JP3948221B2 - Heat exchanger for air compressor - Google Patents

Heat exchanger for air compressor Download PDF

Info

Publication number
JP3948221B2
JP3948221B2 JP2001154768A JP2001154768A JP3948221B2 JP 3948221 B2 JP3948221 B2 JP 3948221B2 JP 2001154768 A JP2001154768 A JP 2001154768A JP 2001154768 A JP2001154768 A JP 2001154768A JP 3948221 B2 JP3948221 B2 JP 3948221B2
Authority
JP
Japan
Prior art keywords
heat exchanger
nest
seal member
temperature fluid
air compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001154768A
Other languages
Japanese (ja)
Other versions
JP2002206876A (en
Inventor
友博 成瀬
敏雄 服部
誠司 鶴
治雄 三浦
一樹 高橋
実 谷山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2001154768A priority Critical patent/JP3948221B2/en
Publication of JP2002206876A publication Critical patent/JP2002206876A/en
Application granted granted Critical
Publication of JP3948221B2 publication Critical patent/JP3948221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、工場の動力空気源等に使用される中小容量空気圧縮機に係り、特にそれら圧縮機が備える熱交換器に関する。
【0002】
【従来の技術】
吐出圧力がゲージ圧で約0.7MPa、出力が100kW弱から数百kWクラスの中小容量空気圧縮機としてスクリュー形圧縮機や小形のターボ圧縮機があり、工場の動力空気源として使用されている。このような空気圧縮機の例が、特開平8−105386号公報や特開2000−120585号公報に記載されている。これらの公報には、中小容量のターボ圧縮機で発生した圧縮空気を冷却するために、積層形の熱交換器やフィンチューブ形熱交換器を用いている。
【0003】
そして、特開平8-105386号公報ではガスクーラのシール部が剛性とシール性とを兼ね備えるために、圧縮ガスが流通されるクーラシェル内に、圧縮ガスを冷却するガスクーラを所定の隙間をもって挿入し、ガスクーラの外周部に、隙間をシールしクーラシェル内を高温側と低温側に仕切るシール部を形成している。シール部はガスクーラの外周部から突出しており、クーラシェルの内壁に弾性的に当接している。また、特開2000-120585号公報にはシールの信頼性とメンテナンス性を向上させるために、一端部に凹部を有する一対のレールを備えた圧力容器において、レール上を走行した後で凹部にはまり込むローラを圧力容器に収容されるネストが有することが記載されている。
【0004】
【発明が解決しようとする課題】
上記従来の技術に記載の各シール方法では、確かにシール性能が向上するが、複雑な構成を必要とするので、加工が複雑になる。また、ネストをケーシングに収納する際に弾性シールが抵抗になり、組み立ての手間が増す。また、漏れを完全に防止することは困難であった。
【0005】
本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は簡単な構造で、冷却器ネストとケーシング間の漏れによる熱交換効率の低減を防止することにある。本発明の他の目的は、高温流体を冷却可能で高性能な熱交換器を実現することにある。そして、本発明では少なくともこのいずれかの目的を実現することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明は、低温流体が流通する複数の低温室と高温流体が流通する複数の高温室とを仕切り板を介して交互に積層した熱交換器ネストを有し、前記低温室における低温流体の流通方向と前記高温室における高温流体の流通方向とをほぼ直交させ、積層方向における両端を低温室とし、前記熱交換器ネストの左右両側面の底部に設けられた断面コの字状の固定部材と、前記熱交換器ネストを収容し、前記固定部材に対応する左右両内壁面に突起が形成された容器と、前記突起の上面に載せられ、前記固定部材に形成されたコの字状の溝に保持される弾性変形可能なシール部材と、を備え、前記容器内部の空間を前記高温流体が流通する空間と、前記熱交換器ネストにおいて熱交換して冷却された前記低温流体が流通する空間に仕切り、前記シール部材を前記低温流体側に配置したものである。
【0007】
さらに、上記のものにおいて、前記低温流体は冷却水であり、前記高温流体は圧縮空気であることが望ましい。
【0008】
さらに、上記に記載の空気圧縮機用熱交換器をスクリュー圧縮機が備えたことが望ましい。
【0009】
さらに、上記のものにおいて、前記熱交換器ネストの質量により前記シール部材に圧縮荷重が負荷されるようにしたことが望ましい。
【0010】
さらに、上記のものにおいて、前記シール部材は、前記固定部材側に切り欠き部が形成され、前記突起側はテーパ状とされたことが望ましい。
また前記シール部材は、エチレンプロピレンゴム、アクリルゴム、シリコーンゴム、フッ素ゴムの少なくともいずれかが主成分であることが望ましい。
さらに、前記シール部材は、高分子材料をチューブ状に形成し、内部に気体を封止もしくは注入した気体チューブシールであることが望ましい。
【0011】
【発明の実施の形態】
以下、本発明のいくつかの実施例を図面を用いて説明する。はじめに本発明にかかる予備試験に基づく知見を説明する。本発明にかかる熱交換器では、2種の作動流体が、仕切板を隔てて直交する流路が形成されており、この直交する流路をそれぞれ異なる2種の作動流体が流通している。そして、この直交する流路を作動流体が流れる際に、仕切板を通過して高温側の高温室から低温側の低温室へ熱が伝熱される。これにより、高温側の流体が冷却される。高温室と低温室は対を成しており、この対が複数層に積層されて、ネストと呼ばれる熱交換器を形成している。このような熱交換器の例が、日本機械学会刊 伝熱工学資料(改訂第4版) 頁261に記載されている。この刊行物によれば、この種の熱交換器はコンパクト熱交換器に分類される。コンパクト熱交換器において低温室流体に冷却水を用い、高温室流体に圧縮空気を用いる時には、高温室側の熱伝達率が小さいので、コルゲート状フィンを用いたり、コルゲートフィンにルーバと呼ばれるスリットを設けたりして伝熱面積の増加や熱伝達率の向上を図っている。この小型コンパクト化できる利点を利用して、圧縮機にコンパクト熱交換器を用いることは容易に考えられる。しかしながら、上述したよう空気圧縮機用の熱交換器では熱伝達率の差が大きいので、単にコンパクト熱交換器を空気圧縮機に用いたのでは十分な性能が確保できない。そこでコンパクト熱交換器の特性と経済性を考慮して、本発明においては、以下に詳述するように高温室を低温室よりも多くしたネストを用いている。
【0012】
ところで、ネストにおける高温室数を低温室数よりも多くするため、高温室5列で低温室4列のネストを製作し、冷却性能を測定したところ所望の冷却性能(熱通過率)が得られなかった。そこで、両端の高温室(以下、高温室をガス室と呼ぶ)の流体の温度分布、および中間にあり両側を低温室(以下、低温室を水室と呼ぶ)で挟まれたガス室のガス出口温度を実測した。その結果を、図16から図20を用いて説明する。図16及び図17は、それぞれ空気圧縮機用冷却器として計画したコルゲートフィン形熱交換器ネストの平面図および側面図である。
【0013】
両側にガス室51を配置し、ガス室51の合計を5列、水室52を4列とした。水より熱伝導率の小さい空気側の伝熱面積を増加して、水側と空気側の熱通過量をバランスさせている。ガスの流れ方向58は図で上方から下方へであり、冷却水59は前側管板53の下方から入り、後側水室ケース54で向きを変えて前側管板53の上方から出ている。すなわち、2種の作動流体が、仕切板55を隔てて直交している。熱は仕切板55を通過して高温室側から低温室側へ伝熱される。高温流体が上方から下方に向かって流れ、冷却水はその流れに直交するように前側管板53の下方から入った後、後側水室ケース54で向きを変え、前側管板の上方から流出する。ガス室にはコルゲート状のフィンが設けられており、フィンにより伝熱面積を増加させている。フィンにより伝熱面積を増加させて、水に比較して熱伝導率の低い分をカバーさせている。
【0014】
図示していないが、本実施例に用いたネストをケーシングに収容・装着すれば、空気圧縮機用の熱交換器が形成される。その際、ネストとケーシング間に生じる隙間をシール板46、47を用いてネスト入口側の周辺部でシールしている。この熱交換器を用いて、圧縮高温空気の冷却性能試験を行った。図18は、図16、17のA−A矢視断面図であり、ネスト長さの1/4の長さの位置における断面図である。この図11には、ガス温度の測定位置も併せ示している。上方から流入した高温空気は、ガス室51で冷却されながら下方へ流れる。ネストとケーシング゛壁65との間の隙間をシール板56でシールする。この隙間から、わずかな空気が漏れて、高温のままネスト出口側へ流れることが判明した。両端のガス室及び中間のガス室の出口に温度センサ61を設けガス温度を計測した。温度センサ60は入口温度を測定するために設けた。また、図19に、図16、17に示したネスト両端のガス室の入口を閉止板62で塞いだときの断面を示す。この図19は、図16、17のA−A矢視断面図である。中央寄り3列にガス室の出口温度を測定する温度センサを配置した。
【0015】
これら2つの場合の、温度測定結果を図20に示す。図20中の記号は、初めの数字が試験順番であり、次の数字が測定したガス室の位置を、最後の文字が断面位置をそれぞれ示している。例えば1−3Aの場合、最初の1はガス列5列で水室4列の試験Noであり、3はガス室の3列目を意味し、AはA−A断面位置を意味する。最初の数値が2の場合は、両端のガス室を封鎖した試験の結果である。この図から明らかなように、両端のガス室の出口温度は中央側のガス室出口温度に比較して大幅に高い。そして、両端のガス室を封鎖しても、中央よりのガス室の出口温度は殆ど変化がない。当然ながら、両方の試験では入口熱量を同じに合わせている。これより、伝熱面積が3/5になっても両端のガス室が無い場合の冷却性能が良いという結果が得られた。つまり、外側のガス室では、ケーシングとネスト間の隙間が大きくなったことに相当する。本実施例の熱交換器はネストをケーシングに収容する熱交換器であるので、ケーシングは高温流体によって暖められている。そして、高温流体の漏れが存在するので、ネスト両端のガス室流体に外側から熱が入力される結果、冷却性能が低下したものと推測される。
【0016】
上記知見に基づく本発明のいくつかの実施例を、図1ないし図15を用いて説明する。図1〜図3は本発明に係る熱交換器を備えた2段スクリュー圧縮機の正面図、上面図及び側面図であり、パッケージを構成するカバーを取り除いて示した図である。図4及び図5は、熱交換器が収容されるケーシング部分の構造を示す断面図である。
【0017】
本実施例におけるスクリュー圧縮機は、低圧段(第1段)圧縮機と高圧段(2段)圧縮機を備える2段圧縮機である。取扱い流体は空気であり、吐出し圧力はゲージ圧で約0.7〜1.0MPa程度である。この圧縮機は、例えば一般産業用の工場空気源に用いられる。圧縮機の構成を以下に詳述する。低圧段圧縮機2及び高圧段圧縮機3は、増速機ケーシング5に取付けられ、各段の圧縮機が備えるロータは電動機4によって回転される。1段吸込み、1段吐出、2段吸込みおよび2段吐出の各空気通路は、増速機ケーシング5の内部を仕切壁で区切ることで形成される。各段の圧縮機で昇圧された高温空気は、それぞれの通路を通って、後述するインタークーラおよびアフタークーラで冷却される。これらのクーラには冷却水が冷却水配管21を経由して供給される。冷却水は、初めに水室カバー20に導かれ、ついでネストに導かれた後、出口配管22から排出される。スクリュー圧縮機は、オイルポンプ15、オイルクーラ16、吸込みフィルタ11、容量調節弁10、等の付属機器を有している。
【0018】
図4に、インタークーラの入口部とクーラの収容・装着状況を示す。この図4では圧縮段を省略している。1段圧縮機で昇圧された高温空気は、ケーシング内通路36を通ってインタークーラ室33に入る。図5に、インタークーラの出口部とアフタークーラの入口部を示す。この図5でも圧縮段を省略している。インタークーラで冷却された空気は、通路37を通って2段圧縮機に吸込まれる。2段圧縮機で昇圧された高温空気は、ケーシング内通路38を通ってアフタークーラ室34に流入する。本実施例では、ケーシングとクーラネストとに形成される隙間を、上部入口付近でシールしている。
【0019】
図6及び図7に、ネストの構造を示す。図6はネストの平面図であり、ガスの流入方向から見た図である。図7は、図6の側面図である。本実施例では、高温流体が上方から下方に向かって流れ、冷却水はその流れに直交するように下方から入り、上方から流れ出る。本実施例のネストはガス室41を4列、水室42を5列を有している。そして両端側に水室42が配置されている。一方、ガス室41は両側に水室を有している。図7において、ガス48は上方から下方へ流れ、冷却水49は前側管板43の下方から入り、後側水室ケース44で向きを変えた後、前側管板の上方から流れ出る。2種の作動流体が、仕切板45を隔てて直交して流れている。仕切板を通して高温室側から低温室側へ熱が伝熱される。ガス室にはコルゲート状のフィンが形成されている。ネストとケーシング間の隙間を、シール板46、47を用いてネスト入口側の周辺部でシールしている。なお、ネスト出口の周辺部もシールするようにしてもよい。
【0020】
図8に、図6および図7に示したクーラネストのB−B断面を示す。水室42を両端に配置し、ガス室41を全て水室で挟んでいる。本実施例のクーラネストを用いると、高温流体は水室に挟まれたガス室を通過するので、十分に冷却される。また、ケーシングとネストとの間をシール板46でシールしても完全なシールは困難であるが、僅かに漏れた高温流体が内部のガス室を流れる流体を加温することはなく、逆に漏れた高温流体が外側の冷却水によって冷却されるので、漏れたガスまで高効率に冷却できる。
【0021】
本発明の他の実施例を、図9から図15を用いて説明する。本実施例では、インタークーラやアフタークーラが単体で構成されている場合を取り上げているが、勿論複数の熱交換器が上記実施例のように一体化されていても良い。アフタークーラやインタークーラを構成する容器30の中に、コルゲートフィン型の熱交換器ネスト31が収容されている。熱交換器ネスト31の左右両側面の底部には、断面コの字状の固定部材88が設けられている。この固定部材88に対応する容器30の左右両内壁面に突起72が形成されている。
【0022】
突起72の上面にシール部材71を載せ、このシール部材71を固定部材88が形成する溝87に保持することにより、容器30内部の空間を高温空気48が流通する空間と、熱交換器ネスト31において熱交換して冷却された低温空気50が流通する空間に仕切る。その際、熱交換器ネスト31とシール部材71は、固定部材88の内壁面75とシール部材71の外表面74とを密着させることにより気密に保たれる。シール部材71は、ゴムなどの十分に弾性変形可能な材料である。なお、シール部材71の形状は、突起72との密着性及び固定部材88との密着性を考慮して、固定部材88側に切り欠き部を形成し、突起側72をテーパ状にしている。
【0023】
このように構成した本実施例では、シール部材71を低温空気50側に配置したので、ゴム等で作られたシール部材71の熱劣化を低減できる。シール部材71を熱交換器ネスト31の下側に配置したので、熱交換器ネスト31の重量によりシール部材71が圧縮変形し、シール面に確実に面圧を付与することができる。
【0024】
シール部材71をゴムなどの弾性変形可能な材料としたので、容器30の突起72が鋳肌面のように凹凸が大の面でも、すきまを生じることが無く、確実にシールできる。また、固定部材88の内壁面75とシール部材71の外表面26を密着させたので、熱交換器ネスト31を固定した際に生じる恐れのある隙間の発生を防止できる。
【0025】
ここで、シール部材71の厚さh(図9参照)は、熱交換器ネスト31の最下面となる固定部材88と管板89の底面8よりシール部材71が突起72に当接する面73が下方になるように設定する。これにより、熱交換器ネスト31を容器30内に取付ける際に、シール部材71を熱交換器ネスト31の自重で圧縮変形させることが可能になる。なお、シール部材71の突起72への当接面73と、固定部材88との当接面である外表面74とを、シール部材71の断面積よりも小面積としたので、シール部材71の接触面における剛性を小さくできる。これにより、シール部材71の外表面74を固定部材88の内壁面75に容易に接触させることができる。
【0026】
ところで、スクリュー圧縮機に用いられるインタークーラやアフタークーラ等の熱交換器の入口空気温度は、約200℃、圧力約0.1MPaにも達する。このような高温下で使用されるシール材料としては、耐熱性の高いエチレンプロピレンゴム、アクリルゴム、シリコーンゴムまたはフッ素ゴムなどを用いるのが望ましい。
【0027】
図9に示した実施例の変形例を、図11に示す。この図11は、正面図、上面図、及び側部断面図をあわせ示した3面図である。気体チューブシール76は、耐熱性と伸縮性に富む高分子材料をチューブ状に形成し、内部に空気などの気体を封止もしくは注入して形成される。チューブ型のシールを用いることにより、弾性変形量を増大させることができる。特に、気体封入口77と、容器30外部から気体封入口77に気体を封入する配管を設ければ、容器30に熱交換器ネスト31を固定したあとに、気体チューブシール76に気体を封入し加圧するだけで、信頼性の高いシールが得られる。また、熱交換器ネスト31を容器30から取り出すときは、チューブ76内の気体を抜くだけで、簡単に熱交換器ネスト31を容器30から取り出すことができる。チューブの材料としては、耐熱性・伸縮性の高いポリアセタールやフッ素樹脂などが好ましい。
【0028】
本発明のさらに他の変形例を、図12に示す。同図(イ)では、突起72の上に載置したシール部材71aに、熱交換器ネスト31の底部に設けた止め金78を介してシール部材の重量を負荷する。そして、止め金78と突起72とを外れ止め79を用いてクランプしている。他のクランプ方法としては、同図(ロ)に示すように、熱交換器ネスト31の側部最下方に設けた熱交換器固定板80と突起72間にシール部材71aを挟み、突起72及びシール部材71aを貫通するボルト33を熱交換器固定板80にネジ止めする方法がある。これらいずれの方法によっても、シール部材を弾性変形させて、確実にシールできる。なお、シール部材を熱交換器ネストに接着剤で固定すれば、熱交換器ネストとシール部材間の気体の漏れをより確実に防止できる。
【0029】
本発明のさらに他の変形例を、図13に示す。熱交換器ネスト31の底面に薄板92をこの熱交換器ネスト31の左右方向に延在して取り付け、この延在部に断面コの字状の溝板91をボルト90を用いて取付ける。そして、シール部材71を溝板91の溝87に保持している。本変形例によれば、熱交換器を作用させているうちに、固定ボルト90がたとえゆるんで落下しても、受け面93をシール部材71に形成したので、落下したボルト90の気体流路への流動を防止できる。
【0030】
図14及び図15に、上記各実施例及び変形例で示したシール部材71、71aを用いた熱交換器を部分断面斜視図で示す。なお、図15は表示の都合上、底面を左側に、右側面を下方に示している。圧縮機等から吐出された高温の空気48は、吸込み口28から吸込まれ、熱交換器ネスト31内で冷却水と熱交換して低温空気50となり、吐出口29から外部へ吐出される。冷却水の出入り口側には水室63が設けられている。熱交換器ネスト31は、上記実施例で詳述したように、水室(列)とガス室(列)を有し、それらはコルゲートフィン26、27を有している。図15において、各室間にはチューブプレート27があり、管板側にはアウターバー29が設けられている。
以上述べた各実施例及び変形例によれば、熱交換器の容器に熱交換器ネストを容易に着脱できるとともに、シールを確実に行えるので、信頼性及び効率の高い熱交換器が得られる。また、清掃点検時にはカバーを取り外すだけでよく、メンテナンス性が向上する。さらに、熱交換器出口の作動流体の温度を下げれば、圧縮機動力を低減でき省エネに貢献できる。
【0031】
【発明の効果】
以上詳述したように、本発明によればコンパクト形熱交換器において、低温室を高温室よりも1室(1列)多くして両端に低温室を配置したので、冷却性能の良いコンパクトな熱交換器を得ることができる。さらに、熱交換器内部のシール性能を向上できる。
【図面の簡単な説明】
【図1】本発明に係る熱交換器を有するスクリュー圧縮機の一実施例の正面図。
【図2】図1に示したスクリュー圧縮機の平面図。
【図3】図1に示したスクリュー圧縮機の側面図。
【図4】図1に示したスクリュー圧縮機のケーシングの断面図。
【図5】図4に示したケーシングの他の断面図。
【図6】本発明に係る熱交換器の一実施例の平面図。
【図7】図6に示した熱交換器の側面図。
【図8】本発明に係る熱交換器の他の実施例の断面図。
【図9】本発明に係る熱交換器のさらに他の実施例の部分断面側面図。
【図10】図9に示した熱交換器の正面図。
【図11】本発明に係るシール部材の他の実施例の3面図。
【図12】本発明に係るシール部材の変形例の断面図。
【図13】本発明に係るシール部材のさらに他の変形例の断面図。
【図14】本発明に係る熱交換器内を流れる空気の流れを説明する図。
【図15】本発明に係る水室及びガス室の詳細を説明する図。
【図16】予備試験に用いた熱交換器の平面図。
【図17】図16に示した熱交換器の側面図。
【図18】図16及び図17のA−A断面図。
【図19】図16及び図17のA−A断面で外側ガス室を封鎖した様子を説明する図。
【図20】予備試験における冷却性能を説明する図。
【符号の説明】
1・・・スクリュー圧縮機、2・・・1段圧縮機、3・・・2段圧縮機、4・・・電動機、5・・・増速機ケーシング、6・・・ベース、7・・・防音カバー、8・・・制御盤、9・・・起動盤、10・・・容量調節弁、11、11a・・・吸込みダクト、吸込みフィルタ、12、13・・・吐出配管、14・・・安全弁、15・・・オイルポンプ、16・・・オイルクーラ、17・・・オイルフィルタ、18・・・給油マニホールド、19・・・防振ゴム、20・・・クーラ水室ケース、21・・・給水配管、22・・・排水配管、23、24・・・冷却水母管、25・・・吐出サイレンサ、26・・・コルゲートフィン、27・・・コルゲートフィン、28・・・吸込み口、29・・・吐出口、30・・・容器、31・・・熱交換器ネスト、33・・・インタークーラ、34・・・アフタークーラ、35・・・1段吸込み通路、36・・・1段吐出通路、37・・・2段吸込み通路、38a、38b・・・2段吐出通路、39・・・チューブプレート、40・・・アウターバー、41、51・・・ガス室(列)、42、52・・・水室(列)、43、53・・・管板、44、54・・・後側冷却水室、45、55・・・ガス室と水室の仕切壁、46、46a、47、56、57・・・シール板、48、58・・・高温空気、49、59・・・冷却水、60、61・・・温度センサ、62・・・ガス室封鎖板、65・・・ケーシング壁面、71・・・シール部材、72・・・突起、73・・・当接面、74・・・外表面、75・・・内壁面、76・・・チューブ、77・・・気体封入口、78・・・止め金、79・・・外れ止め、80・・・固定板、81・・・ボルト、84・・・ボルト、87・・・溝、88・・・固定部材、89・・・管板、90・・・固定ボルト、91・・・溝板、92・・・薄板、93・・・受け面。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a small and medium capacity air compressor used for a power air source or the like in a factory, and more particularly to a heat exchanger provided in the compressor.
[0002]
[Prior art]
There are screw-type compressors and small turbo compressors as small and medium-capacity air compressors with discharge pressures of about 0.7 MPa in gauge pressure and outputs of less than 100 kW to several hundred kW, and they are used as power air sources in factories. . Examples of such an air compressor are described in JP-A-8-105386 and JP-A-2000-120585. In these publications, a laminated heat exchanger or a fin tube heat exchanger is used to cool the compressed air generated by a medium- and small-capacity turbo compressor.
[0003]
And in JP-A-8-105386, in order for the seal part of the gas cooler to have both rigidity and sealing properties, a gas cooler for cooling the compressed gas is inserted into the cooler shell through which the compressed gas is circulated with a predetermined gap, A seal portion that seals the gap and partitions the inside of the cooler shell into a high temperature side and a low temperature side is formed on the outer periphery of the gas cooler. The seal portion protrudes from the outer peripheral portion of the gas cooler and elastically contacts the inner wall of the cooler shell. Japanese Patent Application Laid-Open No. 2000-120585 discloses a pressure vessel having a pair of rails having a recess at one end in order to improve the seal reliability and maintainability, and then fits into the recess after running on the rail. It is described that the nest accommodated in the pressure vessel has a roller to be inserted.
[0004]
[Problems to be solved by the invention]
In each of the sealing methods described in the above prior art, the sealing performance is surely improved. However, since a complicated configuration is required, processing is complicated. In addition, when the nest is stored in the casing, the elastic seal becomes a resistance, and the assembling work is increased. Moreover, it was difficult to completely prevent leakage.
[0005]
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to prevent a reduction in heat exchange efficiency due to leakage between the cooler nest and the casing with a simple structure. Another object of the present invention is to realize a high-performance heat exchanger capable of cooling a high-temperature fluid. The present invention aims to realize at least one of these objects.
[0006]
[Means for Solving the Problems]
In order to achieve the above object , the present invention has a heat exchanger nest in which a plurality of low temperature chambers through which a low temperature fluid flows and a plurality of high temperature chambers through which a high temperature fluid flows are alternately stacked via partition plates, A cross section provided at the bottom of the left and right side surfaces of the heat exchanger nest, wherein the flow direction of the low temperature fluid in the low greenhouse and the flow direction of the high temperature fluid in the high temperature chamber are substantially orthogonal, both ends in the stacking direction are low temperature chambers A U-shaped fixing member, a container that accommodates the heat exchanger nest and has protrusions formed on the left and right inner wall surfaces corresponding to the fixing member, and is placed on the upper surface of the protrusion and formed on the fixing member An elastically deformable seal member that is held in the U-shaped groove, and is cooled by exchanging heat in the space inside the container through which the high-temperature fluid flows and in the heat exchanger nest. The low-temperature fluid flows Partition the space, in which the sealing member is disposed in said cold fluid side.
[0007]
Furthermore, in the above, it is desirable that the low temperature fluid is cooling water and the high temperature fluid is compressed air.
[0008]
Furthermore, it is desirable that the screw compressor is provided with the heat exchanger for an air compressor described above.
[0009]
Further, in the above, it is preferable that a compressive load is applied to the seal member by the mass of the heat exchanger nest.
[0010]
Furthermore, in the above-described structure, it is preferable that the sealing member has a notch formed on the fixing member side and the protrusion side is tapered.
Moreover, it is desirable that at least one of ethylene propylene rubber, acrylic rubber, silicone rubber, and fluoro rubber is the main component of the sealing member.
Furthermore, the sealing member is preferably a gas tube seal in which a polymer material is formed in a tube shape and gas is sealed or injected therein.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, some embodiments of the present invention will be described with reference to the drawings. First, knowledge based on the preliminary test according to the present invention will be described. In the heat exchanger according to the present invention, two kinds of working fluids are formed with orthogonal flow paths across the partition plate, and two different kinds of working fluids circulate through the orthogonal flow paths. When the working fluid flows through the orthogonal flow paths, heat is transferred from the high temperature side high temperature chamber to the low temperature side low temperature chamber through the partition plate. Thereby, the fluid on the high temperature side is cooled. A high greenhouse and a low temperature room form a pair, and the pair is laminated in a plurality of layers to form a heat exchanger called a nest. An example of such a heat exchanger is described in page 261 of Heat Transfer Engineering Material (4th revised edition) published by the Japan Society of Mechanical Engineers. According to this publication, this type of heat exchanger is classified as a compact heat exchanger. In a compact heat exchanger, when cooling water is used for the low temperature chamber fluid and compressed air is used for the high temperature chamber fluid, the heat transfer coefficient on the high temperature chamber side is small, so corrugated fins are used, or slits called louvers are provided on the corrugated fins. It is intended to increase the heat transfer area and improve the heat transfer coefficient. It is easily considered to use a compact heat exchanger for the compressor by taking advantage of this small size and compactness. However, since the difference in heat transfer coefficient is large in the heat exchanger for an air compressor as described above, sufficient performance cannot be ensured by simply using a compact heat exchanger for the air compressor. Therefore, in consideration of the characteristics and economy of the compact heat exchanger, the present invention uses a nest in which the number of high-temperature chambers is larger than that of low-temperature chambers, as will be described in detail below.
[0012]
By the way, in order to increase the number of high temperature chambers in the nest to be larger than the number of low temperature chambers, a nest of four low temperature chambers is manufactured with five high temperature chambers, and the cooling performance is measured. There wasn't. Therefore, the temperature distribution of the fluid in the high-temperature chamber (hereinafter referred to as the gas chamber) at both ends, and the gas in the gas chamber sandwiched between the cold chambers (hereinafter referred to as the water chamber) on both sides in the middle The outlet temperature was measured. The result will be described with reference to FIGS. 16 and 17 are a plan view and a side view, respectively, of a corrugated fin heat exchanger nest designed as a cooler for an air compressor.
[0013]
The gas chambers 51 are arranged on both sides, and the total of the gas chambers 51 is five rows and the water chambers 52 are four rows. The heat transfer area on the air side, which has a lower thermal conductivity than water, is increased to balance the amount of heat passing between the water side and the air side. The gas flow direction 58 is from the upper side to the lower side in the figure, and the cooling water 59 enters from the lower side of the front side tube plate 53, changes its direction in the rear side water chamber case 54, and comes out from the upper side of the front side tube plate 53. That is, the two types of working fluids are orthogonal to each other with the partition plate 55 interposed therebetween. Heat passes through the partition plate 55 and is transferred from the high temperature chamber side to the low temperature chamber side. The high-temperature fluid flows from the upper side to the lower side, and the cooling water enters from the lower side of the front tube plate 53 so as to be orthogonal to the flow, then changes the direction in the rear water chamber case 54 and flows out from the upper side of the front side tube plate. To do. Corrugated fins are provided in the gas chamber, and the heat transfer area is increased by the fins. The heat transfer area is increased by fins to cover the portion having a lower thermal conductivity than water.
[0014]
Although not shown, if the nest used in the present embodiment is accommodated and attached to the casing, a heat exchanger for the air compressor is formed. At this time, the gap generated between the nest and the casing is sealed at the periphery on the nest entrance side using the seal plates 46 and 47. Using this heat exchanger, a cooling performance test of compressed hot air was performed. FIG. 18 is a cross-sectional view taken along the line AA in FIGS. 16 and 17 and is a cross-sectional view at a position of a quarter length of the nest length. FIG. 11 also shows the measurement position of the gas temperature. The hot air that has flowed in from above flows downward while being cooled in the gas chamber 51. A gap between the nest and the casing wall 65 is sealed with a seal plate 56. From this gap, it was found that a slight amount of air leaks and flows to the nest outlet side at a high temperature. Temperature sensors 61 were provided at the outlets of the gas chambers at both ends and the intermediate gas chamber, and the gas temperature was measured. The temperature sensor 60 was provided to measure the inlet temperature. FIG. 19 shows a cross section when the gas chamber inlets at both ends of the nest shown in FIGS. FIG. 19 is a cross-sectional view taken along arrows AA in FIGS. A temperature sensor that measures the outlet temperature of the gas chamber was placed in three rows near the center.
[0015]
The temperature measurement results in these two cases are shown in FIG. In the symbols in FIG. 20, the first number indicates the test order, the next number indicates the measured gas chamber position, and the last character indicates the cross-sectional position. For example, in the case of 1-3A, the first 1 is the test number of 5 rows of gas rows and 4 rows of water chambers, 3 means the third row of gas chambers, and A means the AA cross-sectional position. When the first numerical value is 2, it is the result of the test which sealed the gas chamber of both ends. As is apparent from this figure, the outlet temperatures of the gas chambers at both ends are significantly higher than the outlet temperature of the central gas chamber. And even if the gas chambers at both ends are sealed, the outlet temperature of the gas chamber from the center hardly changes. Of course, in both tests, the amount of inlet heat is matched. As a result, even when the heat transfer area was 3/5, the cooling performance was good when there were no gas chambers at both ends. That is, in the outer gas chamber, this corresponds to an increase in the gap between the casing and the nest. Since the heat exchanger of the present embodiment is a heat exchanger in which the nest is accommodated in the casing, the casing is heated by the high-temperature fluid. Since there is a leakage of high-temperature fluid, it is estimated that the cooling performance is reduced as a result of heat input from the outside to the gas chamber fluid at both ends of the nest.
[0016]
Several embodiments of the present invention based on the above findings will be described with reference to FIGS. 1 to 3 are a front view, a top view, and a side view of a two-stage screw compressor provided with a heat exchanger according to the present invention, and is a view that shows a package that is removed. 4 and 5 are cross-sectional views showing the structure of the casing portion in which the heat exchanger is accommodated.
[0017]
The screw compressor in the present embodiment is a two-stage compressor including a low-pressure stage (first stage) compressor and a high-pressure stage (two-stage) compressor. The handling fluid is air, and the discharge pressure is about 0.7 to 1.0 MPa in terms of gauge pressure. This compressor is used, for example, as a factory air source for general industries. The configuration of the compressor will be described in detail below. The low-pressure stage compressor 2 and the high-pressure stage compressor 3 are attached to the speed increaser casing 5, and the rotor included in each stage of the compressor is rotated by the electric motor 4. The air passages for the first stage suction, the first stage discharge, the second stage suction, and the second stage discharge are formed by dividing the inside of the gearbox casing 5 by a partition wall. The high-temperature air pressurized by the compressors at each stage passes through the respective passages and is cooled by an intercooler and an aftercooler described later. Cooling water is supplied to these coolers via a cooling water pipe 21. The cooling water is first led to the water chamber cover 20, then led to the nest, and then discharged from the outlet pipe 22. The screw compressor has attached devices such as an oil pump 15, an oil cooler 16, a suction filter 11, and a capacity adjustment valve 10.
[0018]
FIG. 4 shows the intercooler inlet and the state of accommodation and mounting of the cooler. In FIG. 4, the compression stage is omitted. The high-temperature air pressurized by the first-stage compressor enters the intercooler chamber 33 through the casing inner passage 36. FIG. 5 shows the outlet part of the intercooler and the inlet part of the aftercooler. Also in FIG. 5, the compression stage is omitted. The air cooled by the intercooler passes through the passage 37 and is sucked into the two-stage compressor. The high-temperature air pressurized by the two-stage compressor flows into the aftercooler chamber 34 through the casing passage 38. In this embodiment, the gap formed between the casing and the cooler nest is sealed near the upper entrance.
[0019]
6 and 7 show the nest structure. FIG. 6 is a plan view of the nest as seen from the gas inflow direction. FIG. 7 is a side view of FIG. In this embodiment, the high-temperature fluid flows from the top to the bottom, and the cooling water enters from the bottom so as to be orthogonal to the flow, and flows out from the top. The nest of this embodiment has four rows of gas chambers 41 and five rows of water chambers 42. Water chambers 42 are disposed on both ends. On the other hand, the gas chamber 41 has water chambers on both sides. In FIG. 7, the gas 48 flows from the upper side to the lower side, and the cooling water 49 enters from the lower side of the front side tube plate 43, changes its direction in the rear side water chamber case 44, and then flows out from the upper side of the front side tube plate. Two types of working fluids flow orthogonally across the partition plate 45. Heat is transferred from the high temperature chamber side to the low temperature chamber side through the partition plate. Corrugated fins are formed in the gas chamber. The gap between the nest and the casing is sealed at the periphery of the nest entrance side using seal plates 46 and 47. In addition, you may make it seal the periphery part of a nest exit.
[0020]
FIG. 8 shows a BB cross section of the cooler nest shown in FIGS. 6 and 7. Water chambers 42 are arranged at both ends, and all gas chambers 41 are sandwiched between water chambers. When the cooler nest of the present embodiment is used, the high-temperature fluid passes through the gas chamber sandwiched between the water chambers, so that it is sufficiently cooled. Further, even if the sealing plate 46 seals between the casing and the nest, complete sealing is difficult. However, the slightly leaked high-temperature fluid does not heat the fluid flowing in the internal gas chamber. Since the leaked hot fluid is cooled by the outside cooling water, the leaked gas can be efficiently cooled.
[0021]
Another embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the case where the intercooler and the aftercooler are configured as a single unit is taken up, but of course, a plurality of heat exchangers may be integrated as in the above embodiment. A corrugated fin-type heat exchanger nest 31 is accommodated in a container 30 constituting an aftercooler or an intercooler. Fixing members 88 having a U-shaped cross section are provided at the bottoms of the left and right side surfaces of the heat exchanger nest 31. Projections 72 are formed on the left and right inner wall surfaces of the container 30 corresponding to the fixing member 88.
[0022]
The seal member 71 is placed on the upper surface of the protrusion 72, and this seal member 71 is held in the groove 87 formed by the fixing member 88, whereby the space inside the container 30 and the heat exchanger nest 31 And partitioning into a space in which the low-temperature air 50 cooled by heat exchange is circulated. At that time, the heat exchanger nest 31 and the seal member 71 are kept airtight by bringing the inner wall surface 75 of the fixing member 88 into close contact with the outer surface 74 of the seal member 71. The seal member 71 is a sufficiently elastically deformable material such as rubber. The shape of the sealing member 71 is such that a notch is formed on the fixing member 88 side and the protruding side 72 is tapered in consideration of the adhesion to the protrusion 72 and the adhesion to the fixing member 88.
[0023]
In the present embodiment configured as described above, since the seal member 71 is disposed on the low temperature air 50 side, thermal deterioration of the seal member 71 made of rubber or the like can be reduced. Since the seal member 71 is disposed below the heat exchanger nest 31, the seal member 71 is compressed and deformed by the weight of the heat exchanger nest 31, and a surface pressure can be reliably applied to the seal surface.
[0024]
Since the seal member 71 is made of an elastically deformable material such as rubber, even if the projection 72 of the container 30 has a large uneven surface such as a casting surface, it can be reliably sealed without generating a gap. Further, since the inner wall surface 75 of the fixing member 88 and the outer surface 26 of the seal member 71 are brought into close contact with each other, it is possible to prevent the occurrence of a gap that may occur when the heat exchanger nest 31 is fixed.
[0025]
Here, the thickness h (see FIG. 9) of the seal member 71 is such that the surface 73 on which the seal member 71 comes into contact with the protrusion 72 from the bottom surface 8 of the tube plate 89 and the fixing member 88 which is the lowermost surface of the heat exchanger nest 31. Set to be downward. Accordingly, when the heat exchanger nest 31 is mounted in the container 30, the seal member 71 can be compressed and deformed by the weight of the heat exchanger nest 31. The contact surface 73 of the seal member 71 with respect to the protrusion 72 and the outer surface 74 that is the contact surface with the fixing member 88 have a smaller area than the cross-sectional area of the seal member 71. The rigidity at the contact surface can be reduced. Thereby, the outer surface 74 of the seal member 71 can be easily brought into contact with the inner wall surface 75 of the fixing member 88.
[0026]
By the way, the inlet air temperature of a heat exchanger such as an intercooler or an aftercooler used in a screw compressor reaches about 200 ° C. and a pressure of about 0.1 MPa. As a sealing material used at such a high temperature, it is desirable to use ethylene-propylene rubber, acrylic rubber, silicone rubber, or fluorine rubber having high heat resistance.
[0027]
A modification of the embodiment shown in FIG. 9 is shown in FIG. FIG. 11 is a three-view diagram illustrating a front view, a top view, and a side sectional view. The gas tube seal 76 is formed by forming a polymer material rich in heat resistance and stretchability into a tube shape and sealing or injecting a gas such as air inside. By using a tube-type seal, the amount of elastic deformation can be increased. In particular, if a gas sealing port 77 and a pipe for sealing gas into the gas sealing port 77 from the outside of the container 30 are provided, the gas is sealed in the gas tube seal 76 after the heat exchanger nest 31 is fixed to the container 30. A reliable seal can be obtained simply by applying pressure. Further, when the heat exchanger nest 31 is taken out from the container 30, the heat exchanger nest 31 can be taken out from the container 30 simply by removing the gas from the tube 76. As a material for the tube, polyacetal, fluorine resin, etc. having high heat resistance and stretchability are preferable.
[0028]
Another modification of the present invention is shown in FIG. In FIG. 6A, the weight of the seal member is loaded on the seal member 71 a placed on the protrusion 72 through a stopper 78 provided on the bottom of the heat exchanger nest 31. Then, the stopper plate 78 and the protrusion 72 are clamped by using a release stopper 79. As another clamping method, as shown in FIG. 2B, a seal member 71a is sandwiched between the heat exchanger fixing plate 80 and the protrusion 72 provided at the lowermost side of the heat exchanger nest 31, and the protrusion 72 and There is a method of screwing the bolt 33 penetrating the seal member 71 a to the heat exchanger fixing plate 80. By any of these methods, the sealing member can be elastically deformed to be surely sealed. In addition, if the seal member is fixed to the heat exchanger nest with an adhesive, gas leakage between the heat exchanger nest and the seal member can be prevented more reliably.
[0029]
Yet another modification of the present invention is shown in FIG. A thin plate 92 is attached to the bottom surface of the heat exchanger nest 31 so as to extend in the left-right direction of the heat exchanger nest 31, and a U-shaped groove plate 91 is attached to the extended portion using a bolt 90. The seal member 71 is held in the groove 87 of the groove plate 91. According to this modification, even if the fixing bolt 90 is loosened and dropped while the heat exchanger is operating, the receiving surface 93 is formed on the seal member 71, so the gas flow path of the dropped bolt 90 Can be prevented from flowing.
[0030]
14 and 15 are partial sectional perspective views of heat exchangers using the seal members 71 and 71a shown in the above-described embodiments and modifications. FIG. 15 shows the bottom side on the left side and the right side on the bottom side for convenience of display. The high-temperature air 48 discharged from the compressor or the like is sucked from the suction port 28, exchanges heat with cooling water in the heat exchanger nest 31 to become low-temperature air 50, and is discharged to the outside from the discharge port 29. A water chamber 63 is provided on the inlet / outlet side of the cooling water. The heat exchanger nest 31 has a water chamber (row) and a gas chamber (row) as described in detail in the above embodiment, and they have corrugated fins 26 and 27. In FIG. 15, there is a tube plate 27 between the chambers, and an outer bar 29 is provided on the tube plate side.
According to each of the embodiments and modifications described above, the heat exchanger nest can be easily attached to and detached from the container of the heat exchanger, and since the sealing can be performed reliably, a highly reliable and efficient heat exchanger can be obtained. Further, it is only necessary to remove the cover at the time of cleaning inspection, and maintenance is improved. Furthermore, if the temperature of the working fluid at the outlet of the heat exchanger is lowered, the compressor power can be reduced, which can contribute to energy saving.
[0031]
【The invention's effect】
As described above in detail, according to the present invention, in the compact heat exchanger, the low temperature chamber is increased by one room (one row) than the high temperature chamber, and the low temperature chambers are arranged at both ends. A heat exchanger can be obtained. Furthermore, the sealing performance inside the heat exchanger can be improved.
[Brief description of the drawings]
FIG. 1 is a front view of an embodiment of a screw compressor having a heat exchanger according to the present invention.
FIG. 2 is a plan view of the screw compressor shown in FIG.
3 is a side view of the screw compressor shown in FIG. 1. FIG.
4 is a cross-sectional view of the casing of the screw compressor shown in FIG.
FIG. 5 is another cross-sectional view of the casing shown in FIG. 4;
FIG. 6 is a plan view of one embodiment of a heat exchanger according to the present invention.
7 is a side view of the heat exchanger shown in FIG. 6. FIG.
FIG. 8 is a cross-sectional view of another embodiment of the heat exchanger according to the present invention.
FIG. 9 is a partial cross-sectional side view of still another embodiment of the heat exchanger according to the present invention.
10 is a front view of the heat exchanger shown in FIG.
FIG. 11 is a three-side view of another embodiment of the sealing member according to the present invention.
FIG. 12 is a cross-sectional view of a modified example of the seal member according to the present invention.
FIG. 13 is a cross-sectional view of still another modification of the seal member according to the present invention.
FIG. 14 is a diagram for explaining the flow of air flowing in the heat exchanger according to the present invention.
FIG. 15 is a diagram illustrating details of a water chamber and a gas chamber according to the present invention.
FIG. 16 is a plan view of the heat exchanger used in the preliminary test.
17 is a side view of the heat exchanger shown in FIG.
18 is a cross-sectional view taken along line AA in FIGS. 16 and 17. FIG.
FIG. 19 is a view for explaining a state in which the outer gas chamber is sealed along the AA cross section of FIGS. 16 and 17;
FIG. 20 is a diagram for explaining cooling performance in a preliminary test.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Screw compressor, 2 ... 1 stage compressor, 3 ... 2 stage compressor, 4 ... Electric motor, 5 ... Booster casing, 6 ... Base, 7 ... -Soundproof cover, 8 ... Control panel, 9 ... Start-up panel, 10 ... Capacity adjustment valve, 11, 11a ... Suction duct, Suction filter, 12, 13 ... Discharge piping, 14 ... -Safety valve, 15 ... Oil pump, 16 ... Oil cooler, 17 ... Oil filter, 18 ... Oil supply manifold, 19 ... Anti-vibration rubber, 20 ... Cooler water chamber case, 21 ..Water supply piping, 22 ... drain piping, 23, 24 ... cooling water mother pipe, 25 ... discharge silencer, 26 ... corrugated fin, 27 ... corrugated fin, 28 ... suction port, 29 ... discharge port, 30 ... container, 31 ... heat exchanger nes 33 ... Intercooler, 34 ... After cooler, 35 ... First stage suction passage, 36 ... First stage discharge passage, 37 ... Second stage suction passage, 38a, 38b ... Two steps Discharge passage, 39 ... tube plate, 40 ... outer bar, 41, 51 ... gas chamber (row), 42, 52 ... water chamber (row), 43, 53 ... tube plate, 44, 54 ... rear cooling water chamber, 45, 55 ... partition walls between gas chamber and water chamber, 46, 46a, 47, 56, 57 ... seal plates, 48, 58 ... hot air 49, 59 ... cooling water, 60, 61 ... temperature sensor, 62 ... gas chamber sealing plate, 65 ... casing wall, 71 ... sealing member, 72 ... projection, 73. ..Contact surface, 74 ... outer surface, 75 ... inner wall surface, 76 ... tube, 77 ... gas Inlet, 78 ... Clasp, 79 ... Detachment, 80 ... Fixing plate, 81 ... Bolt, 84 ... Bolt, 87 ... Groove, 88 ... Fixing member, 89 ..Tube plate, 90 ... fixing bolt, 91 ... groove plate, 92 ... thin plate, 93 ... receiving surface.

Claims (7)

低温流体が流通する複数の低温室と高温流体が流通する複数の高温室とを仕切り板を介して交互に積層した熱交換器ネストを有し、前記低温室における低温流体の流通方向と前記高温室における高温流体の流通方向とをほぼ直交させ、積層方向における両端を低温室とし、
前記熱交換器ネストの左右両側面の底部に設けられた断面コの字状の固定部材と、
前記熱交換器ネストを収容し、前記固定部材に対応する左右両内壁面に突起が形成された容器と、
前記突起の上面に載せられ、前記固定部材に形成されたコの字状の溝に保持される弾性変形可能なシール部材と、
を備え、前記容器内部の空間を前記高温流体が流通する空間と、前記熱交換器ネストにおいて熱交換して冷却された前記低温流体が流通する空間に仕切り、前記シール部材を前記低温流体側に配置したことを特徴とする空気圧縮機用熱交換器。
A heat exchanger nest in which a plurality of low temperature chambers through which a low temperature fluid flows and a plurality of high temperature chambers through which a high temperature fluid flows are alternately stacked via a partition plate, the flow direction of the low temperature fluid in the low temperature chamber and the high temperature The flow direction of the high-temperature fluid in the chamber is almost orthogonal, and both ends in the stacking direction are cold chambers ,
A fixing member having a U-shaped cross section provided at the bottom of the left and right side surfaces of the heat exchanger nest;
A container in which protrusions are formed on the left and right inner wall surfaces corresponding to the fixing member;
An elastically deformable seal member placed on the upper surface of the protrusion and held in a U-shaped groove formed in the fixing member;
Partitioning the space inside the container into a space in which the high-temperature fluid flows and a space in which the low-temperature fluid cooled by heat exchange in the heat exchanger nest flows, and the seal member on the low-temperature fluid side A heat exchanger for an air compressor characterized by being arranged .
前記低温流体は冷却水であり、前記高温流体は圧縮空気であることを特徴とする請求項1に記載の空気圧縮機用熱交換器。The heat exchanger for an air compressor according to claim 1 , wherein the low-temperature fluid is cooling water, and the high-temperature fluid is compressed air. 請求項1に記載の空気圧縮機用熱交換器を備えたことを特徴とするスクリュー圧縮機。A screw compressor comprising the heat exchanger for an air compressor according to claim 1 . 前記熱交換器ネストの質量により前記シール部材に圧縮荷重が負荷されるようにしたことを特徴とする請求項に記載の空気圧縮機用熱交換器。 The heat exchanger for an air compressor according to claim 1 , wherein a compression load is applied to the seal member by a mass of the heat exchanger nest. 前記シール部材は、前記固定部材側に切り欠き部が形成され、前記突起側はテーパ状とされたことを特徴とする請求項に記載の空気圧縮機用熱交換器。2. The heat exchanger for an air compressor according to claim 1 , wherein the seal member has a notch formed on the fixed member side, and the protrusion side is tapered . 前記シール部材は、エチレンプロピレンゴム、アクリルゴム、シリコーンゴム、フッ素ゴムの少なくともいずれかが主成分であることを特徴とする請求項に記載の空気圧縮機用熱交換器。2. The heat exchanger for an air compressor according to claim 1 , wherein the seal member includes at least one of ethylene propylene rubber, acrylic rubber, silicone rubber, and fluoro rubber as a main component. 前記シール部材は、高分子材料をチューブ状に形成し、内部に気体を封止もしくは注入した気体チューブシールであることを特徴とする請求項に記載の空気圧縮機用熱交換器。2. The heat exchanger for an air compressor according to claim 1 , wherein the seal member is a gas tube seal in which a polymer material is formed in a tube shape and a gas is sealed or injected therein.
JP2001154768A 2000-10-31 2001-05-24 Heat exchanger for air compressor Expired - Fee Related JP3948221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001154768A JP3948221B2 (en) 2000-10-31 2001-05-24 Heat exchanger for air compressor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-337253 2000-10-31
JP2000337253 2000-10-31
JP2001154768A JP3948221B2 (en) 2000-10-31 2001-05-24 Heat exchanger for air compressor

Publications (2)

Publication Number Publication Date
JP2002206876A JP2002206876A (en) 2002-07-26
JP3948221B2 true JP3948221B2 (en) 2007-07-25

Family

ID=26603428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001154768A Expired - Fee Related JP3948221B2 (en) 2000-10-31 2001-05-24 Heat exchanger for air compressor

Country Status (1)

Country Link
JP (1) JP3948221B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6173820B2 (en) 2013-08-01 2017-08-02 株式会社神戸製鋼所 Heat exchanger for gas compressor
CN116498552B (en) * 2023-06-21 2023-09-08 泉州市中力机电有限公司 Screw air compressor and cooling structure thereof

Also Published As

Publication number Publication date
JP2002206876A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
US8695574B2 (en) Intake manifold having an integrated charge air cooler
US9373873B2 (en) Cooling system for automotive battery
KR100390298B1 (en) Heat exchanger for air compressor
JP4580366B2 (en) Intercooler for internal combustion engine
US20130047661A1 (en) Device for compressing and drying gas
JP2007506928A (en) Multi-stage heat exchange device and method for manufacturing such a device
JP6111083B2 (en) Compression device
JP2007303812A (en) Multipath liquid-cooled supply air cooler having cooling liquid bypass port for improved flow distribution
JP6383801B2 (en) Heat exchanger for motor vehicles
JP6540190B2 (en) Cold storage heat exchanger
US9016355B2 (en) Compound type heat exchanger
CN114502899A (en) Solid Cooling Module
JP3948221B2 (en) Heat exchanger for air compressor
JP6087713B2 (en) Compression device
JP6607960B2 (en) Gas compressor
JP7344230B2 (en) Plate fin heat exchanger for pump assembly
JP4685474B2 (en) Oil-free screw air compressor
JP3569977B2 (en) Seal structure of compressor gas cooler
US20100126704A1 (en) Heat Exchanger with Direct Flow Path Modules
KR20160111505A (en) Engine
US11761444B2 (en) Vacuum pump cooler for cooling a pumped fluid in a multistage vacuum pump
US20130058817A1 (en) Surface heat exchanger for compressible fluid alternative volumetric machines
CN112832988B (en) Cooler of compressor
EP3312530A1 (en) Heat exchange device
US20240244792A1 (en) Systems and methods for two-phase cold plate cooling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees