JP3947247B2 - Method for producing active protein composition - Google Patents

Method for producing active protein composition Download PDF

Info

Publication number
JP3947247B2
JP3947247B2 JP12233096A JP12233096A JP3947247B2 JP 3947247 B2 JP3947247 B2 JP 3947247B2 JP 12233096 A JP12233096 A JP 12233096A JP 12233096 A JP12233096 A JP 12233096A JP 3947247 B2 JP3947247 B2 JP 3947247B2
Authority
JP
Japan
Prior art keywords
lysine
plasminogen
binding fragment
protein
fibronectin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12233096A
Other languages
Japanese (ja)
Other versions
JPH09286798A (en
Inventor
亘 森河
誠二 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemo Sero Therapeutic Research Institute Kaketsuken
Original Assignee
Chemo Sero Therapeutic Research Institute Kaketsuken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemo Sero Therapeutic Research Institute Kaketsuken filed Critical Chemo Sero Therapeutic Research Institute Kaketsuken
Priority to JP12233096A priority Critical patent/JP3947247B2/en
Publication of JPH09286798A publication Critical patent/JPH09286798A/en
Application granted granted Critical
Publication of JP3947247B2 publication Critical patent/JP3947247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本願発明は、生物学的に活性な血漿蛋白質組成物の製造方法に関する。とりわけ、血漿から調製される所望の蛋白質に対する夾雑ウイルスの不活化を目的とした加熱処理を含んでなる、所望の蛋白質の製造方法に関する。さらに詳細には、血漿より調製される蛋白質を酵素で断片化し、熱に不安定な部分を除去した後、得られる所望の血漿蛋白質断片を液状あるいは凍結乾燥後の加熱によって夾雑ウイルスを不活性化し、その感染性を除く方法を提供する。従って、本願発明は上記方法によって加熱された蛋白質断片に生化学あるいは医学的意義が存する分野、例えば治療薬、補充療法薬の分野において広く利用される。
【0002】
【従来の技術並びに発明が解決しようとする課題】
血漿分画製剤は、多くのヒトの血漿をプールしたものを原料として調製されている。ヒト血漿には、例えば肝炎ウイルス、ヒト免疫不全ウイルス(HIV)等の血液を媒介として感染するウイルスが存在することが認められており、それらが血漿分画製剤を通して感染した事例も報告されている。そのため、今日では多くの分画製剤は加熱等による夾雑ウイルスの不活性化工程を経て製造される。夾雑ウイルスの不活性化は、強い物理的化学的な処理を施すことによって達成されるが、血漿分画製剤の本態をなす蛋白質によってはこれらの処理に対して不安定なものがある。従って、多くの場合、調製した蛋白質を凍結乾燥した後加熱する方法(凍結乾燥加熱)や液状で糖類やアミノ酸類等の蛋白質安定剤存在下で加熱しウイルスを特異的に不活化する方法が実施されている。
【0003】
そもそも、蛋白質は基本的にはアミノ酸鎖から成り、各アミノ酸間の相互作用によってその蛋白質に固有の高次構造及びサブユニット構造を形成している。従って、高次構造あるいはサブユニット構造を不可逆的に破壊するような処理は、その蛋白質に対して蛋白質変性を導くような影響を及ぼすことが避けられないものである。本願発明者は、生物学的に活性な蛋白質を形成するアミノ酸残基から熱に対して不安定な部分を事前に除去することでより強力なウイルスの不活性化が可能であるとの視点に立ち、この理論を実証するべく鋭意研究を重ねた。
【0004】
本願発明者は、その重要度に鑑み、対象として先ずプラスミノーゲンのリジン結合断片の加熱及びそれに引き続く製造方法について検討した。その理由は以下のとおりである。
プラスミノーゲンは分子量80,000の血漿蛋白質で、血液の凝固線溶系に関与する酵素前駆体である。プラスミン、ウロキナーゼ、ティッシュプラスミノーゲンアクチベータ(tPA)等によって限定分解を受け、活性型であるプラスミンに変換され、このプラスミンはフィブリン凝塊物を分解する働きがある。プラスミノーゲンは、その分子中にリジンと結合し得る部分(リジン結合部)と上述の活性発現を担う活性中心が存在する部分に分けることができる。リジン結合断片はフィブリンとの結合に重要な働きを示すもので、かつ、最近その部分に血管新生の抑制の働きがあることが証明された(O'Reilly.M.S et al. Angiostatin: a novelangiogenesis inhibitor that mediates the suppression of metastases by alewis lung carcinoma. Cell,79,p.315-328,(1994))。リジン結合断片の血管新生抑制作用は、癌治療最大の問題である癌転移の抑制に当該リジン結合断片の投与が有効であることを示唆しており、この部分を血漿から調製し且つ好適な加熱を行なうことができればウイルス感染等の危険性のない安全な癌転移抑制剤が得られることが期待される。
【0005】
プラスミノーゲンは、血漿あるいはそのアルコール分画部分からリジンをリガンドとしたカラムを用いることによって、ほぼ選択的に完全な形態で調製することができる。プラスミノーゲンは、例えばε-アミノカプロン酸存在下で加熱する方法によって安定的に夾雑ウイルスを不活化することができる(特許出願公告昭和62年第35756号)。しかし、これら安定剤はアフィニティークロマトグラフィーの結合を阻害するものであり、所望の物質のアフィニティー精製のためには前記安定剤を除去するために透析等の操作を要する。あるいはその後のプラスミノーゲン分解部分を得るための分解工程を必要とする。また、凍結乾燥状態での加熱に関しても、凍結乾燥という特殊な装置を要する操作自体が不可欠であり、さらにこの工程においても蛋白質安定剤の存在を要することがしばしばである。上記の条件を満たさない限り、より強力な条件を加えることはできない。従って、従来の方法でプラスミノーゲンをウイルス不活化処理し、そのリジン結合断片を分離するには上述の種々の問題点があり、これを克服するためには何らかの飛躍的な技術が必要であった。
【0006】
【問題を解決するための手段、発明の構成】
本願発明は、生物学的に活性な蛋白質の製造方法を提供する。本願発明者等は、プラスミノーゲンのうち熱に不安定な部分(活性中心の部分)を蛋白質分解酵素によって分離・分解し、リジン結合断片のみを特異的に採取し、これを加熱した時リジン結合断片の機能を失わせることなくウイルスを選択的に不活化し得ることを見出した。本願発明は上述の知見に基づいて達成されたものである。
【0007】
本願発明の方法は、ヒトへの投与を目的とした生物活性を有する多くの蛋白質について適用可能であるが、血漿蛋白質の混合物からプラスミノーゲンを分離しこれを選択的に分解して所望のプラスミノーゲンリジン結合断片を得、夾雑ウイルスを加熱不活化してプラスミノーゲンリジン結合断片組成物を製造すること、もしくは、血漿蛋白質の混合物からフィブロネクチンを調製しこれを選択的に分解してフィブロネクチンのヘパリン結合断片を得、夾雑ウイルスの加熱不活化処理後所望のフィブロネクチンヘパリン結合断片組成物を製造することに対して特に適する。
以下、生物学的に活性な蛋白質としてプラスミノーゲンを例に取り、本願発明を解説する。
【0008】
本願発明の方法は、加熱処理に先立ちプラスミノーゲンを酵素的に分解して熱に対して不安定な部分を除去し、その後に加熱処理することに大きな特徴を有する。図1に本願発明の概略を示した。図1に示したように、プラスミノーゲンには熱に安定な部分と不安定な部分がある。プラスミノーゲンをそのまま加熱した場合、安定な部分の蛋白質も不安定な部分に巻き込まれ、それに引きずられて熱変性を起こしてしまう。この状態のものは、酵素の基質特異的な切断を受けずさらなる調製を不可能にする。しかし、加熱する前に予め不安定部分を切断し除去した場合には、加熱に対して寛容になる。
【0009】
本願発明の方法の手順は、大略3つの工程よりなる。
▲1▼調製されたプラスミノーゲンの選択的分解:
プラスミノーゲンを選択的に分解し、生物活性を有し夾雑ウイルス加熱不活化の対象となるプラスミノーゲンリジン結合断片を生成させる。
▲2▼プラスミノーゲンの熱不安定部分の除去:
上記選択的分解によって生じた熱不安定部分を溶液系から除去する。
▲3▼夾雑ウイルスの不活性化:
【0010】
本願発明の対象の一例となる生物活性を有する蛋白質の母体物質であるプラスミノーゲンは、報告されているいくつかの方法に従って調製することができ、その調製に際しては特別の制約はない。好適な例として、新鮮凍結血漿よりリジンを担体に結合させたクロマトグラフィー(リジンクロマトグラフィー)を用いて調製することができる(Chibber,B.A.K. et al., Plasminogen Methods in Enzymology,34,p.424-432)。
【0011】
次に、調製されたプラスミノーゲンを限定的に分解して、熱に安定なリジン結合断片と熱に不安定な断片に分解する。この分解は、例えば、Gross等(Gross Eet al.,J. Biol. Chem.,237,p.1856-(1962))に報告されているようなブロモシアンによる化学的切断等も適用され得るが、反応の選択性の観点からエラスターゼ等の酵素による選択分解は好ましい態様である(Davidson J.F. et al., Raven Press, New York,3,p.191-209,(1978))。エラスターゼを担体に固定したレジンに好適な反応比、例えば酵素基質比が1:100でプラスミノーゲンを反応させ、後処理後、反応液をリジンクロマトグラフィーに通液して素通り画分を分取する。レジンに吸着したプラスミノーゲンリジン結合断片(Plasminogen Lysine Binding Site)を適当な、例えば20mMアミノヘキサン酸を含む溶出緩衝液で溶出して分取する。必要な場合は、分取液を分子ふるい(ゲル濾過)クロマトグラフィーによって所望の分子量を有する蛋白質画分を得る。
【0012】
得られたプラスミノーゲンリジン結合断片を含有する溶液に対して、好適な手段によって夾雑の可能性のある感染性ウイルスの不活性化の工程が施される。感染性ウイルスの不活性化は、一般に汎用されている加熱不活化処理が適用され得る。溶液状態もしくは凍結乾燥状態での低温加熱殺菌が推奨され、少なくとも50℃の温度において少なくとも10時間加熱することが要求される。加熱に際して、必要な場合、糖、アミノ酸あるいはε-アミノカプロン酸もしくはその塩等を共存させると、目的の生物活性を有する蛋白質の活性低減を抑制することが可能となる。かくして、本願発明の方法により、加熱による該蛋白質の活性の低下が認められずさらに感染性夾雑ウイルスが不活化された、有効且つ安全性が保証されたプラスミノーゲンリジン結合断片を含有する組成物が提供される。
【0013】
上述のリジン結合断片と同様に蛋白質を断片化することによって新しい活性が認められるものにフィブロネクチンのヘパリン結合断片がある。Homandberg等はフィブロネクチンをCathepsin及びα-thrombinで限定分解後、分子中の29K-daからなるヘパリン結合断片を調製し、その断片に血管新生阻害効果があることを示した(Homandberg G.A. et al., Am. J. Pathol.,120,p.327-332(1985))。フィブロネクチンも前述のリジン結合断片と同様に熱に対して不安定な物質の一つである。本願発明者は、フィブロネクチンから上述のHomandberg等の方法に従い、フィブロネクチンヘパリン結合断片を調製し、これに対して60℃で10時間の液状での加熱を行なった。
【0014】
加熱した結果、対照のフィブロネクチン及びCathepsinによって得られる72K-da断片は蛋白変性を起こし、濾過後の蛋白回収率は5%以下であったのに対し、29K-daは液の白濁化を認めず、蛋白の回収率は90%以上であった。また、フィブロネクチン及び72K-da断片の熱変性沈澱にα-Thrombinを作用させてみても、29K-da断片は理論値の10%にも満たない回収率であった。加熱前後の29K-da断片を血管内皮細胞の増殖系に添加し、その抑制効果を評価したところ、加熱したヘパリン結合断片は非加熱のそれと同等の活性を示した。
【0015】
本願特許発明の適用に関して、血漿蛋白質のうちプラスミノーゲン及びフィブロネクチンを例示して記したが、その範囲はこれらに制約されることはない。つまり、最近のレセプターとリガンドの概念には、蛋白質全体の機能のほかにそのリガンドとしての活性が注目されているものがある。リガンドとなる部分はその蛋白質の一部分であり、本法と同様に、酵素的に蛋白質を断片化してその部分を血漿蛋白質から調製できる場合がある。当該リガンド部分を製剤化する際、加熱処理が実施されるが、本願発明によってもたらされる方法と同様の加熱が行なわれた場合もこれに該当する。また、生体内に微量に存在する熱に安定な断片を、不安定断片を熱処理し除去することによって選択的に調製することも可能である。
【0016】
以下、本願発明の理解を深めるために実施例に沿って説明するが、本願発明はこれらの実施例になんら限定されるものではない。
【0017】
【実施例】
実施例
(プラスミノーゲンの調製)
新鮮凍結血漿10リッターに20mMベンツアミジン、1mMPMSF、100U/mlアプロチニン(トラジオール(バイエル社))を加え室温で冷融解を行なった。その後、浮遊物を高速遠心機(トミー精工 RS-20IV)で8,000rpm、4℃、20分間遠心処理し上清を得た。上清を、50mM Tris/0.5M NaCl(pH7.5)で平衡化したリジン-セファロース(Lysine-Shepharose) 4Bカラム(φ5.0 x 30cm、ファルマシア社製)に流速1.0ml/minで通液し、さらに5倍容の同緩衝液で洗浄した。その後、緩衝液を10mMアミノヘキサン酸を含む同緩衝液に代え溶出した。溶出液は、0.1M 炭酸アンモニウム緩衝液に対して4℃で一晩透析した。
【0018】
実施例
(エラスターゼ-Sepharoseの調製)
エラスターゼ(シグマ社製 Tyep IV:From Porcine Pancreas)50mgを0.5MNaClを含む0.1M炭酸水素ナトリウムで溶解後、さらに一晩4℃で同緩衝液に対して透析した。エラスターゼを固定化するゲルはCNBr-Activated Sepharose 4 Fast Flow(ファルマシア社製)を用い、そのカップリングは、5mg Elastase/ml Gelの用量で使用説明書に従って行なった。
【0019】
実施例
(プラスミノーゲンエラスターゼ分解物(ミニ プラスミノーゲン,LBS-I,LBS-II)の調製)
実施例1のリジンアフィニティーゲルによって調製したプラスミノーゲンを、Davidson等の方法に従い実施例2で調製したエラスターゼで分解し(Davidson J.F. et al., Raven Press, New York,3,p.191-209,(1978))、引続きリジンアフィニティーゲルによってプラスミノーゲンのエラスターゼ分解物を分離した。
すなわち、精製プラスミノーゲン10mg/mlにアプロチニン100U/ml(トラジロール、バイエル社)を加え、0.1M炭酸アンモニウムに溶解した。これにエラスターゼ-Sepharoseを酵素基質比が1:100になるように加え、25℃で一晩攪拌させながら反応させた。
反応終了後、反応液をガラスフィルターで濾過し、濾液を0.1M炭酸アンモニウム緩衝液で平衡化させたリジン-Sepharose(ファルマシア社)に通液し、同緩衝液で洗浄した。素通り画分(ミニ プラスミノーゲン)は、フラクションコレクター(LKB社 Redirac E)で採取した。リジン-Sepharose結合画分は20mMアミノヘキサン酸を含む同緩衝液で溶出した。素通り画分及び結合画分(Plasminogen Lysine Binding Site I;以下LBS-I, Plasminogen Lysin Binding Site II ;以下LBS-II、混合液)をそれぞれプールした後、限外濾過膜(YM-10 Amicon社製)で濃縮し、0.1M炭酸ナトリウム及びリン酸緩衝液(pH7.2)でそれぞれ一晩冷房で透析した。濃縮した結合画分は0.1M炭酸アンモニウムで平衡化したSephadex G-75 (ファルマシア社製)φ5.0 x 40cmに通液し、LBS-I(前画分)、LBS-II(後画分)を分離した。
【0020】
実施例
(プラスミノーゲンリジン結合断片の加熱)
リジン結合断片(LBS-I画分)を精製水で透析した後、各々3mlをバイアルに分注し、100℃で煮沸して所定の時間ごとにサンプリングした。
【0021】
実施例
(蛋白質の安定性(リジン結合能の保持)の評価)
実施例4の方法で加熱したLBS-I画分をLysine-リガンドカラムに通液し、Lysine-リガンドへの非結合画分と結合画分の量を検討することによって、LBS-I画分の本来有するリジン結合能を比較した。
50mM Tris/0.1M NaCl/5mM EDTA(pH7.5)の緩衝液で平衡化されたLysine-Sepharose 4カラム(φ1.5 x 15cm)に通液し、同緩衝液で洗浄後、20mMアミノヘキサン酸を含む同緩衝液でグラジエント溶出した。なお、洗浄時及び溶出時の280nmでの吸光度はモニターし、溶出の面積比をもってその安定性を評価した。
図2に加熱、非加熱のリジン結合断片のリジン-Sepharose 4Bからの溶出パターンを示した。図に示すように、100℃、3分の加熱でリジン-Sepharoseに非吸着の蛋白質量は全体の5%にも満たないものであり、且つカラムからの溶出パターンは非加熱の蛋白質のそれと同一であった。
【0022】
実施例
(蛋白質の生物活性の評価)
加熱したリジン結合断片の生物活性について、O'Reilly等の方法に従いリジン結合断片の血管新生阻害作用を血管内皮細胞の増殖能を用いて評価した。
すなわち、Folkman等(Folkman, J., Haudenschild,C.C., and Zetter, B. R.Long-term culture of capillary endothelial cells. Proc. Natl. Acad. Sci. USA 76,p.5217-5221,(1979))の方法に従い、取得及び管理した血管内皮細胞を2,500cells/mlに調製し、細胞を24ウェルのプレート(ヌンク社製:NUNCLONE)に0.5ml/wellで播種し、24時間37℃のCO2インキュベータ(CO2濃度 10%)で培養した。0.25mlのDMEM、5%BCS、1%カナマイシンを含む培地に実施例4で加熱したリジン結合断片を10μg/mlになるように加え、さらに20分間培養した。その後、1ng/mlFGFを含む同緩衝液を加え全量を500μlにした後、さらに72時間培養した。なお、対象としては加熱を行なっていないリジン結合断片を加えた。培養後、ウェルをトリプシンで剥離した後、細胞数を計測した。
その結果、リジン結合断片を添加していない対照を100%とした場合、加熱断片は56%、非加熱断片は58%の血管内皮細胞の抑制効果を示し、加熱したリジン結合断片は非加熱のそれと同等の血管内皮細胞増殖抑制効果が確認された。
【0023】
実施例
(蛋白質の生物活性、動物試験での評価:in vivo での血管新生阻害効果の比較) in vivo での血管新生阻害効果はAbe等の方法を用い、dorsal airsac法で評価した(Abe T. et al., J.Clin.Invest.92,p.54-61(1993))。即ち、C57BL6/Jマウスの背部皮下にミリポアチャンバーを左右2個挿入し、マウスルイス肺癌3LL-SA1×106個をこのチャンバーに注入した。この際、一方のチャンバーには腫瘍細胞を注入せず対照とした。実施例4の方法で調製した加熱したプラスミノーゲンリジン結合断片及び非加熱の断片を1mg/kgでマウスの腹腔内に投与し、5日間飼育した。新生血管はミリポアチャンバー直下の血管を画像解析装置に入力し、その面積(占有率)を比較した。プラスミノーゲンリジン結合断片非投与群の血管占有率は対照チャンバーが15.0±4.3%、腫瘍挿入チャンバーで30.3±5.8%であったのに対して、加熱断片投与群は対照チャンバーが16.1±8.4%、腫瘍挿入チャンバーで20.6±7.7%であり、非加熱断片投与群は対照チャンバーが19.8±10.4%、腫瘍挿入チャンバーで22.3±9.0%であり、腫瘍に由来する血管新生を抑制していた。
【0024】
実施例
(蛋白質の生物活性、動物試験での評価:肺転移の増殖抑制効果の比較)
C57BL6/Jマウスの背部皮下にルイス肺癌(LL/2)を106cells移植後、その重量が500〜700mgに達した時点で腫瘍を摘出し、更に14〜17日間飼育した。以後、実施例4の方法で調製した加熱したプラスミノーゲンリジン結合断片及び非加熱の断片を1mg/kgでマウスの腹腔内に毎日投与し、更に7〜10日間飼育後肺を摘出し、肺転移増殖を肺転移数及び重量を測定し比較した。なお、対照としては、プラスミノーゲンリジン結合断片の代わりに生理食塩水を100μl投与した。肺重量は非加熱断片投与群で0.24±0.06gであったのに対して、加熱断片は0.25±0.12gであり、対照群の0.59±0.43gに較べ共に腫瘍の増殖を抑制していた。
【0025】
実施例
(ウイルスの不活化試験)
実施例4で調製したリジン結合断片溶液に1/10量のPseudorabies Virus 108.5 TCID50/mlを添加し3分間水浴上で煮沸した。感染価の測定はVero細胞を用い、50%感染終末点(TCID50)法を用いて行なった。
加熱前に107.5 TCID50/mlのウイルスを含む溶液が、3分間100℃の加熱後は100.5>TCID50/mlとなりウイルスは速やかに不活化されていることが確認された。
【0026】
実施例 10
(フィブロネクチンにおける評価)
. フィブロネクチン断片の調製
原料とするフィブロネクチンは、Homandberg等の報告(Homandberg G.A. et al., Arch. Biochem. Biophys.238,p.652-663(1985))の記述に従って調製した。ヒト血漿よりゼラチンSepharoseで精製し、部分還元したものを使用した。0.1Mホウ酸緩衝液(pH3.7)で0.8μg/mlのCatepsin D(Sigma社製)と1mg/mlのフィブロネクチンを30℃3時間反応させた後、反応を終了させ、ゼラチンSepharoseに通液してその結合断片(72K-da分子)を回収した。結合断片を50mMNaCl/20mMTris緩衝液(pH7.4)で透析後1Uのα-Thrombinと反応させ、さらに29K-daの断片と50K-daの断片に分解した。29K-daの断片はゼラチンSepharoseの非結合画分として得られた。
【0027】
. フィブロネクチン及びフィブロネクチン断片の加熱
フィブロネクチン及びフィブロネクチン断片(72K-da、29K-da)は生理食塩水に透析後、60℃で10時間、液状で加熱した。なお、60℃で10時間の加熱条件はヒト血清アルブミンで肝炎ウイルス等のウイルス伝播を阻止し得る条件である。加熱した各検体は、3,000rpmで遠心後、メンブランフィルター(MILEX-HA 0.45μm: ミリポア社製)で濾過し、その回収率は蛋白質量を測定して求めた。
上述の方法で調製した加熱後の72K-da蛋白断片を、Furie等の方法に従い、さらにα-Thrombinで分解し29K-daの蛋白断片を調製した(Furie M.B.et al.,J.Biol.Chem.,255,p.4391-4394(1980))。
【0028】
. 加熱による蛋白の変性
加熱した結果、フィブロネクチン及び72K-da断片は蛋白変性を起こし、濾過後の蛋白回収率は5%以下であったのに対し、29K-daは液の白濁化を認めず、蛋白の回収率は90%以上であった。また、フィブロネクチン及び72K-da断片の熱変性沈澱にα-Thrombinを作用させてみても、29K-da断片は理論値の10%にも満たない回収率であった。
【0029】
. フィブロネクチン断片 ( 29K -da) の加熱前後の活性の評価
実施例6に記載の方法に準じて、加熱前後の蛋白断片(29K-da)の血管内皮細胞増殖抑制効果を判定した。加熱前後の29K-daを実施例6で示した血管内皮細胞の増殖系に添加し、その抑制効果を評価した結果、加熱したヘパリン結合断片は非加熱のそれと同等の活性を示した。
【図面の簡単な説明】
【図1】 本願発明の概念を示す図である。
【図2】 プラスミノーゲンリジン結合断片の加熱前後でのリジンへの結合能を示す図である。
[0001]
[Industrial application fields]
The present invention relates to a method for producing a biologically active plasma protein composition. In particular, the present invention relates to a method for producing a desired protein, comprising a heat treatment for the purpose of inactivating a contaminating virus on the desired protein prepared from plasma. More specifically, the protein prepared from plasma is fragmented with an enzyme, the heat-labile portion is removed, and the desired plasma protein fragment obtained is inactivated by contamination or heating after lyophilization. Provide a way to remove that infectivity. Therefore, the present invention is widely used in fields where the protein fragments heated by the above method have biochemical or medical significance, such as therapeutic drugs and replacement therapy drugs.
[0002]
[Background Art and Problems to be Solved by the Invention]
The plasma fraction preparation is prepared from a pool of many human plasmas as a raw material. In human plasma, it is recognized that viruses such as hepatitis virus and human immunodeficiency virus (HIV) that infect through blood are present, and cases of infection through plasma fraction preparations have also been reported. . Therefore, today, many fractional preparations are produced through an inactivation process of contaminating viruses by heating or the like. Inactivation of contaminating viruses is achieved by applying strong physicochemical treatments, but some proteins that constitute the essential components of plasma fractionated preparations are unstable to these treatments. Therefore, in many cases, a method of freeze-drying the prepared protein (lyophilization heating) or a method of specifically inactivating the virus by heating in the presence of protein stabilizers such as saccharides and amino acids in liquid form is performed. Has been.
[0003]
In the first place, a protein basically consists of an amino acid chain, and a higher-order structure and a subunit structure unique to the protein are formed by the interaction between amino acids. Therefore, treatments that irreversibly destroy higher-order structures or subunit structures are inevitable to have an effect of causing protein denaturation on the protein. The inventor of the present application has a viewpoint that a more powerful virus inactivation can be achieved by previously removing a heat-labile portion from an amino acid residue forming a biologically active protein. I stood up and researched to prove this theory.
[0004]
In view of its importance, the inventor of the present application first studied heating of a lysine-binding fragment of plasminogen and subsequent production method. The reason is as follows.
Plasminogen is a plasma protein with a molecular weight of 80,000 and is an enzyme precursor involved in the coagulation and fibrinolysis system of blood. It undergoes limited degradation by plasmin, urokinase, tissue plasminogen activator (tPA), etc., and is converted to the active form of plasmin, which has the function of degrading fibrin clots. Plasminogen can be divided into a part capable of binding to lysine (lysine binding part) and a part where an active center responsible for the above-mentioned activity exists in the molecule. A lysine-binding fragment has an important role in binding to fibrin, and has recently been proved to have an inhibitory effect on angiogenesis (O'Reilly.MS et al. Angiostatin: a novelangiogenesis inhibitor) That mediates the suppression of metastases by alewis lung carcinoma. Cell, 79 , p.315-328, (1994)). The anti-angiogenic action of lysine-binding fragment suggests that administration of the lysine-binding fragment is effective in suppressing cancer metastasis, which is the biggest problem in cancer treatment. If it can be performed, it is expected that a safe cancer metastasis inhibitor without risk of virus infection or the like can be obtained.
[0005]
Plasminogen can be prepared almost completely in a complete form by using a column with lysine as a ligand from plasma or an alcohol fraction thereof. Plasminogen can stably inactivate contaminating viruses, for example, by heating in the presence of ε-aminocaproic acid (Patent Application Publication No. 35756). However, these stabilizers inhibit the binding of affinity chromatography, and an operation such as dialysis is required to remove the stabilizer for affinity purification of a desired substance. Or the decomposition | disassembly process for obtaining the subsequent plasminogen decomposition | disassembly part is required. In addition, regarding the heating in the lyophilized state, an operation itself requiring a special apparatus such as lyophilization is indispensable, and the presence of a protein stabilizer is often required also in this step. As long as the above conditions are not satisfied, more powerful conditions cannot be added. Therefore, there are various problems as described above in order to isolate the lysine-binding fragment of plasminogen by virus inactivation treatment by the conventional method, and in order to overcome this, some dramatic technique is necessary. It was.
[0006]
[Means for Solving Problems, Structure of the Invention]
The present invention provides a method for producing a biologically active protein. The inventors of the present application separated and decomposed the heat-labile part (active center part) of plasminogen with a proteolytic enzyme, specifically collected only the lysine-binding fragment, and heated it to produce lysine. It has been found that the virus can be selectively inactivated without losing the function of the binding fragment. The present invention has been achieved based on the above findings.
[0007]
The method of the present invention is applicable to many proteins having biological activity intended for administration to humans. However, plasminogen is separated from a plasma protein mixture and selectively decomposed to obtain a desired protein. Obtain a minogen lysine-binding fragment and heat inactivate contaminating virus to produce a plasminogen lysine-binding fragment composition, or prepare fibronectin from a mixture of plasma proteins and selectively degrade it to produce fibronectin. It is particularly suitable for obtaining a heparin-binding fragment and producing the desired fibronectin heparin-binding fragment composition after heat inactivation treatment of contaminating virus.
Hereinafter, the present invention will be described by taking plasminogen as an example of a biologically active protein.
[0008]
The method of the present invention has a great feature in that plasminogen is enzymatically decomposed prior to heat treatment to remove a portion unstable to heat, and then heat treatment is performed. FIG. 1 shows an outline of the present invention. As shown in FIG. 1, plasminogen has a heat-stable part and an unstable part. When plasminogen is heated as it is, the protein in the stable part is also entangled in the unstable part and is dragged to cause heat denaturation. This state does not undergo substrate-specific cleavage of the enzyme, making further preparation impossible. However, if the unstable portion is cut and removed in advance before heating, it becomes tolerant to heating.
[0009]
The procedure of the method of the present invention consists of roughly three steps.
(1) Selective degradation of prepared plasminogen:
Plasminogen is selectively degraded to produce a plasminogen lysine-binding fragment that has biological activity and is subject to heat-inactivation of contaminating virus.
(2) Removal of thermally unstable parts of plasminogen:
The thermally unstable portion generated by the selective decomposition is removed from the solution system.
(3) Inactivation of contaminating virus:
[0010]
Plasminogen, which is a matrix substance of a protein having biological activity, which is an example of the subject of the present invention, can be prepared according to several reported methods, and there are no particular restrictions on the preparation. As a preferred example, it can be prepared from fresh frozen plasma using lysine-conjugated chromatography (lysine chromatography) (Chibber, BAK et al., Plasminogen Methods in Enzymology, 34 , p. 424- 432).
[0011]
Next, the prepared plasminogen is limitedly decomposed into a thermally stable lysine-binding fragment and a thermally unstable fragment. This degradation can be applied, for example, by chemical cleavage with bromocyan as reported in Gross et al. (Gross Eet al., J. Biol. Chem., 237 , p. 1856- (1962)) From the viewpoint of reaction selectivity, selective degradation with an enzyme such as elastase is a preferred embodiment (Davidson JF et al., Raven Press, New York, 3 , p.191-209, (1978)). A reaction ratio suitable for a resin in which elastase is immobilized on a carrier, for example, plasminogen is reacted at an enzyme substrate ratio of 1: 100, and after the post-treatment, the reaction solution is passed through lysine chromatography to collect a flow-through fraction. To do. The plasminogen lysine binding site adsorbed on the resin is eluted with an appropriate elution buffer containing 20 mM aminohexanoic acid and fractionated. If necessary, a protein fraction having a desired molecular weight is obtained by molecular sieve (gel filtration) chromatography of the separated solution.
[0012]
The solution containing the obtained plasminogen lysine-binding fragment is subjected to inactivation of potentially infectious virus by a suitable means. For inactivation of infectious virus, heat inactivation treatment generally used can be applied. Low temperature pasteurization in solution or lyophilized conditions is recommended and requires heating at a temperature of at least 50 ° C. for at least 10 hours. In heating, if necessary, the presence of sugar, amino acid, ε-aminocaproic acid or a salt thereof, and the like can suppress the decrease in the activity of the protein having the desired biological activity. Thus, according to the method of the present invention, a composition containing a plasminogen lysine-binding fragment with an effective and safe guarantee in which a decrease in the activity of the protein due to heating is not observed and the infectious contaminating virus is inactivated. Is provided.
[0013]
A heparin-binding fragment of fibronectin is recognized as a new activity by fragmenting a protein in the same manner as the above-mentioned lysine-binding fragment. Homandberg et al. Prepared a heparin-binding fragment consisting of 29K-da in the molecule after limited degradation of fibronectin with Cathepsin and α-thrombin, and showed that the fragment has an angiogenesis inhibitory effect (Homandberg GA et al., Am. J. Pathol., 120 , p.327-332 (1985)). Fibronectin is also one of the heat-labile substances like the lysine-binding fragment described above. The inventor of the present application prepared a fibronectin heparin-binding fragment from fibronectin according to the method of Homandberg et al. Described above, and heated it in liquid form at 60 ° C. for 10 hours.
[0014]
As a result of heating, the 72K-da fragment obtained by control fibronectin and Cathepsin caused protein denaturation, and the protein recovery after filtration was less than 5%, whereas 29K-da showed no clouding of the liquid. The protein recovery rate was 90% or more. Further, even when α-Thrombin was allowed to act on the heat-denatured precipitates of fibronectin and 72K-da fragment, the recovery rate of the 29K-da fragment was less than 10% of the theoretical value. When the 29K-da fragment before and after heating was added to the proliferation system of vascular endothelial cells and its inhibitory effect was evaluated, the heated heparin-binding fragment showed activity equivalent to that of non-heated.
[0015]
Regarding the application of the patented invention of the present application, plasminogen and fibronectin are exemplified and described among plasma proteins, but the scope thereof is not limited thereto. In other words, in recent concepts of receptors and ligands, in addition to the functions of the entire protein, there are those that are notable for their activity as ligands. The ligand part is a part of the protein, and in the same manner as in this method, the protein may be enzymatically fragmented to prepare the part from plasma protein. When the ligand part is formulated, a heat treatment is carried out, and this is also the case when the same heating as the method provided by the present invention is performed. It is also possible to selectively prepare heat-stable fragments present in a small amount in the living body by heat-treating the unstable fragments and removing them.
[0016]
Hereinafter, in order to deepen the understanding of the present invention, description will be made along examples. However, the present invention is not limited to these examples.
[0017]
【Example】
Example 1
(Preparation of plasminogen)
To 10 liters of fresh frozen plasma, 20 mM benzamidine, 1 mM PMSF, 100 U / ml aprotinin (Tradiol (Bayer)) were added and cold-thawing was performed at room temperature. Thereafter, the suspended matter was centrifuged at 8,000 rpm, 4 ° C. for 20 minutes with a high-speed centrifuge (Tomy Seiko RS-20IV) to obtain a supernatant. The supernatant was passed through a Lysine-Shepharose 4B column (φ5.0 × 30 cm, Pharmacia) equilibrated with 50 mM Tris / 0.5 M NaCl (pH 7.5) at a flow rate of 1.0 ml / min. Further, it was washed with 5 volumes of the same buffer. Thereafter, the buffer was eluted with the same buffer containing 10 mM aminohexanoic acid. The eluate was dialyzed overnight at 4 ° C. against 0.1M ammonium carbonate buffer.
[0018]
Example 2
(Preparation of elastase-Sepharose)
50 mg of elastase (Sigma Tyep IV: From Porcine Pancreas) was dissolved in 0.1 M sodium hydrogen carbonate containing 0.5 M NaCl, and dialyzed against the same buffer at 4 ° C. overnight. CNBr-Activated Sepharose 4 Fast Flow (Pharmacia) was used as the gel for immobilizing elastase, and the coupling was performed at a dose of 5 mg Elastase / ml Gel according to the instruction manual.
[0019]
Example 3
(Preparation of plasminogen elastase degradation product (mini-plasminogen, LBS-I, LBS-II))
Plasminogen prepared by the lysine affinity gel of Example 1 was digested with the elastase prepared in Example 2 according to the method of Davidson et al. (Davidson JF et al., Raven Press, New York, 3 , p.191-209). (1978)), and then the elastase degradation product of plasminogen was separated by lysine affinity gel.
That is, aprotinin 100 U / ml (Tradirol, Bayer) was added to purified plasminogen 10 mg / ml and dissolved in 0.1 M ammonium carbonate. To this, elastase-Sepharose was added so that the enzyme substrate ratio was 1: 100, and the mixture was reacted at 25 ° C. with stirring overnight.
After completion of the reaction, the reaction solution was filtered through a glass filter, and the filtrate was passed through lysine-Sepharose (Pharmacia) equilibrated with 0.1 M ammonium carbonate buffer solution and washed with the same buffer solution. The flow-through fraction (miniplasminogen) was collected with a fraction collector (LKB Redirac E). The lysine-Sepharose binding fraction was eluted with the same buffer containing 20 mM aminohexanoic acid. After the flow-through fraction and the bound fraction (Plasminogen Lysine Binding Site I; hereinafter referred to as LBS-I, Plasminogen Lysin Binding Site II; hereinafter referred to as LBS-II, mixed solution) were pooled, ultrafiltration membranes (manufactured by YM-10 Amicon) ), And dialyzed with 0.1M sodium carbonate and phosphate buffer (pH 7.2) overnight in the air. The concentrated bound fraction was passed through Sephadex G-75 (Pharmacia) equilibrated with 0.1 M ammonium carbonate φ5.0 x 40 cm, and LBS-I (previous fraction), LBS-II (rear fraction) ).
[0020]
Example 4
(Heating of plasminogen lysine-binding fragment)
After lysine-binding fragment (LBS-I fraction) was dialyzed with purified water, 3 ml of each was dispensed into vials, boiled at 100 ° C. and sampled every predetermined time.
[0021]
Example 5
(Evaluation of protein stability (maintaining lysine binding ability))
The LBS-I fraction heated by the method of Example 4 was passed through a Lysine-ligand column, and by examining the amount of the fraction not bound to Lysine-ligand and the bound fraction, The inherent lysine binding ability was compared.
The solution was passed through a Lysine-Sepharose 4 column (φ1.5 × 15 cm) equilibrated with a buffer solution of 50 mM Tris / 0.1 M NaCl / 5 mM EDTA (pH 7.5), washed with the same buffer solution, and then 20 mM aminohexane. Gradient elution was performed with the same buffer containing acid. The absorbance at 280 nm at the time of washing and elution was monitored, and the stability was evaluated by the area ratio of elution.
FIG. 2 shows the elution pattern of heated and non-heated lysine-binding fragments from lysine-Sepharose 4B. As shown in the figure, the amount of protein not adsorbed on lysine-Sepharose by heating at 100 ° C. for 3 minutes is less than 5% of the total, and the elution pattern from the column is the same as that of unheated protein. Met.
[0022]
Example 6
(Evaluation of biological activity of protein)
Regarding the biological activity of the heated lysine-binding fragment, the angiogenesis inhibitory action of the lysine-binding fragment was evaluated using the proliferation ability of vascular endothelial cells according to the method of O'Reilly et al.
That is, according to the method of Folkman et al. (Folkman, J., Haudenschild, CC, and Zetter, BRLong-term culture of capillary endothelial cells.Proc. Natl. Acad. Sci. USA 76 , p. 5217-5221, (1979)). Obtained and managed vascular endothelial cells were prepared at 2,500 cells / ml, and the cells were seeded in a 24-well plate (NUNCLONE, NUNCLONE) at 0.5 ml / well for 24 hours at 37 ° C. in a CO 2 incubator (CO 2). 2 concentration 10%). The lysine-binding fragment heated in Example 4 was added to a medium containing 0.25 ml of DMEM, 5% BCS, and 1% kanamycin at 10 μg / ml, and further incubated for 20 minutes. Thereafter, the same buffer containing 1 ng / ml FGF was added to bring the total volume to 500 μl, and the cells were further cultured for 72 hours. As a target, a lysine-binding fragment that was not heated was added. After culturing, the wells were detached with trypsin, and the number of cells was counted.
As a result, when the control to which no lysine-binding fragment was added was taken as 100%, the heated fragment showed 56% and the non-heated fragment showed 58% vascular endothelial cell inhibitory effect. The same vascular endothelial cell proliferation inhibitory effect was confirmed.
[0023]
Example 7
(Protein bioactivity, evaluation in animal tests: comparison of in vivo angiogenesis inhibitory effect) In vivo angiogenesis inhibitory effect was evaluated by the dorsal airsac method using the Abe method (Abe T. et al. al., J. Clin. Invest. 92 , p. 54-61 (1993)). That is, two left and right Millipore chambers were inserted subcutaneously into the back of C57BL6 / J mice, and 3 Lewis mouse lung cancer 3LL-SA1 × 10 6 were injected into this chamber. At this time, tumor cells were not injected into one chamber and used as a control. The heated plasminogen lysine-binding fragment and the non-heated fragment prepared by the method of Example 4 were administered intraperitoneally at 1 mg / kg and reared for 5 days. As the new blood vessels, blood vessels directly under the Millipore chamber were input to the image analyzer, and their areas (occupancy) were compared. The blood vessel occupancy of the plasminogen lysine-binding fragment non-administered group was 15.0 ± 4.3% in the control chamber and 30.3 ± 5.8% in the tumor insertion chamber, whereas the heated fragment-administered group Is 16.1 ± 8.4% in the control chamber and 20.6 ± 7.7% in the tumor insertion chamber, and the non-heated fragment administration group is 19.8 ± 10.4% in the tumor insertion chamber. It was 22.3 ± 9.0%, and angiogenesis derived from the tumor was suppressed.
[0024]
Example 8
(Protein biological activity, evaluation in animal tests: comparison of growth inhibitory effects of lung metastases)
After transplantation of 10 6 cells of Lewis lung cancer (LL / 2) subcutaneously in the back of C57BL6 / J mice, the tumor was excised when the weight reached 500-700 mg, and further bred for 14-17 days. Thereafter, the heated plasminogen lysine-binding fragment and the non-heated fragment prepared by the method of Example 4 were daily administered into the abdominal cavity of the mouse at 1 mg / kg, and further reared for 7 to 10 days. Metastatic growth was compared by measuring the number and weight of lung metastases. As a control, 100 μl of physiological saline was administered instead of the plasminogen lysine-binding fragment. The lung weight was 0.24 ± 0.06 g in the non-heated fragment-administered group, whereas the heated fragment was 0.25 ± 0.12 g, compared to 0.59 ± 0.43 g in the control group. Tumor growth was suppressed.
[0025]
Example 9
(Virus inactivation test)
1/10 amount of Pseudorabies Virus 10 8.5 TCID50 / ml was added to the lysine-binding fragment solution prepared in Example 4 and boiled on a water bath for 3 minutes. The infectious titer was measured using Vero cells and the 50% infection end point (TCID50) method.
Before heating, a solution containing 10 7.5 TCID50 / ml virus was 10 0.5> TCID50 / ml after heating at 100 ° C. for 3 minutes, confirming that the virus was rapidly inactivated.
[0026]
Example 10
(Evaluation in fibronectin)
1. Fibronectin to prepare <br/> material of fibronectin fragments reported such Homandberg (Homandberg GA et al., Arch. Biochem. Biophys. 238, p.652-663 (1985)) was prepared as described in. Human plasma was purified with gelatin Sepharose and partially reduced. After reacting 0.8 μg / ml Catepsin D (manufactured by Sigma) and 1 mg / ml fibronectin for 3 hours at 30 ° C. with 0.1 M borate buffer (pH 3.7), the reaction was terminated, and gelatin Sepharose was added. The binding fragment (72K-da molecule) was recovered by passing through the solution. The bound fragment was dialyzed with 50 mM NaCl / 20 mM Tris buffer (pH 7.4) and reacted with 1 U α-Thrombin, and further decomposed into 29 K-da fragment and 50 K-da fragment. The 29K-da fragment was obtained as the unbound fraction of gelatin Sepharose.
[0027]
2. Fibronectin and heating <br/> fibronectin and fibronectin fragments of fibronectin fragment (72K-da, 29K-da ) after dialysis in saline, 10 hours at 60 ° C., and heated in liquid form. The heating condition at 60 ° C. for 10 hours is a condition that can prevent the transmission of viruses such as hepatitis virus with human serum albumin. Each heated specimen was centrifuged at 3,000 rpm, filtered through a membrane filter (MILEX-HA 0.45 μm: manufactured by Millipore), and the recovery rate was determined by measuring the amount of protein.
The 72K-da protein fragment after heating prepared by the above method was further decomposed with α-Thrombin according to the method of Furie et al. To prepare a 29K-da protein fragment (Furie MB et al., J. Biol. Chem. , 255 , p.4391-4394 (1980)).
[0028]
3. Heating results denatured <br/> heating of proteins by, fibronectin and 72K-da fragments cause protein denaturation, protein recovery after filtration while was less than 5%, 29K-da is the liquid No white turbidity was observed, and the protein recovery rate was 90% or more. Further, even when α-Thrombin was allowed to act on the heat-denatured precipitates of fibronectin and 72K-da fragment, the recovery rate of the 29K-da fragment was less than 10% of the theoretical value.
[0029]
4. Fibronectin fragment according to (29K -da) method described in Evaluation <br/> Example 6 before and after heating of the activity of the determination vascular endothelial cell growth inhibitory effect of heating the front and rear of the protein fragment (29K-da) did. 29K-da before and after heating was added to the proliferation system of vascular endothelial cells shown in Example 6 and the inhibitory effect was evaluated. As a result, the heated heparin-binding fragment showed activity equivalent to that of non-heated.
[Brief description of the drawings]
FIG. 1 is a diagram showing the concept of the present invention.
FIG. 2 is a diagram showing the ability of a plasminogen lysine-binding fragment to bind to lysine before and after heating.

Claims (2)

(a)プラスミノーゲンまたはフィブロネクチン含有溶液より、物理的、化学的あるいは酵素的蛋白質分解に基づく方法によって、前記蛋白質分子内の熱不安定部分を分離し除去する工程、及び(b)前記工程(a)の熱不安定部分除去後の生成物、すなわちプラスミノーゲンにおいてはリジン結合断片、フィブロネクチンにおいてはヘパリン結合断片含有溶液を感染性夾雑ウイルスのすべてを不活性化するために十分な条件下で熱処理するウイルス不活性化工程を含んでなることを特徴とする、感染性夾雑ウイルスを実質的に含有しないプラスミノーゲンリジン結合断片またはフィブロネクチンヘパリン結合断片含有蛋白質組成物を製造する方法。(a) separating and removing a thermally unstable portion in the protein molecule from a plasminogen- or fibronectin-containing solution by a method based on physical, chemical or enzymatic proteolysis; and (b) said step ( The product after removal of the heat labile part of a), ie, a lysine-binding fragment in plasminogen and a solution containing a heparin-binding fragment in fibronectin under conditions sufficient to inactivate all infectious contaminating viruses. A method for producing a protein composition containing a plasminogen lysine-binding fragment or fibronectin heparin-binding fragment substantially free of infectious contaminating virus, comprising a virus inactivation step of heat treatment. 前記熱処理の工程中に、選択的に、糖、アミノ酸、あるいはε-アミノカプロン酸もしくはその塩を共存させることを特徴とする、請求項1記載のプラスミノーゲンリジン結合断片またはフィブロネクチンヘパリン結合断片含有蛋白質組成物を製造する方法。
以上
The plasminogen lysine-binding fragment or fibronectin heparin-binding fragment-containing protein according to claim 1, wherein a sugar, an amino acid, or ε-aminocaproic acid or a salt thereof is selectively allowed to coexist during the heat treatment step. A method for producing a composition.
more than
JP12233096A 1996-04-19 1996-04-19 Method for producing active protein composition Expired - Fee Related JP3947247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12233096A JP3947247B2 (en) 1996-04-19 1996-04-19 Method for producing active protein composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12233096A JP3947247B2 (en) 1996-04-19 1996-04-19 Method for producing active protein composition

Publications (2)

Publication Number Publication Date
JPH09286798A JPH09286798A (en) 1997-11-04
JP3947247B2 true JP3947247B2 (en) 2007-07-18

Family

ID=14833308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12233096A Expired - Fee Related JP3947247B2 (en) 1996-04-19 1996-04-19 Method for producing active protein composition

Country Status (1)

Country Link
JP (1) JP3947247B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005079835A1 (en) * 2004-02-24 2007-08-02 株式会社ティーティーシー Anticancer drugs containing BL angiostatin

Also Published As

Publication number Publication date
JPH09286798A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
FI104378B (en) Process for producing thrombin
AU758152B2 (en) Pharmaceutical factor VII preparation
JP2799747B2 (en) A method for removing processing chemicals from unstable biological material mixtures using hydrophobic interaction chromatography
US4470968A (en) Pasteurized therapeutically active blood coagulation factor concentrates
US4876241A (en) Stabilization of biological and pharmaceutical products during thermal inactivation of viral and bacterial contaminants
JP3133338B2 (en) Methods for preparing virally safe biological compositions
US4923815A (en) Process for heat treating thrombin
US6358534B1 (en) Immunotolerant prothrombin complex preparation
JP2006306892A (en) Method for pasteurization of blood-plasma
AU549584B2 (en) Heat stabilization of plasma proteins
AU3515195A (en) Therapeutic grade thrombin production and products
CN107163138A (en) A kind of antitryptic isolation and purification methods of human plasma protein fraction α 1
EP0011739B1 (en) Process for obtaining blood coagulation factor xiii derived from human placenta
NZ224740A (en) Stabilisation of proteinaceous products during thermal inactivation of viral and bacterial compounds
JP3947247B2 (en) Method for producing active protein composition
EP0823476B1 (en) Method for activating prothrombin to thrombin
JPS6281327A (en) Heat-treatment of human thrombin preparation
CN112011527B (en) Preparation method of thrombin
US20060147441A1 (en) Plasminogen fragment having activity to inhibit tumor metastasis and growth and process for preparing same technical field
AU739845B2 (en) A method for inactivating pathogens, in particular viruses, in a biological material
JP3806471B2 (en) Plasminogen fragment having tumor metastasis growth inhibitory effect and method for preparing the fragment
JPH07308190A (en) Production of thrombin
JP4105249B2 (en) Method for producing α2 plasmin inhibitor
JPS6140392B2 (en)
JPS588835B2 (en) Heat stabilization method for urokinase

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees