JP3947245B2 - Corrosion resistance, oxidation resistance, irregular refractories - Google Patents

Corrosion resistance, oxidation resistance, irregular refractories Download PDF

Info

Publication number
JP3947245B2
JP3947245B2 JP09154996A JP9154996A JP3947245B2 JP 3947245 B2 JP3947245 B2 JP 3947245B2 JP 09154996 A JP09154996 A JP 09154996A JP 9154996 A JP9154996 A JP 9154996A JP 3947245 B2 JP3947245 B2 JP 3947245B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
resistance
cobalt
carbon
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09154996A
Other languages
Japanese (ja)
Other versions
JPH09278540A (en
Inventor
浩 北沢
辰児 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP09154996A priority Critical patent/JP3947245B2/en
Publication of JPH09278540A publication Critical patent/JPH09278540A/en
Application granted granted Critical
Publication of JP3947245B2 publication Critical patent/JP3947245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、溶融金属容器の内張り材、高温雰囲気における鉄皮の保護用として好適に使用される不定形耐火物に関する。
【0002】
【従来の技術】
炭化珪素及びカーボンは溶融スラグに対して濡れ難く、耐食性に優れていることから、炭化珪素、カーボンを配合した不定形耐火物が溶融金属容器の内張り材、或いは高温雰囲気における鉄皮の保護材として使用されている。しかしながら、この配合物は、高温下では酸化されやすいこと、とくにカーボンを配合したものは焼結しにくい欠点があり、この欠点が耐食性の低下をもたらす。
【0003】
この問題を解決する手段としては、酸化防止剤(焼結剤)として燐酸ガラス、硼珪酸ガラスなどを添加することが知られている。この酸化防止剤は、不定形耐火物を施した部位の使用温度下で、粘性の高い融液となり炭化珪素やカーボンの周囲に保護膜を生成し酸化を防止する。ところが、このタイプの酸化防止剤は、その酸化防止と焼結促進効果を十分に発揮させるためには添加量が多くする必要があり、そのため、十分な耐食性は得られないという問題が新たに生じる。
【0004】
これらの問題を解決するために、耐火物内で反応して、組織の空隙に針状結晶等を生成することで緻密な組織を形成し、酸化防止機能や強度を向上したする不定形耐火物が、特開平4−243981号公報に開示されている。これは、炭化珪素、アルミナ、及び炭素よりなる配合物に、シリコンを、炭素/シリコンの比がを3/7以下となるように1〜5重量%添加することによって、稼働面において、シリコンのSiと炭素のCとが反応してβ−SiCウィスカーを生成し、これによる組織の緻密化によって耐食性の向上を図るものである。また、特公平6−8223号公報には、炭化珪素、カーボン、アルミナ微粉及びシリカ超微粉、炭化硼素の組成物に、SiまたはAl−Si合金の微粉を1〜8wt%添加して、高温下で酸化時に3Al23・2SiO2を固溶した9Al23・2B23の柱状結晶を生成させることにより、組織の緻密化と酸化防止効果が得られることが開示されている。
【0005】
しかしながら、これら金属粉による酸化防止は耐火物内での反応で組織改善を行うものであるが、これの添加量は多めになり、反応は、温度、雰囲気等の条件に支配されるために、実際の使用においては、耐用にばらつきを生じやすいという問題がある。
【0006】
【発明が解決しようとする課題】
この発明が解決しようとする課題は、従来の酸化防止剤に比べて極小量の配合物の添加によって、炭化珪素、カーボンの耐食性機能を十分に発揮させることができ、安定して焼結強度と耐酸化性の向上が可能な不定形耐火物を得ることにある。
【0007】
【課題を解決するための手段】
この発明は、コバルト酸化物、金属コバルト粉末以下コバルト類と云う)が、従来の酸化防止剤に比べて、極少量の添加で不定形耐火物の焼結強度と耐酸化特性を向上させる効果があることに着目して完成した。
【0008】
すなわち、この発明は、炭化珪素2〜92重量%とカーボン原料を2〜7重量%、若しくは、カーボン原料を2〜7重量%を含む配合物に、該配合物100重量%に対する外掛けで、コバルト酸化物金属コバルト粉末の1種を金属コバルトに換算して0.01〜0.5重量%添加したことを特徴とする。
【0009】
コバルト類の添加による焼結強度と、耐酸化性、耐食性の向上についてのメカニズムははっきりしないが、コバルト類は炭化珪素中の不純物または超微粉シリカ等のSiO2成分、超微粉アルミナ等のAl23成分、あるいはアルミナセメント中のCaO成分等と反応して、粘凋なガラスを容易に生成するため、耐酸化性向上、焼結強度向上に寄与すると考えられる。そして、極少量の添加で効果が発現するため、炭化珪素やカーボン等が十分にその機能を発揮して耐食性も向上する。
【0010】
【発明の実施の形態】
配合物中の、炭化珪素が92重量%より多いと、耐火物を結合させるアルミナセメント等のバインダー量が減少し、十分な施工強度を得ることができない。また、2重量%より少ないと、これらの特徴である耐食性、耐スラグ浸潤性等の機能を発揮できない。カーボン質原料は炭化珪素との併用とは関わりなく2〜7重量%とする。2重量%より少ないと耐スラグ浸潤性が不十分であり、7重量%より多いと施工水分が増加しポーラスな組織となるため耐酸化性、耐食性が低下する。
【0011】
炭化珪素原料は特に限定しないが、成分中に不純物として未反応のカーボンが多いと施工水分が増加し、組織劣化を招くため、SiC含有量は85重量%以上のものが好ましい。カーボン質原料としては、石油ピッチ、石炭ピッチ、メソフェーズカーボン、コークス、カーボンブラック、土状黒鉛粉、鱗状黒鉛、人造黒鉛、の一種または二種以上使用できる。
【0012】
酸化防止剤、焼結剤として使用するコバルト類を、金属コバルトに換算して0.01〜0.5重量%としたのは、金属コバルトとして0.01より少ないと酸化防止剤(焼結剤)としての効果が得られず、0.5重量%より多いと、低融点物質の生成量が多くなり耐食性の低下をもたらす。
【0013】
また、コバルト以外の酸化防止剤、焼結剤として炭化硼素(B4C)、金属シリコン等も少量併用することもできる。
【0014】
炭化珪素、カーボン質以外の耐火物原料は、従来の流し込み材と変わりなく特に限定されない。例えば、密充填となるように粗粒(10〜1mm)、中粒(1〜0.075mm)、微粉(0.075mm未満)を組み合わせる形で、電融アルミナ、焼結アルミナ、ボーキサイト、ばん土頁岩、電融ムライト、焼結ムライト、シャモット、蝋石、珪石、ジルコン、ジルコニア、電融スピネル、焼結スピネル、電融マグネシア、焼結マグネシア等の酸化物系の物を一種または二種以上使用し、超微粉には炭化珪素、アルミナ、無定形シリカ、酸化チタン、ジルコン、ジルコニア、粘土等の一種または二種以上を使用できる。
【0015】
その他結合剤として、アルミナセメント、珪酸ソーダ、活性度の高いマグネシア等を使用できる。
【0016】
分散剤として、燐酸ソーダ、ポリアクリル酸ソーダ等、または界面活性剤も使用できる。
【0017】
爆裂防止剤としては、金属アルミニウム等を添加するとよい。
【0018】
【実施例】
表1〜4に、各実施例と比較例の配合割合と試験結果を示す。なお、表中で配合物で外掛け添加したものは数値の前に+表示した。
【0019】
各試験測定は次の方法で得られた。
【0020】
圧縮強さは、40×40×160mmの試験片を大気中1000°C×3時間焼成した。
【0021】
酸化層厚みは、φ50×50mmの試験片を大気中1000°C×3時間焼成した断面を切削し、カーボンが焼失して白くなった部分の厚みを測定した。
【0022】
侵食試験について表1は、回転ドラムに試験片を内張りし、侵食剤として高炉スラグを投入、表2は、高周波炉に試験片を内張りし、銑鉄を溶解後、侵食剤として高炉スラグを投入、表3、表4は回転ドラムに試験片を内張りし、浸食剤として、混銑車スラグを投入し、それそれ酸素、プロパン燃焼を熱源に1550°C×30分を15回繰り返した。
【0023】
侵食寸法は、表1においては比較例1の侵食寸法を100とした指数で、表2は比較例を100とした指数、表3は比較例10を100とした指数、表4は比較例16を100とした指数で示した。これらの数値は小さいほど耐食性に優れている。
【0024】
実施例における不定形耐火物についての、内容を以下に説明する。
【0025】
【表1】

Figure 0003947245
表1は、高炉主樋スラグゾーン用耐火物であり、高炉スラグに対する耐食性を高めるために、炭化珪素を多く、カーボン質原料としてピッチを配合した。これらは酸化されやすい原料を主原料としているので酸化防止効果が重要である。実施例1〜は比較例1〜4に比べて、耐食性、耐酸化性ともに優れた結果が得られた。それに対し、比較例1は酸化防止剤が無添加であるため耐酸化性に劣り、比較例2、3は、従来の酸化防止剤で効果を狙った例であるが、耐酸化性、強度の向上の代わりに耐食性が犠牲になっている。比較例4はコバルト類が0.7重量%と多いため、耐酸化性は優れているが、耐食性に劣っていた。
【0026】
【表2】
Figure 0003947245
表2は、高炉主樋メタルゾーン用耐火物であり、メタルゾーンでは溶銑及び鉄酸化物に対する耐食性と高炉スラグに対する耐食性を高める必要があり、電融アルミナと耐溶銑性、耐鉄酸化物としてスピネル骨材を適用した実施例〜12であり、実施例11以外は耐高炉スラグ性のため炭化珪素、カーボンを配合した。主樋スラグゾーン材に比べ炭化珪素、カーボンの使用量は少ないが酸化防止効果の役割は大きく、耐食性、耐酸化性に優れた結果が得られた。それに対し酸化防止剤無添加の比較例は耐酸化性、強度、耐食性ともに劣る。比較例は酸化防止剤として炭化硼素を添加した例で、耐酸化性、強度向上には効果があるものの、コバルト類に比較して耐食性に低下が見られた。比較例は金属シリコン添加による酸化防止効果を狙ったものであるが、添加量が多いわりにその効果は十分でなく、耐食性は一段と低下した。比較例は金属コバルト換算で添加量が規定値を越えたため、耐食性の低下がみられる。
【0027】
【表3】
Figure 0003947245
表3は、混銑車用耐火物としてアルミナ質原料を多くして実施したもので、実施例13〜21は比較例1015に比べ、耐食性、耐酸化性に優れた結果が得られている。比較例10は酸化防止剤が無添加であるため耐酸化性、強度、耐食性共に劣る。比較例11は酸化防止剤として炭化硼素を添加した。耐酸化性、強度向上には効果があるものの、コバルト類に比べ添加量が多いため耐食性に低下が見られる。比較例1213は金属シリコン、燐酸ガラスによる酸化防止効果を狙ったものであるが、その効果は十分でなく、また、コバルト類に比べ添加量も多いため耐食性で劣る。比較例1415は金属コバルト換算で添加量が規定値を越えたため耐食性の低下が見られる。
【0028】
【表4】
Figure 0003947245
表4は、溶鋼鍋スラグゾーン用の耐火物であり、溶鋼鍋においてはスラグの塩基度(CaO/SiO2)が高いためマグネシア、カーボンを原料とした。実施例2225は比較例1619に比べ、耐食性、耐酸化性に優れた結果が得られている。比較例16の炭化硼素では耐酸化性、耐食性ともに十分ではない。比較例17は金属シリコンを添加したがその効果は十分でなく、また、コバルト類に比べ添加量で見ると限界値と同じであるが耐食性ではるかに劣った。比較例18は金属シリコンと炭化硼素を併用しているため酸化防止と、強度向上効果は大きいが耐食性で劣る。比較例19は金属コバルト換算で添加量が規定値を越えたため、耐食性の低下が見られた。
【0029】
なお、各表中のコバルト類の純度は、Coが72重量%の四三酸化コバルト、Co78重量%の一酸化コバルト、Co95重量%の金属コバルトを使用した。
【0030】
以上の内容を各表でみると、本発明の規定範囲内のカーボンまたは炭化珪素及びカーボンとコバルト類の使用量を示す実施例は、いずれも耐食性、耐酸化性に優れた数値を示していることがわかる。
【0031】
【発明の効果】
この発明により、従来の配合中に使用されている炭化珪素、カーボンに対する酸化防止剤に比べて極小量のコバルト類の添加で炭化珪素、カーボンの耐食性機能を十分に発揮させることができ、焼結強度、耐酸化性が向上し、実炉使用において必要な安定した耐用が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an indeterminate refractory material suitably used, for example, as a lining material for a molten metal container and for protection of an iron skin in a high temperature atmosphere.
[0002]
[Prior art]
Since silicon carbide and carbon are difficult to wet with molten slag and have excellent corrosion resistance, amorphous refractories containing silicon carbide and carbon are used as lining materials for molten metal containers, or as protective materials for iron skin in high-temperature atmospheres. in use. However, this compound has a defect that it is easily oxidized at a high temperature, and particularly a compound containing carbon is difficult to sinter, and this defect causes a decrease in corrosion resistance.
[0003]
As means for solving this problem, it is known to add phosphate glass, borosilicate glass or the like as an antioxidant (sintering agent). This antioxidant becomes a highly viscous melt at the operating temperature of the part where the amorphous refractory is applied, and forms a protective film around silicon carbide and carbon to prevent oxidation. However, it is necessary to increase the amount of addition of this type of antioxidant in order to fully exhibit its antioxidant and sintering promoting effects, and therefore a new problem arises that sufficient corrosion resistance cannot be obtained. .
[0004]
In order to solve these problems, an amorphous refractory that reacts in the refractory and forms a fine structure by generating needle-like crystals etc. in the voids of the structure, improving the antioxidant function and strength Is disclosed in JP-A-4-243981. This is because silicon is added to a compound consisting of silicon carbide, alumina, and carbon by adding 1 to 5% by weight of silicon so that the ratio of carbon / silicon is 3/7 or less. Si and carbon C react to produce β-SiC whiskers, thereby improving the corrosion resistance by densifying the structure. Japanese Patent Publication No. 6-8223 discloses a composition of silicon carbide, carbon, alumina fine powder, silica ultra fine powder, and boron carbide to which 1 to 8 wt% of fine powder of Si or Al—Si alloy is added. in time by forming a columnar crystal of 3Al 2 O 3 · 2SiO 9Al 2 was dissolved 2 O 3 · 2B 2 O 3 oxide, densification and antioxidant effect of tissue that can be obtained is disclosed.
[0005]
However, the oxidation prevention by these metal powders is to improve the structure by a reaction in the refractory, but the amount of addition is increased, and the reaction is governed by conditions such as temperature, atmosphere, etc. In actual use, there is a problem that the durability tends to vary.
[0006]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that the addition of an extremely small amount of a compound compared to conventional antioxidants can sufficiently exhibit the corrosion resistance function of silicon carbide and carbon, and can provide stable sintering strength. The object is to obtain an amorphous refractory capable of improving oxidation resistance.
[0007]
[Means for Solving the Problems]
The present invention, cobalt oxide, metallic cobalt powder (hereinafter referred to as cobalt compound), compared to the conventional antioxidants, to improve the sintering strength and oxidation resistance of the small amounts of monolithic refractories in addition It was completed paying attention to the effect.
[0008]
That is, the present invention is a compound containing 2 to 92% by weight of silicon carbide and 2 to 7% by weight of a carbon raw material, or 2 to 7% by weight of a carbon raw material . One type of cobalt oxide and metallic cobalt powder is characterized by adding 0.01 to 0.5% by weight in terms of metallic cobalt.
[0009]
Although the sintering strength and the mechanism for improving oxidation resistance and corrosion resistance due to the addition of cobalt are not clear, cobalt is an impurity in silicon carbide or SiO 2 components such as ultrafine silica and Al 2 such as ultrafine alumina. It reacts with the O 3 component or the CaO component in the alumina cement to easily produce a viscous glass, which is considered to contribute to the improvement of oxidation resistance and the sintering strength. And since an effect expresses by addition of a very small amount, silicon carbide, carbon, etc. fully exhibit the function, and corrosion resistance improves.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
When the amount of silicon carbide in the blend is more than 92% by weight, the amount of binder such as alumina cement to which the refractory is bonded is reduced, and sufficient construction strength cannot be obtained. On the other hand, when the content is less than 2% by weight, the functions such as corrosion resistance and slag infiltration resistance which are these characteristics cannot be exhibited. The carbonaceous raw material is 2 to 7% by weight irrespective of the combined use with silicon carbide. When the amount is less than 2% by weight, the slag infiltration resistance is insufficient, and when the amount is more than 7% by weight, the construction moisture increases and a porous structure is formed, so that the oxidation resistance and the corrosion resistance are lowered.
[0011]
The silicon carbide raw material is not particularly limited. However, if there is a large amount of unreacted carbon as an impurity in the component, the working moisture increases and the structure deteriorates. Therefore, the SiC content is preferably 85% by weight or more. As the carbonaceous raw material, one or more of petroleum pitch, coal pitch, mesophase carbon, coke, carbon black, earthy graphite powder, scale-like graphite, and artificial graphite can be used.
[0012]
The amount of cobalt used as an antioxidant and a sintering agent is 0.01 to 0.5% by weight in terms of metallic cobalt. When the amount of metallic cobalt is less than 0.01, an antioxidant (sintering agent) ) Cannot be obtained, and if it exceeds 0.5% by weight, the amount of low-melting-point substance produced is increased, resulting in a decrease in corrosion resistance.
[0013]
In addition, an antioxidant other than cobalt and boron carbide (B 4 C), metal silicon and the like as a sintering agent can be used in a small amount.
[0014]
Refractory raw materials other than silicon carbide and carbonaceous matter are not particularly limited as they are in the conventional casting materials. For example, fused alumina, sintered alumina, bauxite, clay, combined with coarse particles (10 to 1 mm), medium particles (1 to 0.075 mm), and fine particles (less than 0.075 mm) so as to be closely packed. Use one or more oxides such as shale, electrofused mullite, sintered mullite, chamotte, wax, quartzite, zircon, zirconia, fused spinel, sintered spinel, fused magnesia, sintered magnesia. As the ultrafine powder, one or more of silicon carbide, alumina, amorphous silica, titanium oxide, zircon, zirconia, clay and the like can be used.
[0015]
As other binders, alumina cement, sodium silicate, magnesia having high activity and the like can be used.
[0016]
As a dispersant, sodium phosphate, sodium polyacrylate, or a surfactant can be used.
[0017]
As the explosion preventing agent, metallic aluminum or the like is preferably added.
[0018]
【Example】
In Tables 1-4, the compounding ratio and test result of each Example and a comparative example are shown. In the table, a compound added externally is indicated by + in front of the numerical value.
[0019]
Each test measurement was obtained by the following method.
[0020]
As for the compressive strength, a test piece of 40 × 40 × 160 mm was baked in the atmosphere at 1000 ° C. for 3 hours.
[0021]
The thickness of the oxide layer was measured by cutting the cross section obtained by firing a test piece of φ50 × 50 mm in the atmosphere at 1000 ° C. × 3 hours and whitening the carbon by burning.
[0022]
About the erosion test Table 1 is lined with a test piece on a rotating drum and blast furnace slag is introduced as an erodant. Table 2 is lined with a test piece on a high frequency furnace and melted pig iron, and then blast furnace slag is introduced as an erodant. In Tables 3 and 4, a test piece was lined on a rotating drum, and chaos slag was introduced as an erodant, and 1550 ° C × 30 minutes were repeated 15 times using oxygen and propane combustion as heat sources.
[0023]
In Table 1, the erosion dimension is an index with the erosion dimension of Comparative Example 1 as 100, Table 2 is an index with Comparative Example 6 as 100, Table 3 is an index with Comparative Example 10 as 100, and Table 4 is a Comparative Example. The index is shown with 16 being 100. The smaller these values, the better the corrosion resistance.
[0024]
The contents of the irregular refractory in the examples will be described below.
[0025]
[Table 1]
Figure 0003947245
Table 1 shows refractories for the blast furnace main slag zone. In order to improve the corrosion resistance against the blast furnace slag, silicon carbide is contained in a large amount and pitch is blended as a carbonaceous raw material. Since these are mainly oxidizable raw materials, the antioxidant effect is important. In Examples 1 to 5 , compared to Comparative Examples 1 to 4, excellent results were obtained in both corrosion resistance and oxidation resistance. On the other hand, Comparative Example 1 is inferior in oxidation resistance because no antioxidant is added, and Comparative Examples 2 and 3 are examples aiming at effects with conventional antioxidants. Corrosion resistance is sacrificed instead of improvement. Since Comparative Example 4 had a high cobalt content of 0.7% by weight, the oxidation resistance was excellent, but the corrosion resistance was poor.
[0026]
[Table 2]
Figure 0003947245
Table 2 shows the refractories for the blast furnace main metal zone. In the metal zone, it is necessary to increase the corrosion resistance against hot metal and iron oxide and the corrosion resistance against blast furnace slag. Fused alumina, hot metal resistance, and spinel as iron oxide resistance Examples 6 to 12 to which aggregates were applied. Except for Example 11, silicon carbide and carbon were blended for blast furnace slag resistance. Although the amount of silicon carbide and carbon used was smaller than that of the main slag zone material, the role of the antioxidant effect was large, and the results were excellent in corrosion resistance and oxidation resistance. On the other hand, Comparative Example 6 with no antioxidant added is inferior in oxidation resistance, strength, and corrosion resistance. Comparative Example 7 was an example in which boron carbide was added as an antioxidant. Although effective in improving oxidation resistance and strength, the corrosion resistance was reduced compared to cobalt. Comparative Example 8 aimed at an antioxidant effect due to the addition of metal silicon, but the effect was not sufficient even though the addition amount was large, and the corrosion resistance was further lowered. In Comparative Example 9 , since the addition amount exceeded the specified value in terms of metallic cobalt, the corrosion resistance was reduced.
[0027]
[Table 3]
Figure 0003947245
Table 3 shows the results obtained by increasing the amount of alumina material as a refractory for a kneading vehicle, and Examples 13 to 21 are superior to Comparative Examples 10 to 15 in terms of corrosion resistance and oxidation resistance. . Comparative Example 10 is inferior in oxidation resistance, strength and corrosion resistance because no antioxidant is added. In Comparative Example 11, boron carbide was added as an antioxidant. Although effective in improving the oxidation resistance and strength, the corrosion resistance is reduced due to the amount added compared to cobalt. Comparative Examples 12 and 13 are aimed at the antioxidation effect by metallic silicon and phosphate glass, but the effect is not sufficient, and the amount of addition is larger than that of cobalt, so the corrosion resistance is inferior. In Comparative Examples 14 and 15 , since the addition amount exceeded the specified value in terms of metallic cobalt, the corrosion resistance was reduced.
[0028]
[Table 4]
Figure 0003947245
Table 4 shows refractories for the molten steel pan slag zone. Since the basicity of slag (CaO / SiO2) is high in the molten steel pan, magnesia and carbon were used as raw materials. In Examples 22 to 25, as compared with Comparative Examples 16 to 19 , results excellent in corrosion resistance and oxidation resistance were obtained. The boron carbide of Comparative Example 16 is not sufficient in both oxidation resistance and corrosion resistance. In Comparative Example 17 , metallic silicon was added, but the effect was not sufficient, and compared with cobalt, the amount of addition was the same as the limit value, but the corrosion resistance was much inferior. Since Comparative Example 18 uses metallic silicon and boron carbide in combination, the effect of preventing oxidation and improving the strength is great, but the corrosion resistance is poor. In Comparative Example 19 , since the addition amount exceeded the specified value in terms of metallic cobalt, a decrease in corrosion resistance was observed.
[0029]
In addition, the purity of cobalt in each table used Co cobalt 72 wt% cobalt tetroxide, Co78 wt% cobalt monoxide, and Co95 wt% metal cobalt.
[0030]
When the above contents are seen in each table, the examples showing the amounts of carbon or silicon carbide and carbon and cobalt used within the specified range of the present invention all show numerical values excellent in corrosion resistance and oxidation resistance. I understand that.
[0031]
【The invention's effect】
By this invention, the addition of a minimal amount of cobalt compared to the silicon carbide and carbon antioxidants used in the conventional compounding can fully exhibit the corrosion resistance function of silicon carbide and carbon, and sintering. Strength and oxidation resistance are improved, and stable durability required in actual furnace use becomes possible.

Claims (1)

炭化珪素2〜92重量%とカーボン原料を2〜7重量%、若しくは、カーボン原料を2〜7重量%を含む配合物に、該配合物100重量%に対する外掛けで、コバルト酸化物金属コバルト粉末の中の少なくとも1種を金属コバルトに換算して0.01〜0.5重量%添加したことを特徴とする耐食性、耐酸化性不定形耐火物。Cobalt oxide , metallic cobalt in a blend containing 2 to 92% by weight of silicon carbide and 2 to 7% by weight of carbon raw material or 2 to 7% by weight of carbon raw material, A corrosion-resistant and oxidation-resistant amorphous refractory, characterized in that 0.01 to 0.5% by weight of at least one of powders in terms of metallic cobalt is added.
JP09154996A 1996-04-12 1996-04-12 Corrosion resistance, oxidation resistance, irregular refractories Expired - Fee Related JP3947245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09154996A JP3947245B2 (en) 1996-04-12 1996-04-12 Corrosion resistance, oxidation resistance, irregular refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09154996A JP3947245B2 (en) 1996-04-12 1996-04-12 Corrosion resistance, oxidation resistance, irregular refractories

Publications (2)

Publication Number Publication Date
JPH09278540A JPH09278540A (en) 1997-10-28
JP3947245B2 true JP3947245B2 (en) 2007-07-18

Family

ID=14029583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09154996A Expired - Fee Related JP3947245B2 (en) 1996-04-12 1996-04-12 Corrosion resistance, oxidation resistance, irregular refractories

Country Status (1)

Country Link
JP (1) JP3947245B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6086751B2 (en) * 2013-02-20 2017-03-01 新日鐵住金株式会社 Refractory mortar
JP6302626B2 (en) * 2013-05-21 2018-03-28 新日鐵住金株式会社 Refractory mortar
CN109896846B (en) * 2019-03-29 2021-06-15 襄阳聚力新材料科技有限公司 Intermediate frequency furnace bottom argon blowing air brick and preparation method thereof
CN113121120B (en) * 2021-05-31 2022-11-22 四川华炫新材料科技有限公司 High-alkali-resistance basalt fiber and preparation method thereof
CN118324501B (en) * 2024-06-15 2024-08-23 河北国亮新材料股份有限公司 High-strength long-service-life aluminum silicon carbide carbon brick and preparation method thereof

Also Published As

Publication number Publication date
JPH09278540A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
EP0476112B1 (en) Magnesite-carbon refractories
JP3947245B2 (en) Corrosion resistance, oxidation resistance, irregular refractories
JPH0196070A (en) Unfixed shape refractory to be used for spout for molten metal
JP2743209B2 (en) Carbon containing refractories
JPH0737343B2 (en) Irregular refractory for hot metal pretreatment container
JP2950622B2 (en) Carbon containing refractories
JPH0585805A (en) Carbon-containing fire-resistant material
JP3124809B2 (en) Refractory brick containing low siliceous magnesia clinker
JP2922998B2 (en) Irregular refractories for blast furnace gutters
JP2868809B2 (en) Magnesia carbon brick
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JP2947390B2 (en) Carbon containing refractories
JP2765458B2 (en) Magnesia-carbon refractories
JPH0570248A (en) Monolithic refractory for blast-furnace molten iron runner
JPS63285168A (en) Carbon containing refractories
CA1189093A (en) Carbon-containing refractory
JPS6152099B2 (en)
JPH0283250A (en) Production of carbon-containing calcined refractory
JPH05319902A (en) Carbon-containing basic refractory
JPH05170519A (en) Magnesia-carbonaceous refractory
JPH1059779A (en) Monolithic refractory material containing graphite
JPH07172907A (en) Carbon-containing refractory
JPH07102987B2 (en) Carbon-containing refractory
JPH06135764A (en) Unfired carbon-containing refractory
JPH05319898A (en) Carbon containing refractory

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees