agent is selected according to the polarity of the electrostatic image on the electrostatic latent image carrier to be developed. Nigrosine dye, fatty acid metal derivative, triphenylmethane dye, quaternary ammonium salt (for example, tributylbenzylammonium-1-hydroxy-4-naphthosulfonate, tetrabutylbenzylammonium tetrafluoroborate), diorganotin oxide (for example, , Dibutyltin oxide, dioctyltin oxide, dicyclohexyltin oxide), diorganotin borate (dibutyltin borate, dioctyltin borate, dicyclohexyltin borate) and the like, and these can be used alone or in combination of two or more. Among these, nigrosine, quaternary ammonium salts and triphenylmethane dyes are preferable. On the other hand, examples of negative charge control agents include compounds having a carboxyl group, such as metal salts and metal chelates (complexes) of salicylic acid or salicylic acid derivatives, metal complex dyes, fatty acid soaps, and metal salts of naphthenic acid. These charge control agents are usually used in a proportion of 0.1 to 8 parts by weight, preferably 0.5 to 6 parts by weight, based on 100 parts by weight of the binder resin.
[0039]
The method for preparing the toner for developing an electrostatic charge image of the present invention is not particularly limited, and can be appropriately prepared by a conventionally known method. As an example of a toner adjustment method, the toner constituents described above are premixed by a dry blender, a Henschel mixer, a ball mill or the like, and then the mixture is heat kneaded by a hot roll kneader, a uniaxial or biaxial extruder, etc. After kneading and kneading the resulting kneaded material, it is mechanically coarsely pulverized using a pulverizer such as a hammer mill, then finely pulverized using a jet pulverizer, etc., and then classified to a desired particle size as necessary. The method of manufacturing by the method of doing is mentioned as a preferable method.
[0040]
The toner of the present invention preferably has a weight average particle diameter of 3 to 15 μm. In particular, toner particles having a particle size of 5 μm or less are contained in 12 to 60% by number, toner particles having a particle size of 8 to 12.7 μm are contained in 1 to 33% by number, and toner particles having a particle size of 16 μm or more. Is more preferably 2.0 wt% or less, and the weight average particle diameter of the toner is 4 to 10 μm from the viewpoint of development characteristics. The toner particle size distribution can be measured using, for example, a Coulter counter.
[0041]
When the developer of the present invention is an insulating magnetic toner, 10TenΩ · cm or more, preferably 1013It preferably has an electric resistance of Ω · cm or more. The toner for developing an electrostatic charge image thus prepared is mixed with an external additive as necessary.
[0042]
The toner of the present invention may be externally added with known additives used in the production of toners such as a release agent, a lubricant, a fluidizing agent, an abrasive, a conductivity imparting agent, and an image peeling prevention agent, if necessary. It can be used as an agent.
Specifically, as a lubricant, for example, polytetrafluoroethylene, zinc stearate, etc., as a fluidizing agent, for example, polymethyl methacrylate, polystyrene, silicone, hydrophobized or non-hydrophobized silica, Fine powders such as alumina, titania, magnesia, amorphous silicon-aluminum co-oxide, amorphous silicon-titanium co-oxide are used as abrasives, for example, strontium titanate, calcium titanate, calcium carbonate, chromium oxide. , Fine powders such as silicon carbide and tungsten carbide. Further, a metal oxide such as tin oxide can be added as a conductivity imparting agent. However, these are merely examples of the external additive, and the external additive of the electrostatic image developing toner of the present invention is not limited to those specifically exemplified above. The amount of these external additives such as a lubricant, a fluidizing agent, and an abrasive used per 100 parts by weight of the toner, the lubricant is 0.1 to 2 parts by weight, the fluidizing agent is 0.05 to 1 part by weight, The abrasive is preferably 0.2 to 5 parts by weight. Further, these external additives often have charge controllability with respect to the toner, so that an appropriate one may be selected and used according to the charge characteristics of the toner.
[0043]
The toner of the present invention can be mixed with a carrier and used as a two-component developer, or can be used as a one-component developer or a microtoning developer containing magnetic powder in the toner. When the toner of the present invention is used as a two-component developer, any conventionally known carrier can be used as the carrier. Examples of such carriers include ferromagnetic powder such as iron powder or alloy powder of ferromagnetic metal, metal oxide such as iron oxide, ferrite powder composed of elements such as nickel, copper, zinc, magnesium, barium, Magnetic powder carrier made of magnetic powder such as magnetite powder, magnetic powder resin coated carrier coated with resin such as styrene / methacrylate copolymer, styrene polymer, silicone resin, binder carrier made of magnetic powder and binder resin And glass beads with or without resin coating. These carriers usually have a particle size of about 20 to 200 μm, preferably about 30 to 150 μm.
[0044]
Examples of the coating resin for the magnetic powder resin-coated carrier include polyethylene, silicone resin, fluorine resin, styrene resin, acrylic resin, styrene-acrylic resin, polyvinyl acetate, cellulose derivative, maleic acid resin, and epoxy. Resin, polyvinyl chloride, polyvinylidene chloride, polyvinyl bromide, polyvinylidene bromide, polycarbonate, polyester, polypropylene, phenol resin, polyvinyl alcohol, fumarate resin, polyacrylonitrile, polyvinyl ether, chloroprene rubber, acetal resin, ketone Resin, xylene resin, butadiene rubber, styrene-butadiene copolymer, polyurethane and the like can be used. Among these, fluorine-containing resins and silicone-containing resins are particularly preferable because they hardly form spent toner.
This magnetic powder resin coated carrier includes conductive fine particles (carbon black, conductive metal oxide, metal powder), inorganic fillers (silica, silicon nitride, boron nitride, alumina, zirconia, silicon carbide, boron carbide, oxidized (Titanium, clay, talc, glass fiber), the charge control agent exemplified above, and the like may be contained as necessary. The resin coating thickness on the carrier core material is preferably about 0.1 to 5 μm.
[0045]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the following examples are merely for illustrating the present invention, and the present invention is not limited to those described in these examples.
[0046]
Manufacture of polyester resin for polymerization (A)
Production example A
A 15-liter four-necked flask was equipped with a reflux condenser, a water separator, a nitrogen gas inlet tube, a thermometer and a stirrer, 40.6 mol% of bisphenol A / propylene oxide adduct (polyol KB300 manufactured by Mitsui Chemicals), The amount of trimethylolpropane 10.2 mol%, stearic acid 4.8 mol%, isophthalic acid 44.4 mol% was charged, and dehydration condensation was performed at 180 to 240 ° C while introducing nitrogen into the flask. When the acid value and hydroxyl value of the reaction product reached predetermined values, the reaction product was extracted from the flask, cooled and pulverized to obtain a polyester resin A1 for polymerization. Table 1 shows the physical property values of the obtained polyester resin A1 for polymerization.
[0047]
Production Examples A2 to A4
Polymerization polyester resins A2 to A4 were produced according to Production Example A1 except that the types and amounts (molar ratios) of the carboxylic acid compound and alcohol compound used in the raw material were those shown in Table 1. Table 1 shows the physical property values of the obtained polyester resin for polymerization.
[0048]
[Table 1]
Figure 0003948350
[0049]
Production of low molecular weight polyester resin (B)
Production Examples B1-B2
Low molecular polyester resins B1 and B2 were produced according to Production Example A1 except that the types and amounts (molar ratios) of the carboxylic acid compound and the alcohol compound used in the raw materials were those shown in Table 2. Table 2 shows the physical property values of the obtained low molecular weight polyester resins B1 to B2.
[0050]
[Table 2]
Figure 0003948350
[0051]
Used release agents W1-W4
Table 3 shows the characteristic values of the release agent used.
[0052]
[Table 3]
Figure 0003948350
[0053]
Production of release-containing urethane-modified polyester resin
Example 1
A biaxial kneader (high molecular weight polyester resin A1 and low molecular weight polyester resin B1 is used at a ratio of 40% by weight of A1 and 60% by weight of B1, and the low molecular weight polyester resin B1 is first flowed at a rate of 6 kg / hr. KEX-40, manufactured by Kurimoto Iron Works, supplied with a polyester resin A1 for polymerization at a flow rate of 4 kg / hr, and melted and kneaded and conveyed to the resin mixture being kneaded and conveyed to tolylene diisocyanate (NCO / OH equivalent ratio is equivalent to 0.82. NCO / OH equivalent ratio) = (NCO group equivalent / hr of supplied tolylene diisocyanate) / (OH group equivalent of supplied resin) / (Hr), ((320/176) x2 / ((55.3x4 + 4.8x6) /56.11) = 0.816), and further supplying the release agent W1 at a flow rate of 200 g / hr and continuing the kneading to carry out the reaction. To cool after extrusion More release agent-containing urethane-modified polyester resin C1 was obtained. Table 4 shows the physical properties of this release agent-containing urethane-modified polyester resin C1.
[0054]
[Table 4]
Figure 0003948350
[0055]
Examples 2 to 5, Reference Example 1, Comparative Example 1
Except for the conditions shown in Table 4, according to Example 1, release agent-containing urethane-modified polyester resins C2 to C7 were obtained. Table 4 shows physical property values of the release agent-containing urethane-modified polyester resins C2 to C7.
[0056]
Comparative Example 2
Except not adding a mold release agent, it carried out similarly to Example 1, and obtained urethane modified polyester resin C8 which does not contain a mold release agent.
[0057]
Evaluation of release agent-containing urethane-modified polyester resin
Example 6
Release agent-containing urethane-modified polyester resin C1 60.5 parts by weight Magnetic material (magnetite) 38.0 parts by weight Charge control agent (metal-containing chromium dye; Spiron black 1.5 parts by weight TRH, manufactured by Hodogaya Chemical Co., Ltd.) After mixing with a Henschel mixer, it is put into a twin-screw heating kneader and kneaded. The extruded material is cooled at room temperature, coarsely pulverized with a hammer mill, then finely pulverized with a turbo mill pulverizer, and an airflow wind classifier A fine powder for magnetic toner having an average particle size of 11.0 μm and a particle size of 6.4 μm or less is 1.0% by volume or less and a particle size of 20.0 μm or more is 1.0% by volume or less. Got. To 100 parts by weight of the fine powder for toner, 0.3 part by weight of hydrophobic silica (Aerosil R-974, manufactured by Nippon Aerosil Co., Ltd.) was added and mixed to obtain a one-component magnetic toner. The chargeability and image output of this one-component magnetic toner were evaluated, and the results shown in Table 5 were obtained. As shown in Table 5, the toner of this example has good charge amount and image density.
[0058]
[Table 5]
Figure 0003948350
[0059]
Each evaluation was performed as follows.
(Charge Amount) 1 g of one-component toner and 19 g of non-coated ferrite carrier were placed in a 50 cc polybin and mixed for 30 minutes, and then the charge amount of the toner was measured using a blow-off powder charge amount measuring device (manufactured by Toshiba Chemical).
[0060]
(Image output test) NP-6650 manufactured by Canon Inc. was used as a copying machine, and 30,000 copies were made at room temperature and humidity (23 ° C., 50%) (N / N). 30,000 copies were made at 30 ° C. and 85% (H / H), and the image density and fog of the first and 30,000 sheets or 30,000 sheets were measured.
[0061]
(Fixing lower limit temperature) Fixing was performed using NP-6650 manufactured by Canon Inc. as a tester, and a lower limit temperature at which fixing was performed without causing a low temperature offset was defined as a fixing lower limit temperature.
[0062]
(Offset generation temperature) The temperature at which the high temperature offset occurred was defined as the offset generation temperature.
[0063]
(Blocking resistance) 50 g of the developer was placed in a wide-mouth bottle, allowed to stand at 50 ° C. for 24 hours, allowed to return to room temperature, and visually evaluated for the presence of large lumps in the developer.
〇 ・ ・ ・ No big lump.
□ ・ ・ ・ There is a large lump, but it can be easily loosened.
X: There is a large lump that is not easily unraveled.
[0064]
(Mold Dispersant Average Dispersion Particle Size in Toner) After fixing the sample by including the toner in an epoxy resin, a sample for observation with a transmission electron microscope was prepared using a microtome. At this time, a diamond knife was used as the microtome knife, and the release agent portion was dyed with osmium. The obtained sample was observed with a transmission electron microscope, and the particle size of the release agent dispersed in the toner was measured with an image analyzer. At this time, any 100 dispersed release agents were extracted to determine the particle diameter (maximum major axis), and the average value was determined as the average particle diameter.
[0065]
(Anti-winding property) Evaluation was made by observing and evaluating the wrapping of the paper on the heat roll in the vicinity of the fixing lower limit temperature.
[0066]
(Distribution of the release agent in the toner) For the toner fine powder (classified product) obtained in the toner pulverization and classification process, and the finer classification fine powder, the content of the release agent is obtained to confirm the distribution. Was done. If there is no difference between the toner fine powder and the classified fine powder in the release agent content, the dispersibility is good. If the difference is large, the distributable property is poor, and it becomes difficult to recycle the classified fine powder. Here, DSC (Differential Scanning Calorimeter) is used to make use of the calorific value of the melting point of the release agent for a known release agent content toner sample (0.1%, 0.2%, 0.3%). A calibration curve was prepared and quantitative analysis was performed to measure the content of the release agent in the sample. Then, the ratio of the amount of the release agent in the classified fine powder / the amount of the release agent in the toner fine powder is obtained. If the value is less than 0.9, distribution failure occurs, and 0.9 or higher indicates good distribution. It was said that.
[0067]
Examples 7 to 10, Reference Example 2
A one-component magnetic toner was obtained according to Example 6 except that urethane-modified polyester resins C2 to C6 were used instead of the urethane-modified polyester resin C1. The obtained toner was evaluated in the same manner as in Example 6, and the results shown in Table 5 were obtained. As apparent from Table 5, it can be seen that the toners of Examples 7 to 10 and Reference Example 2 are all excellent in charge amount, developed image density, durability, and environmental stability.
[0068]
Comparative Example 3
A one-component magnetic toner was obtained according to Example 6 except that the urethane-modified polyester resin C7 was used instead of the urethane-modified polyester resin C1. The developer obtained was evaluated in the same manner as in Example 6, and the results shown in Table 5 were obtained. As is apparent from Table 5, the developer of Comparative Example 3 was inferior in both image density and fogging compared with those of Examples 6-10. Also, poor distribution of the release agent in the toner was observed.
[0069]
Comparative Example 4
Urethane-modified polyester resin C8 58.5 parts by weight, magnetic material (magnetite) 38.0 parts by weight, charge control agent (metal-containing chromium dye; Spiron Black TRH, manufactured by Hodogaya Chemical Co., Ltd.) 1.5 parts by weight, release After mixing 2.0 parts by weight of agent W1 with a Henschel mixer, the mixture is put into a biaxial heating kneader and kneaded. The extruded product is cooled at room temperature, coarsely pulverized with a hammer mill, and then finely pulverized with a turbo mill pulverizer. By pulverizing, a fine powder for magnetic toner was obtained in the same manner as in Example 6, and a one-component magnetic toner was obtained. The chargeability and image output of this one-component magnetic toner were evaluated, and the results shown in Table 5 were obtained. As shown in Table 5, the toner of this comparative example had a low image density and a lot of fog. Also, poor distribution of the release agent in the toner was observed.
[0070]
Comparative Example 5
Figure 0003948350
After mixing the above raw materials with a Henschel mixer, put into a biaxial heating kneader and knead, cool the extruded material at room temperature, coarsely pulverize with a hammer mill, then finely pulverize with a turbo mill pulverizer, Example A fine powder for magnetic toner was obtained in the same manner as in Example 6, and a one-component magnetic toner was obtained. The chargeability and image output of this one-component magnetic toner were evaluated, and the results shown in Table 5 were obtained. As shown in Table 5, the toner of this comparative example had a lot of fog, and poor distribution of the release agent in the toner was observed.
[0071]
Comparative Example 6
Figure 0003948350
After mixing the above raw materials with a Henschel mixer, put into a biaxial heating kneader and knead, cool the extruded material at room temperature, coarsely pulverize with a hammer mill, then finely pulverize with a turbo mill pulverizer, Example A fine powder for magnetic toner was obtained in the same manner as in Example 6, and a one-component magnetic toner was obtained. The chargeability and image output of this one-component magnetic toner were evaluated, and the results shown in Table 5 were obtained. As shown in Table 5, the toner of this comparative example had a lot of fog and a poor distribution of the release agent in the toner.
[0072]
Example 11
Figure 0003948350
The above materials were uniformly mixed with a Henschel mixer, then put into a biaxial heating kneader, kneaded and extruded, cooled at room temperature, and coarsely ground with a hammer mill to obtain chips. Next, this was finely pulverized by a turbo mill, and led to a classifier to take out a portion having an average particle size of 11.5 μm to obtain a fine powder for toner. Next, 0.3 part by weight of hydrophobic silica fine powder was added to and mixed with 100 parts by weight of the fine powder for toner to obtain a negatively chargeable black toner. 5 parts of the obtained toner and 95 parts of a silicone resin-coated carrier having an average particle diameter of 50 μm were mixed using a ball mill to prepare a developer. Next, using this toner and developer, a live-action test was conducted in a 23 ° C., 50% RH environment using a commercially available CLC-550 manufactured by Canon Inc. When the obtained toner and developer were used, even after 30,000 sheets were actually photographed, fog was small, the image density was stable, and toner scattering and image smearing in the machine were not observed. The image densities at the initial and 30,000 sheet copies were 1.41 and 1.38, respectively, and the fog at the initial and 30,000 sheet copies were 0.6 and 0.6, respectively.
[0073]
The image density is determined using a Macbeth photometer and may be 1.35 or higher. The fog was measured by measuring the reflectance with a photovolt. A value of 1.2% or less is a good value. Further, the scattering of the toner in the machine was performed by checking whether or not the scattered toner was present on the transfer charger of the copying machine. When toner scattering is observed on the transfer charger, image smearing occurs.
[0074]
Example 12
Figure 0003948350
The above materials were uniformly mixed with a Henschel mixer, then put into a biaxial heating kneader, kneaded and extruded, cooled at room temperature, and coarsely ground with a hammer mill to obtain chips. Subsequently, this was finely pulverized by a turbo mill, and led to a classifier, and a part having an average particle size of 11.5 μm was taken out to obtain fine powder for toner. Next, 0.3 part by weight of hydrophobic silica fine powder was added to and mixed with 100 parts by weight of the fine powder for toner to obtain a negatively chargeable cyan toner. 5 parts of the obtained toner and 95 parts of a silicone resin-coated carrier having an average particle diameter of 50 μm were mixed using a ball mill to prepare a developer. Next, using this toner and developer, a live-action test was conducted in a 23 ° C., 50% RH environment using a commercially available full color copying machine Canon CLC-550. When the obtained toner and developer were used, even after 30,000 actual images were taken, there was little fog, the image density was stable, and toner scattering and image smearing in the machine were not observed. The image densities at the initial and 30,000-sheet copying were 1.41 and 1.41, respectively, and the fog at the initial and 30,000-sheet copying was 0.6 and 0.7, respectively.
[0075]
【The invention's effect】
As described above, in the present invention, the polymerized polyester resin (A) and the low molecular weight polyester resin (B) having a specific acid value, hydroxyl value, and molecular weight were obtained by reacting with a polyvalent isocyanate compound. By incorporating the low acid value urethane-modified polyester resin (C) into the electrostatic charge image developing toner, it is possible to produce a toner having excellent chargeability despite the use of the low acid value polyester resin. Since the polyester resin has a low acid value, it has excellent moisture resistance, can form a good developed image even at high temperature and high humidity, and has good low temperature fixability, offset resistance, and blocking resistance, It is possible to obtain a toner for developing an electrostatic image having excellent anti-wrapping properties and dispersibility of a release agent, and can perform stable development for a long time in any copying environment. Has an excellent effect that kill.

Claims (4)

少なくとも重量平均分子量が7300〜15100であるポリエステル樹脂(A)と重量平均分子量が3000〜5000であるポリエステル樹脂(B)と多価イソシアネート化合物とを混合し反応せしめる際に、ゲルパーミエーションクロマトグラフィー(GPC)によって測定される数平均分子量(Mn)が1500〜3000のプロピレンホモポリマーを離型剤として添加することにより得られ、前記ポリエステル樹脂(A)と前記ポリエステル樹脂(B)とのトータル酸価が5〜20KOHmg/gであることを特徴とするトナー用離型剤含有ウレタン変性ポリエステル樹脂。When a polyester resin (A) having a weight average molecular weight of 7300 to 15100, a polyester resin (B) having a weight average molecular weight of 3000 to 5000 and a polyvalent isocyanate compound are mixed and reacted, gel permeation chromatography ( GPC) is obtained by adding a propylene homopolymer having a number average molecular weight (Mn) of 1500 to 3000 as a release agent, and the total acid value of the polyester resin (A) and the polyester resin (B). Is a urethane-modified polyester resin containing a release agent for toner, characterized in that is 5 to 20 KOHmg / g . 前記離型剤の前記ウレタン変性ポリエステル樹脂中の平均分散粒径が1μm以下であることを特徴とする請求項1に記載のトナー用離型剤含有ウレタン変性ポリエステル樹脂。  The release agent-containing urethane-modified polyester resin for toner according to claim 1, wherein an average dispersed particle diameter of the release agent in the urethane-modified polyester resin is 1 μm or less. 請求項1または2に記載されるトナー用離型剤含有ウレタン変性ポリエステル樹脂と着色剤とを少なくとも含有することを特徴とする静電荷像現像用トナー。A toner for developing an electrostatic charge image, comprising at least the release agent-containing urethane-modified polyester resin for toner and the colorant according to claim 1 . 請求項3に記載される静電荷像現像用トナーとキャリアとを含有することを特徴とする二成分系電子写真用現像剤。A two-component electrophotographic developer comprising the electrostatic image developing toner according to claim 3 and a carrier.
JP2002161021A 2002-06-03 2002-06-03 Release agent-containing urethane-modified polyester resin for toner, electrostatic charge image developing toner using the same, and two-component electrophotographic developer Expired - Fee Related JP3948350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161021A JP3948350B2 (en) 2002-06-03 2002-06-03 Release agent-containing urethane-modified polyester resin for toner, electrostatic charge image developing toner using the same, and two-component electrophotographic developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161021A JP3948350B2 (en) 2002-06-03 2002-06-03 Release agent-containing urethane-modified polyester resin for toner, electrostatic charge image developing toner using the same, and two-component electrophotographic developer

Publications (2)

Publication Number Publication Date
JP2004004386A JP2004004386A (en) 2004-01-08
JP3948350B2 true JP3948350B2 (en) 2007-07-25

Family

ID=30430211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161021A Expired - Fee Related JP3948350B2 (en) 2002-06-03 2002-06-03 Release agent-containing urethane-modified polyester resin for toner, electrostatic charge image developing toner using the same, and two-component electrophotographic developer

Country Status (1)

Country Link
JP (1) JP3948350B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5524719B2 (en) * 2009-05-29 2014-06-18 三洋化成工業株式会社 Toner binder and toner composition
JP6316862B2 (en) * 2015-03-30 2018-04-25 三洋化成工業株式会社 Manufacturing method of toner binder
JP6316863B2 (en) * 2015-03-30 2018-04-25 三洋化成工業株式会社 Manufacturing method of toner binder
JP6401199B2 (en) * 2015-03-31 2018-10-03 三洋化成工業株式会社 Manufacturing method of toner binder

Also Published As

Publication number Publication date
JP2004004386A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
CN108107692B (en) Toner and image forming apparatus
JP5617446B2 (en) Electrophotographic toner and image forming apparatus
CN107250916B (en) Toner, toner storage unit, and image forming apparatus
JP3798204B2 (en) Toner for electrostatic image development
JP2015176068A (en) image forming apparatus
JP2537252B2 (en) Toner composition for electrophotography
JP5181610B2 (en) Toner for developing electrostatic image, powder toner cartridge, image forming apparatus
JP3948350B2 (en) Release agent-containing urethane-modified polyester resin for toner, electrostatic charge image developing toner using the same, and two-component electrophotographic developer
JP5444767B2 (en) Image forming toner, one-component developer, two-component developer, image forming method, image forming apparatus, and process cartridge
JP6350796B2 (en) Full-color image forming device
JP4023223B2 (en) Release agent-containing urethane-modified polyester resin for toner, electrostatic charge image developing toner using the same, and two-component electrophotographic developer
JP2004062168A (en) Binder resin for toner, and toner
JP2003330222A (en) Urethane-modified polyester containing release agent for toner, electrostatic charge image developing toner and two-component electrophotographic developer using the same
EP1011031B1 (en) Electrostatic image developing toner, binder resin and process for its production
JP2017146593A (en) Electrophotographic toner
JP2006308958A (en) Method for manufacturing toner
US6395843B2 (en) Electrostatic image developing toner
JP2003337442A (en) Urethane-modified polyester resin containing release agent for toner and electrostatic charge image developing toner and two-component electrophotographic developer using the same
KR100715263B1 (en) Binder resin for toner and electrophotographic toner for static charge image development containing the same
JP4373024B2 (en) Binder resin for toner and electrophotographic toner for electrostatic charge development using the resin
JP2002278164A (en) Electrophotographic toner, developer and image forming method
CN112105992A (en) Toner for developing electrostatic image and method for producing toner for developing electrostatic image
JP6543973B2 (en) Toner, developer, process cartridge, image forming apparatus
JP6405655B2 (en) Full-color image forming device
JP5624830B2 (en) Toner for electrostatic image development

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Ref document number: 3948350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees