JP3945744B2 - Method for producing ferrite molded body - Google Patents

Method for producing ferrite molded body Download PDF

Info

Publication number
JP3945744B2
JP3945744B2 JP2001049744A JP2001049744A JP3945744B2 JP 3945744 B2 JP3945744 B2 JP 3945744B2 JP 2001049744 A JP2001049744 A JP 2001049744A JP 2001049744 A JP2001049744 A JP 2001049744A JP 3945744 B2 JP3945744 B2 JP 3945744B2
Authority
JP
Japan
Prior art keywords
ferrite
pressure
molded body
granules
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001049744A
Other languages
Japanese (ja)
Other versions
JP2002255658A (en
Inventor
浩 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2001049744A priority Critical patent/JP3945744B2/en
Publication of JP2002255658A publication Critical patent/JP2002255658A/en
Application granted granted Critical
Publication of JP3945744B2 publication Critical patent/JP3945744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種電磁気材料として有用なフェライト焼結体を製造するためのフェライト成形体の製造方法、さらに詳しくいえば、優れた成形性、すなわちバランスがとれた低圧つぶれ性、耐崩壊性及び耐スティッキング性を有するフェライト顆粒を用いたフェライト成形体の製造方法に関するものである。
【0002】
【従来の技術】
フェライトは、各種磁気材料として電子部品に広く用いられているが、この場合、フェライト原料に必要な添加成分、例えばバインダーを加えたものからフェライト成形体を製造し、これを焼成することによって目的の電子部品としている。
【0003】
このフェライト成形体の製造には、種々の方法がとられているが、一般的に最も広く行われているのは、乾式加圧形成法、すなわちフェライト原料とバインダーと水から水性スラリーを調製し、これを噴霧乾燥して得た粉末を造粒するか、あるいはフェライト粉末とバインダー水溶液とを撹拌混合し、乾燥とオシレーティング押出し造粒して、先ず顆粒を製造し、これを加圧成形する方法である。
【0004】
そして、このようなフェライト成形体を製造するためのフェライト顆粒については、(1)適度の流動性を有し、所定量の顆粒を金型に流し込む際に均一に充填しうること、(2)金型内で加圧成形する際、低圧、例えば29〜147MPaの圧力で均一につぶれること、すなわち低圧つぶれ性を有すること、(3)金型にフェライト顆粒から生じる微粒が付着しないこと、すなわち耐スティッキング性を有すること、(4)貯蔵中、運搬中あるいは金型への充填時に顆粒同士の衝突により崩壊を起さないこと、すなわち耐崩壊性を有すること、及び(5)適度のかさ密度を有し、金型への充填時や成形時に金型内から顆粒が流出しないこと、すなわち金型への充填性がよいこと、などの物性が要求される。
【0005】
このような要求物性を備えたフェライト顆粒を得るために、これまで水性スラリーの調製時に、特定の分散剤を用い、流動性及び低圧つぶれ性を改善する方法(特開平5−159918号公報)、バインダーの偏析を減少することにより流動性及び低圧つぶれ性を改善する方法、低温で熱分解するワックス系結合剤を用いて顆粒にピンホールのような欠陥が生じるのを抑制し、強度を向上させる方法などが提案されている。
【0006】
しかしながら、これらの方法は、ある程度流動性、金型への充填性、低圧つぶれ性が向上したフェライト顆粒を得ることができるが、このフェライト顆粒を用いて得られる成形体は寸法精度が不十分で、複雑な形状のものの成形には不適当であったり、貯蔵中や輸送中又は金型への充填時に崩壊したり、金型成形時にスティッキングを生じ、連続的作業を妨げたり、得られた成形体の強度が不足し、欠けや折れなどの破損を起しやすいなどの欠点があり、必ずしも満足しうるものではなかった。
【0007】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、流動性、金型への充填性及び耐スティッキング性が良好で、低圧つぶれ性が優れた顆粒を用いて得られる高強度を有する高密度フェライト成形体得ることを目的としてなされたものである。
【0008】
【課題を解決するための手段】
本発明者は、フェライト焼結体を製造するに先立って形成するフェライト成形体の物性について、種々研究を重ねた結果、結合剤として特定のポリビニルアルコールを用いるとともに、マイクロクリスタリンワックスを添加して調製したフェライト顆粒は、流動性、金型への充填性、耐スティッキング性が優れ、このフェライト顆粒を用いて50〜300MPaの圧力で加圧成形すると高強度で高密度のフェライト成形体得られることを見出し、この知見に基づいて本発明をなすに至った。
【0009】
すなわち、本発明は、(A)フェライト粉末100質量部と(B)平均重合度500〜1700、平均けん化度88〜98モル%のポリビニルアルコール0.4〜3質量部と(C)平均粒径1μm以下のマイクロクリスタリンワックス0.3〜2質量部を含む水性スラリーを造粒し、次いでこのようにして得た顆粒を成形用金型に充填し、50〜300MPaの圧力で加圧成形することを特徴とする、成形圧力98MPaで成形したときの金型からの抜き圧が40〜51kgfであり、かつ抗折強度1.6〜1.8MPa、密度2.5〜3.5g/cm 3 を有するフェライト成形体の製造方法を提供するものである。
【0010】
【発明の実施の形態】
本発明方法で用いる顆粒は、(A)フェライト粉末と(B)ポリビニルアルコールと(C)マイクロクリスタリンワックスとを必須成分として含有している。
この中の(A)成分として用いられるフェライト粉末は、これまで各種磁性材料、電子材料のフェライト原料として用いられていたものの中から任意に選ぶことができ、特に制限はない。
【0011】
本発明で用いる(A)成分としては、これらのフェライトを粉末として用いるが、この粉末粒子の粒径は、これまでフェライト焼結体の製造に通常使用されている粉末粒子の粒径の範囲内で任意に選ぶことができる。この粒径範囲は、例えば平均粒径として0.5〜5μm、好ましくは0.7〜3μmの範囲である。
このような平均粒径をもつ粒子は、フェライト原料をボールミル、ロッドミル、振動ボールミル、マイクロナイザー、アトマイザー、衝撃ミル、ジェットミルなどの粉砕機を用いて粉砕することによって得られる。この際の粉砕方式は、湿式粉砕、乾式粉砕のいずれでもよい。
【0012】
次に、(B)成分のポリビニルアルコールは、一次粒子の結合剤、すなわちフェライト原料の粉末粒子同士の結合剤としての役割を果すもので、得られるフェライト成形体製造用顆粒の低圧つぶれ性、耐崩壊性及び成形体強度に関係するものである。特に、ポリビニルアルコールの平均けん化度はフェライト成形体の成形性に大きな影響を及ぼす。ポリビニルアルコールの好ましい平均けん化度は88〜98モル%、より好ましくは94.5〜97.5モル%である。平均けん化度が88モル%未満のポリビニルアルコールを用いる場合は、顆粒の低圧つぶれ性はよいが、耐崩壊性及び耐スティッキング性が劣ったものとなる。また、このようなものは水への溶解性がよく、スラリー調製が簡単で噴霧造粒には適するが、オシレーティング押出造粒時には金網に材料が付着して連続整粒が困難になる。逆に、平均けん化度が98モル%よりも大きい完全けん化ポリビニルアルコールを用いた場合は、顆粒の耐崩壊性はよいが、硬いため低圧つぶれ性が悪くなる上に、水への溶解性が低く、スラリー調製がむずかしくなる。
【0013】
また、このポリビニルアルコールとしては、平均重合度500〜1700のものを用いることが必要である。平均重合度が500未満のものを用いると、顆粒の低圧つぶれ性はよいが、耐崩壊性が悪く、得られる成形体の強度が低くなる。逆に、平均重合度が1700よりも大きいものを用いると、顆粒の耐崩壊性及び成形体強度は比較的よいものの、硬いため、低圧つぶれ性が悪い顆粒になる。
【0014】
この(B)成分の配合量は、(A)成分100質量部に対して、通常0.4〜3質量部、好ましくは0.5〜2質量部の範囲内で選ばれる。ポリビニルアルコールの配合量が0.4質量部未満であると、フェライト粉末の造粒ができなくなるし、また3質量部を超えると、得られるフェライト顆粒が硬くなりすぎ、つぶれが悪くなるため、顆粒粒界を多く残留し、成形不良をもたらすし、さらに体積欠損の増加の原因となる。
【0015】
この(B)成分として用いるポリビニルアルコールは、アルキルビニルエーテル、ヒドロキシビニルエーテル、酢酸アリル、アミド、ビニルシランなどにより部分的に変性されたものであってもよい。
【0016】
次に(C)成分として用いるマイクロクリスタリンワックスは、水性スラリーを調製する際の支障とならないように、小さい平均粒径、すなわち1μm以下、好ましくは0.8μm以下の平均粒径をもつものであることが必要である。
このマイクロクリスタリンワックスは、炭素数30〜60のイソパラフィンやシクロパラフィンを主体とした分子量500〜800程度の微結晶パラフィンである。
【0017】
マイクロクリスタリンワックスは、フェライト成形体製造時に、フェライト顆粒と成形用金型との間の摩擦を低減し、低圧下での成形体密度及びスプリングバック、すなわち成形体の膨張を制御する役割を果すものである。
【0018】
これまで、フェライト成形体製造用の顆粒に、滑剤として高級脂肪酸金属塩を0.1質量%以下の量で添加することは知られているが、このような高級脂肪酸金属塩、例えばステアリン酸亜鉛を通常0.3〜2質量%という範囲の量で添加すると、得られるフェライト成形体の物性が著しく低下し、焼結した場合に、高品質のフェライト焼結体を得ることができない。
【0019】
この(C)成分のマイクロクリスタリンワックスは、30〜60質量%、好ましくは40〜50質量%の濃度で水に分散させて調製されたワックスエマルションの形で用いるのが有利である。
【0020】
本発明方法で用いるフェライト成形体の製造用顆粒には、(A)成分、(B)成分及び(C)成分のほかに、これまでフェライト顆粒調製の際に慣用されていた添加剤を所望に応じ含有させることができる。
このような添加剤の例としては、ポリカルボン酸塩、縮合ナフタレンスルホン酸などの分散剤、グリセリン、グリコール類、トリオール類などの可塑剤、ステアリン酸(塩)などの滑剤、ポリエーテル系、ウレタン変性ポリエーテル系、ポリアクリル酸系、変性アクリル酸系有機高分子などの有機系高分子凝集剤、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウムなどの無機系凝集剤を挙げることができる。
【0021】
本発明方法で用いるフェライト成形体の製造用顆粒は、フェライト粉末及び必要な添加成分を含む混合物を公知の方法、例えばスプレードライヤーによる噴霧造粒法や、オシレーティング押出造粒法により造粒することによって得られる。
【0022】
このようにして得られたフェライト顆粒の平均粒径としては、通常40〜500μm、特に70〜300μm、さらに80〜150μmの範囲が好ましい。平均粒径が40μm未満であると、流動性及び金型への充填が悪くなることにより、成形体の寸法及び単重量のばらつきが大きくなる。また、金型への微粉付着(スティッキング)が発生しやすくなるので好ましくない。逆に500μmを超えると、顆粒粒界が多く残留し、成形不良を発生させ、また、成形体の寸法及び単重量のばらつきも大きくなる。
【0023】
本発明方法で用いるフェライト成形体の製造用顆粒は、成形用金型に充填するのに十分な流動性を有すること、すなわちこの顆粒を金型に充填する際に、顆粒自体又はそれから発生する粉末が充填用部材に付着したり凝集することなく、均一に金型を満たし得るものであり、噴霧乾燥法により造粒した場合は18〜24秒/50g、オシレーティング押出法により造粒した場合は、20〜34秒/50gの範囲にあるのが好ましい。
【0024】
本発明方法によれば、フェライト成形体は、上記の顆粒を成形用金型に充填し、50〜300MPaの圧力で加圧成形することにより得ることができる。このようにして得られるフェライト成形体の密度は、2.5〜3.5g/cm3であり、成形圧力98MPaで成形したときの金型からの抜き圧が40〜51kgf、抗折強度1.6〜1.8MPaというバランスのとれた物性を有している
また、このようにして得られたフェライト成形体は1000〜1550℃で焼成することにより、フェライト焼結体を得ることができる。この際の焼成時間は、通常0.5〜10時間の範囲である。
【0025】
【実施例】
次に実施例により本発明をさらに詳細に説明するが、本発明は、これらの例によって何ら限定されるものではない。
なお、例中の各物性値は以下の方法により測定したものである。
【0026】
(1)流動度;
JIS Z2502に規定された漏斗より、顆粒試料50gを流下させた場合の時間(秒/50g)を測定して求めた。
【0027】
(2)含有水分;
電子水分計[ザルトリウス(Sartorious)社製]で顆粒の含有水分を測定して求めた。
【0028】
(3)成形体密度;
顆粒試料1.5gを直径6mmの金型に充填し、成形圧力94MPaで加圧成形し、得られた成形体の単位体積(cm3)当りの質量(g)をもって成形体密度とした。
【0029】
(4)抜き圧;
成形圧力98MPaで成形したときの成形体を金型から取り出すときの抜き圧を加重試験機(アイコーエンジニアリング社製)を用いて測定した。
【0030】
(5)成形体抗折強度;
顆粒試料を98MPaの圧力で、乾式加圧成形して、ブロック成形体(55×12×5mm)を作製した。次いで、このブロック成形体の抗折強度を加重試験機を用いてJIS R1601に規定されている方法に従って測定した。
【0031】
(6)吸水率;
JIS C2141に準じ、焼結体試料を105〜120℃で乾燥後、デシケーター中で室温に戻し、乾燥質量W1を測定し、次いで、焼結体を水中に沈め、煮沸して冷却したのち、表面の水分をガーゼにより拭き取って飽水試料片を得て、その質量W2を測定し、次式により吸水率(%)を求めた。
吸水率(%)=100×(W2−Wl)/W1
【0032】
(7)焼結体抗折強度;
顆粒試料を98MPaの圧力で乾式加圧成形し、直方体ブロック成形体(55×12×5mm)とし、これを1050℃で2時間焼結して、焼結体試料を作製した。この焼結体試料について、加重試験機を用い、JIS R1601に規定された方法に従って抗折強度を測定した。
【0033】
実施例1〜、比較例1〜4
Ni−Cu−Zn系フェライト粉末67質量部、水33質量部、表1に示すポリビニルアルコール、マイクロクリスタリンワックス及びポリカルボン酸アンモニウム塩(分散剤)0.25質量部を湿式混合してフェライトスラリーを調製した。このスラリーをスプレードライヤーを用いて噴霧造粒し、平均粒径90μmの球形顆粒を得た。
【0034】
次いで実施例1及び比較例1について得られた顆粒1.5gを直径6mmの金型に充填し、成形圧力50〜294MPaの間で変化させ、乾式加圧成形することにより、直径6mm、長さ15〜18mmの円柱状のフェライト成形体を作製し、このサンプルについて、成形圧力と成形体密度との関係を求めた。その結果を図1に示す。また、成形圧力98MPaで成形した成形体の成形体密度を表2に示す。
【0035】
また、成形圧力147MPaで作製した成形体側面の顆粒のつぶれ状態をSEMで撮影した結果の写真を図2に示す。図2(a)、(b)、(c)は実施例1で得た顆粒を成形した上部、中間部、下部の各側面であり、図2(d)、(e)、(f)は、比較例1で得た顆粒を成形した成形体の上部、中間部、下部の各側面を示す。
【0036】
実施例
Ni−Cu−Zn系フェライト粉末100質量部に、表1に示すポリビニルアルコールの固形分濃度6質量%水溶液17質量部とマイクロクリスタリンワックスを添加し、撹拌造粒機TMミキサー(三井鉱山社製)で混合撹拌造粒を行い、造粒粉を調製した。この造粒粉をベルト式乾燥機で乾燥処理し、オシレーティング造粒解砕機(日本精機社製)で押出造粒を行い、シフターにより整粒し、平均粒径150μmのオシレーティング押出造粒顆粒を得た。このものの物性を測定し、その結果を表2に示す。
【0037】
【表1】

Figure 0003945744
なお、表中のマイクロクリスタリンワックスとしては、ワックスエマルション[中京油脂(株)社製,商品名「セロゾールE−136」]を用いた。
【0038】
【表2】
Figure 0003945744
【0039】
図1、図2、表2の結果から、本発明の範囲内のポリビニルアルコールとマイクロクリスタリンワックスを用いた実施例1〜で得た顆粒から作製した成形体は、成形時の低圧つぶれ性と顆粒同士及び金型との摩擦が改善され、成形体の顆粒粒界が低減され、その焼結体の内部欠陥の低減により、強度が大幅に改善され満足する結果であった。これに対して、本発明の範囲外の条件であるマイクロクリスタリンワックスの添加量が少ない比較例1、2で作製した顆粒は、低圧つぶれが悪く、成形体内に顆粒粒界が多く残留し、その成形体強度及び焼結体強度は低い値を示した。また、抜き圧が高いため金型から成形体排出時にひびが発生した。さらに、本発明の範囲外の条件であるポリビニルアルコールの添加量が少ない比較例3、4で得た顆粒は、低圧つぶれ性は優れるものの、成形体抗折強度が著しく低いため、成形体に折れや欠けなどのトラブルが多く発生した。
【0040】
実施例
次に、実施例1、実施例2、比較例1、比較例4で得られた顆粒を直径2.3mm、L寸法2.8mmの円柱コア形状で10000個の連続成形を行った。さらに、得られた成形体を1050℃の温度で2時間焼成し、焼結体を得た。これらについてトラブルの発生の有無を次の基準により評価し、その結果を表3に示す。
ひび スティッキング
○:0〜5個 発生せず
△:6〜20個 5000個で発生
×:21〜50個 1000個で発生
【0041】
【表3】
Figure 0003945744
【0042】
表3の結果から分るように、実施例1及び実施例2で得た顆粒から作製した成形体は、ひびの発生が少なく、スティッキングの発生もなく、満足する結果が得られた。これに対して、比較例1及び比較例4で得た顆粒から作製した成形体はひびの発生が著しい。また比較例4で得た顆粒は、スティッキングの発生が箸しく、連続成形が不可能であった。
【0043】
【発明の効果】
本発明によれば、低圧つぶれ性と耐崩壊性及び耐スティッキング性のバランスのよいフェライト成形体製造用顆粒が得られ、これを用いて成形し成形体は、その顆粒粒界が低減されており、それにより内部欠陥が低減された高強度でひびのトラブル発生が改善されたフェライト焼結体を得ることができる。
【図面の簡単な説明】
【図1】 本発明の実施例1及び比較例1における成形体の成形圧力と成形体密度との関係を示すグラフ。
【図2】 本発明の実施例1及び比較例1における成形体の表面組織を示す写真図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a ferrite molded body for producing a ferrite sintered body useful as various electromagnetic materials , more specifically, excellent moldability, that is, balanced low-pressure crushing resistance, collapse resistance, and resistance to resistance. The present invention relates to a method for producing a ferrite molded body using ferrite granules having sticking properties.
[0002]
[Prior art]
Ferrite is widely used as an electronic component as various magnetic materials. In this case, a ferrite molded body is manufactured from a ferrite raw material added with necessary additive components, for example, a binder, and fired. It is an electronic component.
[0003]
Various methods are used to produce this ferrite molded body. Generally, the most widely used method is a dry press forming method, that is, an aqueous slurry is prepared from a ferrite raw material, a binder and water. The powder obtained by spray drying is granulated, or the ferrite powder and the binder aqueous solution are stirred and mixed, dried and oscillated by extrusion granulation. First, granules are produced, and this is pressure-molded. Is the method.
[0004]
And about the ferrite granule for manufacturing such a ferrite molded object, (1) It has moderate fluidity and can be filled uniformly when pouring a predetermined amount of granule into a mold, (2) When pressure forming in the mold, it should be uniformly crushed at a low pressure, for example, 29 to 147 MPa, that is, it should have a low-pressure crushing property, and (3) fine particles generated from ferrite granules will not adhere to the mold, Having sticking properties, (4) not collapsing due to collision between granules during storage, transportation or filling into a mold, that is, having disintegration resistance, and (5) moderate bulk density Therefore, physical properties such as that the granules do not flow out of the mold at the time of filling into the mold or at the time of molding, that is, the filling property into the mold is good are required.
[0005]
In order to obtain a ferrite granule having such required physical properties, a method of improving flowability and low-pressure crushing property by using a specific dispersant during preparation of an aqueous slurry so far (JP-A-5-159918), A method to improve fluidity and low-pressure crushability by reducing the segregation of the binder, and using a wax-based binder that thermally decomposes at low temperatures to suppress the occurrence of defects such as pinholes in the granule and improve the strength Methods have been proposed.
[0006]
However, these methods can obtain ferrite granules having improved fluidity, mold filling properties, and low-pressure crushing properties to some extent, but molded products obtained using these ferrite granules have insufficient dimensional accuracy. , Unsuitable for molding complex shapes, collapsed during storage, transportation or filling into the mold, sticking during mold molding, hindering continuous work, resulting molding The strength of the body is insufficient, and there are drawbacks such as breakage such as chipping and breakage, which are not always satisfactory.
[0007]
[Problems to be solved by the invention]
Under such circumstances, the present invention is a high-density ferrite molding having high strength obtained by using granules having good fluidity, mold filling properties and sticking resistance, and excellent low-pressure crushability. This invention was made in order to obtain a body.
[0008]
[Means for Solving the Problems]
As a result of various researches on the physical properties of the ferrite molded body formed prior to manufacturing the ferrite sintered body, the present inventor uses a specific polyvinyl alcohol as a binder and is prepared by adding microcrystalline wax. and ferrite granules are flowable, filling of the mold, sticking resistance excellent, that this the pressure is pressure molded at a pressure of 50~300MPa using ferrite granules dense ferrite green body with high strength can be obtained The present invention has been made based on this finding.
[0009]
That is, the present invention comprises (A) 100 parts by mass of ferrite powder, (B) 0.4-3 parts by mass of polyvinyl alcohol having an average degree of polymerization of 500-1700 and an average degree of saponification of 88-98 mol%, and (C) an average particle diameter. Granulate an aqueous slurry containing 0.3 to 2 parts by weight of microcrystalline wax of 1 μm or less , then fill the granules thus obtained in a molding die and press-mold at a pressure of 50 to 300 MPa. The pressure from the mold when molded at a molding pressure of 98 MPa is 40 to 51 kgf, the bending strength is 1.6 to 1.8 MPa, and the density is 2.5 to 3.5 g / cm 3 . The manufacturing method of the ferrite molded object which has is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Granules used in the method of the present invention contain (A) ferrite powder, (B) polyvinyl alcohol, and (C) microcrystalline wax as essential components.
The ferrite powder used as the component (A) can be arbitrarily selected from those conventionally used as ferrite raw materials for various magnetic materials and electronic materials, and is not particularly limited.
[0011]
As the component (A) used in the present invention, these ferrites are used as a powder, and the particle size of the powder particles is within the range of the particle size of the powder particles usually used in the production of ferrite sintered bodies so far. Can be selected arbitrarily. This particle size range is, for example, in the range of 0.5 to 5 μm, preferably 0.7 to 3 μm, as an average particle size.
The particles having such an average particle diameter can be obtained by pulverizing a ferrite raw material using a pulverizer such as a ball mill, a rod mill, a vibrating ball mill, a micronizer, an atomizer, an impact mill, or a jet mill. In this case, the pulverization method may be either wet pulverization or dry pulverization.
[0012]
Next, the polyvinyl alcohol of component (B) plays a role as a binder for primary particles, that is, a binder for powder particles of ferrite raw materials. This relates to the disintegration property and the strength of the molded body. In particular, the average saponification degree of polyvinyl alcohol has a great influence on the formability of the ferrite molded body. The average degree of saponification of polyvinyl alcohol is 88 to 98 mol%, more preferably 94.5 to 97.5 mol%. When polyvinyl alcohol having an average degree of saponification of less than 88 mol% is used, the granule has good low-pressure crushing property but is inferior in disintegration resistance and sticking resistance. Further, such a material has good solubility in water and is easy to prepare a slurry and is suitable for spray granulation. However, during oscillating extrusion granulation, the material adheres to the wire mesh, making continuous granulation difficult. On the other hand, when fully saponified polyvinyl alcohol having an average degree of saponification of more than 98 mol% is used, the granule has good disintegration resistance, but it is hard and has a low pressure crushing property and low solubility in water. Slurry preparation becomes difficult.
[0013]
Moreover, as this polyvinyl alcohol, it is necessary to use a thing with an average degree of polymerization of 500-1700. When a polymer having an average degree of polymerization of less than 500 is used, the low-pressure crushability of the granules is good, but the disintegration resistance is poor, and the strength of the resulting molded product is low. On the other hand, when a polymer having an average degree of polymerization of greater than 1700 is used, although the granule has a relatively good disintegration resistance and compact strength, it is hard and has low pressure crushing properties.
[0014]
The compounding quantity of this (B) component is normally selected in 0.4-3 mass parts with respect to 100 mass parts of (A) component, Preferably it is chosen within the range of 0.5-2 mass parts. If the blending amount of the polyvinyl alcohol is less than 0.4 parts by mass, the ferrite powder cannot be granulated, and if it exceeds 3 parts by mass, the resulting ferrite granules become too hard and the crushing becomes worse. Many grain boundaries remain, causing molding defects, and further causing an increase in volume defects.
[0015]
The polyvinyl alcohol used as the component (B) may be partially modified with alkyl vinyl ether, hydroxy vinyl ether, allyl acetate, amide, vinyl silane or the like.
[0016]
Next, the microcrystalline wax used as the component (C) has a small average particle diameter, that is, an average particle diameter of 1 μm or less, preferably 0.8 μm or less so as not to hinder the preparation of the aqueous slurry. It is necessary.
The microcrystalline wax is Ru crystallites paraffin der molecular weight of about 500 to 800 mainly composed of isoparaffin and cycloparaffins 30-60 carbon atoms.
[0017]
Microcrystalline wax plays a role in reducing the friction between ferrite granules and molding dies and controlling the density and springback of the compact under low pressure, that is, the expansion of the compact, during the production of ferrite compacts. It is.
[0018]
Up to now, it has been known to add a higher fatty acid metal salt as a lubricant in an amount of 0.1% by mass or less to a granule for producing a ferrite molded body, but such a higher fatty acid metal salt, for example, zinc stearate. Is usually added in an amount in the range of 0.3 to 2% by mass, the physical properties of the obtained ferrite molded body are remarkably lowered, and when sintered, a high-quality ferrite sintered body cannot be obtained.
[0019]
The component (C) microcrystalline wax is advantageously used in the form of a wax emulsion prepared by dispersing in water at a concentration of 30 to 60% by mass, preferably 40 to 50% by mass.
[0020]
In addition to the component (A), the component (B) and the component (C), the additives conventionally used in the preparation of ferrite granules are desired for the granule for producing a ferrite molded body used in the method of the present invention. It can be contained depending on the case.
Examples of such additives include polycarboxylates, dispersants such as condensed naphthalene sulfonic acid, plasticizers such as glycerin, glycols and triols, lubricants such as stearic acid (salt), polyethers, urethanes Examples thereof include organic polymer flocculants such as modified polyether, polyacrylic acid, and modified acrylic acid organic polymers, and inorganic flocculants such as aluminum sulfate, aluminum chloride, and aluminum nitrate.
[0021]
The granule for producing a ferrite molded body used in the method of the present invention is obtained by granulating a mixture containing ferrite powder and necessary additional components by a known method such as a spray granulation method using a spray dryer or an oscillating extrusion granulation method. Obtained by.
[0022]
The average particle size of the ferrite granules thus obtained is usually 40 to 500 μm, particularly preferably 70 to 300 μm, and more preferably 80 to 150 μm. When the average particle diameter is less than 40 μm, the fluidity and filling of the mold are deteriorated, so that the size and single weight variation of the molded body increases. Further, it is not preferable because fine powder adhesion (sticking) easily occurs on the mold. On the other hand, if it exceeds 500 μm, many grain boundaries remain, causing molding defects, and the size and single weight variation of the molded product also increases.
[0023]
The granule for producing a ferrite molded body used in the method of the present invention has sufficient fluidity to be filled in a molding die, that is, the granule itself or a powder generated therefrom when the granule is filled in the die. Is able to fill the mold uniformly without adhering to the filling member or agglomerating, 18 to 24 seconds / 50 g when granulated by spray drying, and when granulated by oscillating extrusion It is preferably in the range of 20 to 34 seconds / 50 g.
[0024]
According to the method of the present invention, ferrite green body fills the above granules mold, can be obtained by pressing at a pressure of 50~300MPa. The density of the thus obtained ferrite compacts, 2.5 to 3.5 / cm 3 der is, ejection force from the mold when molded at a molding pressure 98MPa is 40~51Kgf, bending strength 1 It has well-balanced physical properties of 6 to 1.8 MPa .
Moreover, the ferrite molded body thus obtained can be sintered at 1000 to 1550 ° C. to obtain a ferrite sintered body. The firing time at this time is usually in the range of 0.5 to 10 hours.
[0025]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In addition, each physical-property value in an example is measured with the following method.
[0026]
(1) Fluidity;
The time (second / 50 g) when 50 g of the granule sample was allowed to flow down was measured from a funnel defined in JIS Z2502.
[0027]
(2) moisture content;
The moisture content of the granule was measured and determined with an electronic moisture meter (manufactured by Sartorius).
[0028]
(3) Molded body density;
A granule sample (1.5 g) was filled in a 6 mm diameter mold and pressure-molded at a molding pressure of 94 MPa, and the mass (g) per unit volume (cm 3 ) of the obtained molded body was defined as the density of the molded body.
[0029]
(4) Extraction pressure;
The punching pressure at the time of taking out the molded body when it was molded at a molding pressure of 98 MPa was measured using a load tester (manufactured by Aiko Engineering Co., Ltd.).
[0030]
(5) Molded body bending strength;
The granule sample was dry pressure molded at a pressure of 98 MPa to produce a block molded body (55 × 12 × 5 mm). Next, the bending strength of this block molded body was measured using a load tester according to the method defined in JIS R1601.
[0031]
(6) Water absorption rate;
According to JIS C2141, after the sintered body sample was dried at 105 to 120 ° C., it was returned to room temperature in a desiccator, the dry mass W 1 was measured, and then the sintered body was submerged in water, boiled and cooled, Moisture on the surface was wiped off with gauze to obtain a saturated sample piece, its mass W 2 was measured, and the water absorption (%) was determined by the following formula.
Water absorption (%) = 100 × (W 2 −W l ) / W 1
[0032]
(7) Sintered body bending strength;
The granule sample was dry-pressed at a pressure of 98 MPa to obtain a rectangular parallelepiped block molded body (55 × 12 × 5 mm), which was sintered at 1050 ° C. for 2 hours to prepare a sintered body sample. About this sintered compact sample, the bending strength was measured according to the method prescribed | regulated to JISR1601 using the load tester.
[0033]
Example 1-4, Comparative Examples 1-4
67 parts by mass of Ni—Cu—Zn-based ferrite powder, 33 parts by mass of water, polyvinyl alcohol, microcrystalline wax and 0.25 part by mass of polycarboxylic acid ammonium salt (dispersant) shown in Table 1 were wet mixed to obtain a ferrite slurry. Prepared. This slurry was spray-granulated using a spray dryer to obtain spherical granules having an average particle size of 90 μm.
[0034]
Next, 1.5 g of the granules obtained in Example 1 and Comparative Example 1 were filled into a 6 mm diameter mold, and the molding pressure was changed between 50 to 294 MPa, and dry pressure molding was performed to obtain a diameter of 6 mm and a length. A cylindrical ferrite compact of 15 to 18 mm was produced, and the relationship between the compacting pressure and the compact density was determined for this sample. The result is shown in FIG. Table 2 shows the density of the molded body molded at a molding pressure of 98 MPa.
[0035]
Moreover, the photograph of the result of having image | photographed the collapsed state of the granule of the side surface of the molded object produced with the shaping | molding pressure 147MPa with SEM is shown in FIG. 2 (a), (b), and (c) are upper, middle, and lower side surfaces of the granules obtained in Example 1, and FIGS. 2 (d), (e), and (f) Each side surface of the upper part, middle part, and lower part of the molded body obtained by molding the granule obtained in Comparative Example 1 is shown.
[0036]
Example 5
To 100 parts by mass of Ni-Cu-Zn-based ferrite powder, 17 parts by mass of a 6% by weight aqueous solution of polyvinyl alcohol and microcrystalline wax shown in Table 1 are added, and a stirring granulator TM mixer (Mitsui Mining Co., Ltd.) The mixture was stirred and granulated to prepare a granulated powder. The granulated powder is dried with a belt dryer, extruded with an oscillating granulator (made by Nippon Seiki Co., Ltd.), sized with a shifter, and oscillated extruded granulated granules with an average particle size of 150 μm. Got. The physical properties of this product were measured, and the results are shown in Table 2.
[0037]
[Table 1]
Figure 0003945744
In addition, as the microcrystalline wax in the table, a wax emulsion [manufactured by Chukyo Yushi Co., Ltd., trade name “Cerosol E-136”] was used.
[0038]
[Table 2]
Figure 0003945744
[0039]
From the results shown in FIGS. 1 and 2 and Table 2, the molded body produced from the granules obtained in Examples 1 to 5 using polyvinyl alcohol and microcrystalline wax within the scope of the present invention has a low pressure crushing property during molding. The friction between the granules and the mold was improved, the grain boundary of the molded body was reduced, and the internal defects of the sintered body were reduced, resulting in a greatly improved strength and satisfactory results. On the other hand, the granules produced in Comparative Examples 1 and 2 with a small amount of added microcrystalline wax, which is a condition outside the scope of the present invention, have poor low-pressure crushing, and many grain boundaries remain in the molded body. The molded body strength and the sintered body strength showed low values. In addition, cracking occurred when the molded product was discharged from the mold due to the high punching pressure. Moreover, out-of-range condition granules obtained in Comparative Examples 3 and 4 added a small amount of polyvinyl alcohol of the present invention, although low-pressure crushing resistance is excellent, because significantly lower moldings bending strength, bending the molded body Many troubles such as chipping and chipping occurred.
[0040]
Example 6
Next, 10,000 pieces of the granules obtained in Example 1, Example 2 , Comparative Example 1, and Comparative Example 4 were continuously formed into a cylindrical core shape having a diameter of 2.3 mm and an L dimension of 2.8 mm. Furthermore, the obtained molded body was fired at a temperature of 1050 ° C. for 2 hours to obtain a sintered body. About these, the presence or absence of trouble occurrence was evaluated according to the following criteria, and the results are shown in Table 3.
Cracking Sticking ○: 0-5 pieces Not generated △: 6-20 pieces 5000 pieces produced ×: 21-50 pieces 1000 pieces produced [0041]
[Table 3]
Figure 0003945744
[0042]
As can be seen from the results shown in Table 3, the molded products produced from the granules obtained in Example 1 and Example 2 had little cracking and no sticking, and satisfactory results were obtained. On the other hand, the molded body produced from the granules obtained in Comparative Example 1 and Comparative Example 4 has significant cracking. In addition, the granules obtained in Comparative Example 4 were not sticky and could not be continuously formed.
[0043]
【The invention's effect】
According to the present invention, the low-pressure crushing resistance and collapse resistance and sticking resistance of the good ferrite molding producing granules for balanced is obtained, molding obtained by molding this, granule boundary of that is reduced Accordingly, a ferrite sintered body having high strength with reduced internal defects and improved crack occurrence can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between molding pressure and density of a molded body in Example 1 and Comparative Example 1 of the present invention.
FIG. 2 is a photographic view showing the surface texture of the molded body in Example 1 and Comparative Example 1 of the present invention.

Claims (2)

(A)フェライト粉末100質量部と(B)平均重合度500〜1700、平均けん化度88〜98モル%のポリビニルアルコール0.4〜3質量部と(C)平均粒径1μm以下のマイクロクリスタリンワックス0.3〜2質量部を含む水性スラリーを造粒し、次いでこのようにして得た顆粒を成形用金型に充填し、50〜300MPaの圧力で加圧成形することを特徴とする、成形圧力98MPaで成形したときの金型からの抜き圧が40〜51kgfであり、かつ抗折強度1.6〜1.8MPa、密度2.5〜3.5g/cm 3 を有するフェライト成形体の製造方法(A) 100 parts by mass of ferrite powder, (B) 0.4-3 parts by mass of polyvinyl alcohol having an average degree of polymerization of 500-1700 and an average degree of saponification of 88-98 mol%, and (C) a microcrystalline wax having an average particle size of 1 μm or less. An aqueous slurry containing 0.3 to 2 parts by mass is granulated, and then the granules thus obtained are filled into a molding die and pressure-molded at a pressure of 50 to 300 MPa. Manufacture of a ferrite molded body having a punching pressure of 40 to 51 kgf when molded at a pressure of 98 MPa, a bending strength of 1.6 to 1.8 MPa, and a density of 2.5 to 3.5 g / cm 3. Way . (B)成分として平均重合度500〜1700、平均けん化度94.5〜97.5モル%のポリビニルアルコール0.5〜2質量部を用いる請求項1記載のフェライト成形体の製造方法The method for producing a ferrite molded body according to claim 1, wherein 0.5 to 2 parts by mass of polyvinyl alcohol having an average degree of polymerization of 500 to 1700 and an average degree of saponification of 94.5 to 97.5 mol% is used as the component (B).
JP2001049744A 2001-02-26 2001-02-26 Method for producing ferrite molded body Expired - Fee Related JP3945744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001049744A JP3945744B2 (en) 2001-02-26 2001-02-26 Method for producing ferrite molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001049744A JP3945744B2 (en) 2001-02-26 2001-02-26 Method for producing ferrite molded body

Publications (2)

Publication Number Publication Date
JP2002255658A JP2002255658A (en) 2002-09-11
JP3945744B2 true JP3945744B2 (en) 2007-07-18

Family

ID=18910805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001049744A Expired - Fee Related JP3945744B2 (en) 2001-02-26 2001-02-26 Method for producing ferrite molded body

Country Status (1)

Country Link
JP (1) JP3945744B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324987A (en) * 2004-05-14 2005-11-24 Sumitomo Metal Mining Co Ltd Ito molded product, ito sputtering target using the same and its manufacturing method
JP2006027914A (en) * 2004-07-12 2006-02-02 Toray Ind Inc Ceramic granule for press molding
JP2006111518A (en) * 2004-09-16 2006-04-27 Neomax Co Ltd Method for manufacturing soft ferrite core

Also Published As

Publication number Publication date
JP2002255658A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP4236285B2 (en) Process for producing molded articles from ceramic and metal powders
JP2003535980A (en) Aqueous injection molding binder composition and molding process
JP2006282436A (en) Ceramic granule, compacted body, sintered compact, and electronic component
KR20070115720A (en) Method of making cemented carbide or cermet agglomerated powder mixtures
JP3945744B2 (en) Method for producing ferrite molded body
JP3409183B2 (en) Method for producing granules for ferrite molding and molded and sintered bodies thereof
US6852245B2 (en) Process for producing granules for being molded into ferrite, granules for being molded into ferrite, green body and sintered body
US9022094B2 (en) Casting core, method for producing same, and method for casting using said core
JP3182648B2 (en) Ceramic granules for molding a ceramic molded body, method for producing or treating the same, ceramic molded body and method for producing the same
TW467816B (en) High-density ferrite member and ferrite beads composition therefor
WO2002045889A2 (en) Improvement of flow characteristics of metal feedstock for injection molding
JP3636292B2 (en) Method for producing ferrite sintered body
JPH0369545A (en) Manufacturing white ware ceramic product
JP2004165217A (en) Ferrite core and method of manufacturing
JP3361502B2 (en) Magnetic material, molded product thereof, high-density ferrite electronic component obtained by using the same, and methods for producing them
JP4586284B2 (en) CERAMIC MOLDING GRANE, CERAMIC MOLDED ARTICLE, AND METHOD FOR PRODUCING CERAMIC MOLDING GRANULE
JP4182392B2 (en) Iron-based alloy compact for obtaining low-density sintered compacts
JP3481171B2 (en) ELECTRONIC COMPONENT MANUFACTURING MATERIAL, PROCESS FOR PRODUCING THE SAME, PROCESS FOR PRODUCING HIGH-DENSITY FERRITE ELECTRONIC COMPONENT USING THE SAME
JP2002321984A (en) Manufacturing method of ferrite granule for forming and the granule, formed compact and sintered compact
JP2002128570A (en) Manufacture of granules for forming ceramics and equipment thereof, and granules, shaped compact and sintered compact
JP2002329607A (en) Ferrite sintered body, its manufacturing method, and molding granule
JP2002329606A (en) Ferrite sintered body, its manufacturing method, and ferrite molding granule
JP3815720B2 (en) Granules for molding ceramics, compacts, sintered bodies, electronic parts using these, and methods for producing granules for ceramics molding
JP2614880B2 (en) Method for producing ceramic granules
JP2019119822A (en) Microcapsule, composite ceramic granulated body, and method of producing ceramic using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees