JP3945044B2 - Bread machine - Google Patents

Bread machine Download PDF

Info

Publication number
JP3945044B2
JP3945044B2 JP29034498A JP29034498A JP3945044B2 JP 3945044 B2 JP3945044 B2 JP 3945044B2 JP 29034498 A JP29034498 A JP 29034498A JP 29034498 A JP29034498 A JP 29034498A JP 3945044 B2 JP3945044 B2 JP 3945044B2
Authority
JP
Japan
Prior art keywords
temperature
baking
heater
time
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29034498A
Other languages
Japanese (ja)
Other versions
JP2000116525A (en
Inventor
効司 野田
昭久 仲野
敏克 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP29034498A priority Critical patent/JP3945044B2/en
Publication of JP2000116525A publication Critical patent/JP2000116525A/en
Application granted granted Critical
Publication of JP3945044B2 publication Critical patent/JP3945044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Baking, Grill, Roasting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般家庭で使用するパン焼き器に関するものである。
【0002】
【従来の技術】
従来例のパン焼き器について図8および図9に従って説明する。図8は従来のパン焼き器の主要部の構成を示すブロック図で、1は焼成室、2は加熱手段を構成するヒーター、3は着脱自在に装着されたパン焼き型、4はモーター、5はモーター4の動力を伝達するベルト、6はモーター4により駆動される練り羽根、7は焼成室1の外面に当接してプロセス判定や温度制御のためパン焼き型3の温度を検知する温度検知手段、8は蓋、9はイーストを投入するイースト投入口、10はイースト投入口9の弁に連動してイーストを落下させるソレノイド、11は温度検知手段7からの信号によりヒーター2やモーター4やソレノイド10を制御してパン焼きを行うマイクロコンピュータを搭載した制御手段、12は動作の状態や時間を表示する表示部、13は調理のメニューやコースおよび調理の開始を指示する操作部である。操作部13を操作して調理を開始すると制御手段11は、温度検知手段7で検知した温度により複数の製パンプロセスの中から一つを選択し、その後は選択した製パンプロセスに従ってヒーター2、モーター4およびソレノイド10の各負荷を制御し、製パンを行う。
【0003】
図9は従来例のパン焼き器の焼成工程時の温度検知手段7の検知温度とヒーター2への通電割合の一例を示す図である。焼成工程が開始されると制御手段11はヒーター2を連続通電させる。焼成室1内の温度が上昇し温度検知手段7の出力により温度が100℃に達すると制御手段11はヒーター2への通電割合を85%とする。その後、温度が150℃になると制御手段11はヒーター2への通電割合を30%とする。その後は温度検知手段7の出力により検知温度が130℃以上の場合には30%の通電割合で、130℃より低い場合には65%の通電割合で温度のフィードバック制御を行い所定の時間(焼成開始から50分)が経過すると調理を終了していた。
【0004】
【発明が解決しようとする課題】
このような従来のパン焼き器においては、温度検知手段が焼成室の外面に当接して取り付けられており、パン焼き型の温度を忠実に検知されていないために、フィードバック制御のオーバーシュートにより、パン焼き型と温度検知手段との温度乖離が生じていた。そのため電源電圧の変動やヒーターのバラツキによって、温度検知手段は一定温度で温度制御しているにもかかわらずパン焼き型の温度が大きく変化し、パンの焼き色を一定に保つことが難しくなるという課題があった。
【0005】
本発明は上記従来の課題を解決するもので、温度検知手段と、パン焼き型の温度乖離が大きい場合でも、一定の焼き色のパンを作ることができるようになることを目的とするものである。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明の一つの手段は、ヒーターを有する焼成室と、前記焼成室内に着脱自在に装着されるパン焼き型と、前記焼成室内の温度を検知する温度検知手段と、前記温度検知手段の出力により前記ヒーターおよび前記モーターの制御を行う制御手段とを有し、前記制御手段は、焼成工程開始から第一の所定の時間経過後の検知温度と、焼成工程開始から第二の所定の時間経過後の検知温度との温度差により、前記ヒーターへの通電割合を決定すると共に、前記第二の所定の時間経過後から前記通電割合を変化させるまでの時間を決定するようにしたものである。
【0007】
そして上記構成により、焼成時の加熱手段への通電を最適に制御し、一定の焼き色のパンを得ることができるものである。
【0008】
【発明の実施の形態】
請求項1記載の発明は、ヒーターを有する焼成室と、前記焼成室内に着脱自在に装着されるパン焼き型と、前記焼成室内の温度を検知する温度検知手段と、前記温度検知手段の出力により前記ヒーターおよび前記モーターの制御を行う制御手段とを有し、前記制御手段は、焼成工程開始から第一の所定の時間経過後の検知温度と、焼成工程開始から第二の所定の時間経過後の検知温度との温度差により、前記ヒーターへの通電割合を決定すると共に、前記第二の所定の時間経過後から前記通電割合を変化させるまでの時間を決定することを特徴とするパン焼き器とするものであり、この構成により室温の変化やヒーター電力のバラツキや電源電圧が変動した場合でも、温度上昇に要する時間から温度検知手段の温度に関わらずパン焼き型の温度を一定に保つよう通電割合や、連続通電する時間を決定するので、焼き色を一定に保つことができる。
【0009】
【実施例】
以下、本発明の第1の参考例について、図面を参照しながら説明する。図1は本参考例の主要部を示すブロック構成図で、従来の技術と同じものについては同一の番号を付している。14は温度検知手段7および計時手段15からの信号によりヒーター2、モーター4およびソレノイド10を制御してパン焼きを行う制御手段、15は加熱工程を開始してからの経過時間を計時する計時手段、16は焼き色選択手段17および容量選択手段18を含む操作部で、メニュー、コース、焼き色、大きさ等を設定し調理を開始を指示する。操作部16により調理の開始が指示されると制御手段14は温度検知手段7が検知した温度を入力しながら所定の製パンプロセスを実現するためヒーター、モーター、ソレノイドの制御を行う。ここで制御手段14と計時手段15は一つのワンッチプのマイクロコンピュータ含まれる。また、表示部としては液晶表示素子により構成されている。
【0010】
図2は製パンプロセスの中の焼成工程時の、焼成開始からの経過時間と温度検知手段が検知する検知温度の関係を表すグラフ(横軸に焼成開始からの経過時間t、縦軸に温度θ)と、その時のヒーター2への通電割合を示した図である。
【0011】
焼成工程に移ると制御手段14は計時手段15により経過時間の計時を開始してヒーター2を連続通電する。計時手段15により第一の所定時間T1(本参考例においては4分)が経過すると、温度検知手段7により焼成室1内の温度θ1を検知する。次に計時手段15により第二の所定時間T2(本参考例においては7分)が計時されると温度検知手段7により温度θ2を検知し、θ1とθ2の温度差Δθ(=θ2−θ1)を得る。制御手段14は更にヒーター2を連続通電し、温度検知手段7の検知温度が第一の所定の温度Θ1(本参考例では155℃)に達すると制御手段14は、Δθが第一の所定の温度差ΔK1(本参考例では20deg)以上で第二の所定の温度差ΔK2(本参考例では40deg)未満であれパン焼き型の温度が一定に保たれるよう実験的に決められる通電割合(本参考例においては60%)になるようにヒーター2を制御する。また、ΔθがΔK1未満の場合にはヒーターの電力や電源電圧のバラツキ等により、電力が小さくなっているため制御手段14はヒーター2への通電割合を大きく(本参考例においては80%)する。更に、ΔθがΔK2以上の場合にはヒーター2への通電割合を小さく(本参考例においては60%)し、焼成工程が一定時間(本参考例では50分)となるまでヒーター2への通電を行い、その後、製パンプロセスを終了する。
【0012】
これにより、ヒーターの電力がばらついたり電源電圧が変動した場合でも、出来上がったパンの焼き色を一定にすることができるものである。
【0013】
図3は、本発明の第2の参考例を説明するためのグラフであり、焼成開始からの経過時間と温度検知手段7の検知温度の温度との関係を表すグラフと、その時のヒーター2への通電割合を示した図で、図2と同様に横軸に焼成開始からの経過時間t、縦軸に温度θをとっている。
【0014】
焼成工程に移ると制御手段14は計時手段15により経過時間の計時を開始してヒーター2を連続通電する。計時手段15により第一の所定時間T1(本参考例においては4分)が経過すると、温度検知手段7により前記焼成室1内の温度θ1を検知する。次に計時手段15により第二の所定時間T2(本参考例においては7分)が計時されると温度検知手段7により温度θ2を検知し、θ1とθ2の温度差Δθ(=θ2−θ1)を得る。制御手段14は加熱工程開始からの時間が第二の所定の時間T2を経過すると、温度差Δθが所定の温度差ΔK2(本参考例では40deg)未満(Δθ<ΔK2)であればヒーター2へ連続通電し、温度差ΔθがΔK2以上(ΔK2≦Δθ)であれば通電割合を小さく(本施例では80%)する。その後、温度検知手段7の検知温度が第一の所定温度Θ1を越えると、制御手段14は電源電圧の違いや室温の違いによっても、パン焼き型の温度をほぼ一定に保つことができるようにΔθに対応して決定された、第一の所定の温度Θ1以降の通電割合を(本参考例では60%)でヒーター2を通電し、焼成工程が一定時間(本参考例では50分)となると、製パンプロセスを終了する。
【0015】
これにより、ヒーター電力のバラツキや電源電圧の変動で、パン焼き型の温度が一定になる通電割合があらかじめ実験によって決定されるフィードバック制御によるオーバーシュートにより焼成室1内の温度が必要以上に上昇するのを防ぎ、出来上がったパンの焼き色を一定にすることができるものである。
【0016】
尚、本参考例においては焼成開始から第二の所定の時間T2が経過するまでヒーター2を連続通電しているが、焼成開始からT2が経過するまでの間を一定の通電割合でヒーター2に通電を行い、温度差Δθが所定の温度差ΔK1未満の場合には、加熱開始から所定の時間T2が経過してから所定の温度Θ1に達するまでは通電割合を大きくするようにしてもよい。
【0017】
図4は、本発明の第3の参考例を説明するためのグラフであり、焼成工程時の焼成開始からの経過時間と温度検知手段7が検知する検知温度の関係を表すグラフと、その時のヒーター2への通電割合を示した図で、横軸に焼成開始からの経過時間t、縦軸に温度θをとっている。
【0018】
焼成工程に移ると、制御手段14はヒーター2を連続通電する。計時手段15により第一の所定時間T1(本参考例においては4分)が経過すると、温度検知手段7により前記焼成室1内の温度θ1を検知する。次に計時手段15により第二の所定時間T2(本参考例においては7分)が計時されると温度検知手段7により温度θ2を検知し、θ1とθ2の温度差Δθ(=θ2−θ1)を得る。制御手段14はその後第一の所定の温度Θ1(本参考例では155℃)に達するまでヒーター2を連続通電する。Θ1は温度差ΔθがΔK1以上でΔK2未満(ΔK1≦Δθ<ΔK2)であればΘ1=155℃(補正なし)となり、温度差ΔθがΔK1未満(Δθ<ΔK1)であればΘ1=160℃(補正+5℃)であり、ΔθがΔK2以上(ΔK2≦Δθ)であればΘ1=150℃(補正−5℃)となる。検知温度がΘ1に達すると制御手段14は、パン焼き型の温度を一定に保つ通電割合でヒーター2へ通電し、焼成工程が50分になると製パンプロセスを終了する。
【0019】
これにより、検知温度の上昇時間に合わせてピーク温度を補正することができ、出来上がったパンの焼き色を一定にすることができるものである。
【0020】
図5は請求項1の発明を説明するためのグラフであり、焼成工程時の焼成開始からの経過時間と温度検知手段7が検知する検知温度の関係を表すグラフと、その時のヒーター2への通電割合を示した図で、横軸に焼成開始からの経過時間t、縦軸に温度θをとっている。
【0021】
焼成工程に移ると、制御手段14はヒーター2を連続通電する。計時手段15により第一の所定時間T1(本実施例においては4分)が経過すると、温度検知手段7により前記焼成室1内の温度θ1を検知する。次に計時手段15により第二の所定時間T2(本実施例においては7分)が計時されると温度検知手段7により温度θ2を検知し、θ1とθ2の温度差Δθ(=θ2−θ1)を得る。制御手段14はその後第一の所定の温度Θ1(本実施例では155℃)に達するまでヒーター2を連続通電する。制御手段14は加熱工程開始からの時間がT2を経過すると温度差ΔθがΔK1(本実施例では20deg)以上でΔK2(本実施例では40deg)未満(ΔK1≦Δθ<ΔK2)であれば連続通電の時間を10分(標準時間)とし、Δθが所定の時間ΔK1未満ならば連続通電の時間を12分(補正+2分)し、ΔTがT2以上であれば連続通電の時間を8分(補正−2分)として、ヒーター2を連続通電する。連続通電の時間経過後は、制御手段14はパン焼き型の温度をほぼ一定に保つことができる通電割合(本実施例では60%)でヒーター2を通電し、焼成工程が50分になると製パンプロセスを終了する。
【0022】
これにより、検知温度の上昇時間に合わせて連続通電による加熱時間を補正することができ、出来上がったパンの焼き色を一定にすることができるものである。
【0023】
図6は、本発明の第4の参考例を説明するためのグラフであり、焼き色選択手段17により焼き色を選択した場合の焼成工程時の、焼成開始からの経過時間と温度検知手段7が検知する検知温度の関係を表すグラフと、その時のヒーター2への通電割合を示した図で、横軸に焼成開始からの経過時間t、縦軸に温度θをとっている。
【0024】
焼成工程に移ると、制御手段14はヒーター2を連続通電する。計時手段15により第一の所定時間T1(本実施例においては4分)が経過すると、温度検知手段7により前記焼成室1内の温度θ1を検知する。次に計時手段15により第二の所定時間T2(本実施例においては7分)が計時されると温度検知手段7により温度θ2を検知し、θ1とθ2の温度差Δθ(=θ2−θ1)を得る。制御手段14は焼き色選択手段17により選択された焼き色が「濃」および「中」の場合には第一の所定の温度Θ1(「濃」の時165℃、「中」の時155℃)に達するまでヒーター2を連続通電し、選択された焼き色が「淡」の場合には第一の所定の温度Θ1(「淡」の時140℃)に達するまで80%の通電割合でヒーター2へ通電される。Θ1に達した後はパン焼き型の温度を一定に保つ通電割合で通電し、焼成工程が一定時間(50分)となるまで通電し、製パンプロセスを終了する。
【0025】
これにより、焼き色「淡」を選択した場合でも温度検知手段7の検知温度とパン焼き型3との温度差を小さくすることができ、選択した焼き色に合わせて焼き色を一定にすることができるものである。
【0026】
図7は、本発明の第5の参考例を説明するためのグラフであり、容量選択手段18により容量を選択した場合の焼成工程時の、焼成開始からの経過時間と温度検知手段7が検知する検知温度の関係を表すグラフと、その時のヒーター2への通電割合を示した図で、横軸に焼成開始からの経過時間t、縦軸に温度θをとっている。
【0027】
焼成工程に移ると、制御手段14はヒーター2を連続通電する。計時手段15により第一の所定時間T1(本実施例においては4分)が経過すると、温度検知手段7により前記焼成室1内の温度θ1を検知する。次に計時手段15により第二の所定時間T2(本実施例においては7分)が計時されると温度検知手段7により温度θ2を検知し、θ1とθ2の温度差Δθ(=θ2−θ1)を得る。制御手段14は容量選択手段18により「1.5斤」が選択された場合には、温度検知手段7の検知温度が所定の温度Θ1に達した後は60%の通電割合でヒーター2へ通電し、容量選択手段18により「1斤」が選択された場合には、Θ1に達した後は50%の通電割合でヒーター2へ通電し、焼成開始からの時間が一定時間(50分)になると製パンプロセスを終了する。
【0028】
これにより、選択したパンの容量により通電割合を補正することができ、容量によらずに焼き色を一定にすることができるものである。
【0029】
【発明の効果】
請求項1記載の発明によれば、焼成工程での一定時間で上昇する温度差から、ヒーターへの連続通電する時間、通電割合を変えることにより、ヒーター電力のバラツキや電源電圧、室温が変動した場合でも出来上がったパンの焼き色を一定にすることができるものである。
【図面の簡単な説明】
【図1】 本発明の第1の参考例のパン焼き器のブロック構成図
【図2】 同パン焼き器の焼成工程時の検知温度と通電割合を示す図
【図3】 本発明の第2の参考例のパン焼き器の焼成工程時の検知温度と通電割合を示す図
【図4】 本発明の第3の参考例のパン焼き器の焼成工程時の検知温度と通電割合を示す図
【図5】 本発明の一実施例のパン焼き器の焼成工程時の検知温度と通電割合を示す図
【図6】 本発明の第4の参考例のパン焼き器の焼成工程時の検知温度と通電割合を示す図
【図7】 本発明の第5の参考例のパン焼き器の焼成工程時の検知温度と通電割合を示す図
【図8】 従来のパン焼き器のブロック構成図
【図9】 従来のパン焼き器の焼成工程時の検知温度と通電割合を示す図
【符号の説明】
1 焼成室
2 ヒーター
3 パン焼き型
7 温度検知手段
14 制御手段
15 計時手段
16 操作部
17 焼き色選択手段
18 容量選択手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bread ware used in general households.
[0002]
[Prior art]
A conventional baking machine will be described with reference to FIGS. FIG. 8 is a block diagram showing the configuration of the main part of a conventional baking machine. 1 is a baking chamber, 2 is a heater constituting heating means, 3 is a detachable pan baking mold, 4 is a motor, and 5 is a motor. 4 is a belt for transmitting the power of 4; 6 is a kneading blade driven by a motor 4; 7 is a temperature detecting means for detecting the temperature of the baking die 3 for contact with the outer surface of the baking chamber 1 for process determination and temperature control; Is a lid, 9 is a yeast inlet that feeds yeast, 10 is a solenoid that drops yeast in conjunction with the valve of the yeast inlet 9, and 11 is a heater 2, motor 4, or solenoid 10 that is driven by a signal from the temperature detection means 7. Control means equipped with a microcomputer for controlling baking, 12 is a display unit for displaying the operation state and time, 13 is a cooking menu or course, and indicates the start of cooking. An operation section for. When the operation unit 13 is operated to start cooking, the control unit 11 selects one of a plurality of bread making processes according to the temperature detected by the temperature detecting unit 7, and then the heater 2 according to the selected bread making process. Each load of the motor 4 and the solenoid 10 is controlled to perform bread making.
[0003]
FIG. 9 is a diagram showing an example of the temperature detected by the temperature detecting means 7 and the energization ratio to the heater 2 during the baking process of the conventional baking machine. When the firing process is started, the control means 11 energizes the heater 2 continuously. When the temperature in the baking chamber 1 rises and the temperature reaches 100 ° C. by the output of the temperature detection means 7, the control means 11 sets the energization ratio to the heater 2 to 85%. Thereafter, when the temperature reaches 150 ° C., the control means 11 sets the energization ratio to the heater 2 to 30%. Thereafter, when the detected temperature is 130 ° C. or higher according to the output of the temperature detecting means 7, temperature feedback control is performed at a power supply rate of 30%, and when the temperature is lower than 130 ° C., the temperature feedback control is performed at a predetermined time (firing). When 50 minutes have passed since the start, cooking was finished.
[0004]
[Problems to be solved by the invention]
In such a conventional baking machine, the temperature detecting means is attached in contact with the outer surface of the baking chamber, and since the temperature of the baking mold is not faithfully detected, the bread baking mold is caused by feedback control overshoot. There was a temperature divergence between the temperature detecting means and the temperature detecting means. Therefore, due to fluctuations in the power supply voltage and variations in the heater, the temperature detection means is controlled at a constant temperature, but the temperature of the baking mold changes greatly, making it difficult to keep the baking color constant. was there.
[0005]
SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to make it possible to produce a fixed baking color bread even when the temperature difference between the temperature detection means and the baking type is large. .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, one means of the present invention includes a baking chamber having a heater, a baking mold detachably mounted in the baking chamber, a temperature detection means for detecting the temperature in the baking chamber, Control means for controlling the heater and the motor by the output of the temperature detection means, and the control means detects the detected temperature after the first predetermined time has elapsed from the start of the firing process and the second from the start of the firing process. The energization ratio to the heater is determined based on the temperature difference from the detected temperature after a predetermined time elapses, and the time until the energization ratio is changed after the second predetermined time elapses is determined. It is a thing.
[0007]
And by the said structure, electricity supply to the heating means at the time of baking can be optimally controlled, and a fixed baking color bread can be obtained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, the baking chamber having a heater, the bread baking mold detachably mounted in the baking chamber, the temperature detection means for detecting the temperature in the baking chamber, and the output of the temperature detection means A control means for controlling the heater and the motor, wherein the control means is a detected temperature after the elapse of the first predetermined time from the start of the baking process, and a time after the elapse of the second predetermined time from the start of the baking process. A bread baking machine characterized by determining the energization ratio to the heater based on the temperature difference from the detected temperature and determining the time until the energization ratio is changed after the second predetermined time has elapsed. Even if the room temperature changes, the heater power varies, or the power supply voltage fluctuates due to this configuration, the temperature of the baking mold is not affected by the temperature rise time regardless of the temperature of the temperature detection means. Energization percentage or to maintain a constant, because it determines the time for continuous energization can keep the browning constant.
[0009]
【Example】
Hereinafter, a first reference example of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the main part of this reference example, and the same components as those in the conventional technology are given the same reference numerals. 14 is a control means for controlling the heater 2, the motor 4 and the solenoid 10 by signals from the temperature detection means 7 and the time measuring means 15 and baking, 15 is a time measuring means for measuring the elapsed time since the start of the heating process, Reference numeral 16 denotes an operation unit including a baked color selecting means 17 and a capacity selecting means 18 for setting menus, courses, baked colors, sizes, etc., and instructing the start of cooking. When the operation unit 16 instructs the start of cooking, the control unit 14 controls the heater, the motor, and the solenoid to realize a predetermined bread making process while inputting the temperature detected by the temperature detection unit 7. Here, the control means 14 and the time measuring means 15 are included in a single microcomputer. Further, the display unit is constituted by a liquid crystal display element.
[0010]
FIG. 2 is a graph showing the relationship between the elapsed time from the start of baking and the detected temperature detected by the temperature detecting means during the baking process in the bread making process (the elapsed time t from the start of baking on the horizontal axis and the temperature on the vertical axis). It is the figure which showed the energization ratio to (theta) and the heater 2 at that time.
[0011]
When the firing process is started, the control means 14 starts to measure the elapsed time by the time measuring means 15 and energizes the heater 2 continuously. When the first predetermined time T1 (4 minutes in the present reference example) has elapsed by the time measuring means 15, the temperature θ1 in the baking chamber 1 is detected by the temperature detecting means 7. Next, when the second predetermined time T2 (7 minutes in this reference example) is timed by the time measuring means 15, the temperature θ2 is detected by the temperature detecting means 7, and the temperature difference Δθ (= θ2−θ1) between θ1 and θ2. Get. The control means 14 further energizes the heater 2 continuously. When the temperature detected by the temperature detection means 7 reaches the first predetermined temperature Θ1 (155 ° C. in this reference example), the control means 14 determines that Δθ is the first predetermined temperature. The energization ratio (this is determined experimentally) so that the temperature of the baking mold is kept constant if the temperature difference is ΔK1 (20 deg in the present reference example) or more and less than the second predetermined temperature difference ΔK2 (40 deg in the present reference example). The heater 2 is controlled to be 60% in the reference example. Further, when Δθ is less than ΔK1, the control means 14 increases the energization ratio to the heater 2 (80% in this reference example) because the power is reduced due to variations in the power of the heater and the power supply voltage. . Further, when Δθ is greater than or equal to ΔK2, the energization ratio to the heater 2 is reduced (60% in this reference example), and the energization to the heater 2 is continued until the firing process reaches a certain time (50 minutes in this reference example). And then finish the bread making process.
[0012]
Thereby, even when the electric power of the heater varies or the power supply voltage fluctuates, the baking color of the finished bread can be made constant.
[0013]
FIG. 3 is a graph for explaining a second reference example of the present invention, showing a graph representing the relationship between the elapsed time from the start of firing and the temperature of the temperature detected by the temperature detecting means 7, and the heater 2 at that time. As in FIG. 2, the horizontal axis represents the elapsed time t from the start of firing, and the vertical axis represents the temperature θ.
[0014]
When the firing process is started, the control means 14 starts to measure the elapsed time by the time measuring means 15 and energizes the heater 2 continuously. When the first predetermined time T1 (4 minutes in the present reference example) has elapsed by the time measuring means 15, the temperature detecting means 7 detects the temperature θ1 in the baking chamber 1. Next, when the second predetermined time T2 (7 minutes in this reference example) is timed by the time measuring means 15, the temperature θ2 is detected by the temperature detecting means 7, and the temperature difference Δθ (= θ2−θ1) between θ1 and θ2. Get. When the second predetermined time T2 has elapsed from the start of the heating process, the control means 14 returns to the heater 2 if the temperature difference Δθ is less than the predetermined temperature difference ΔK2 (40 deg in this example) (Δθ <ΔK2). If energization is continued and the temperature difference Δθ is greater than or equal to ΔK2 (ΔK2 ≦ Δθ), the energization ratio is reduced (80% in this embodiment). After that, when the detected temperature of the temperature detecting means 7 exceeds the first predetermined temperature Θ1, the control means 14 can maintain ΔB so that the temperature of the baking mold can be kept almost constant even if the power supply voltage is different or the room temperature is different. When the heater 2 is energized at the energization ratio after the first predetermined temperature Θ1 determined in accordance with (60% in this reference example) and the firing process is a certain time (50 minutes in this reference example) End the bread making process.
[0015]
As a result, the temperature in the baking chamber 1 rises more than necessary due to overshooting by feedback control in which the energization ratio at which the temperature of the baking mold becomes constant is preliminarily determined by experiments due to variations in heater power and fluctuations in the power supply voltage. It is possible to keep the baking color of the finished bread constant.
[0016]
In this reference example, the heater 2 is continuously energized until the second predetermined time T2 elapses from the start of firing, but the heater 2 is energized at a constant energization rate from the start of firing until T2 elapses. When energization is performed and the temperature difference Δθ is less than the predetermined temperature difference ΔK1, the energization ratio may be increased from the start of heating until the predetermined temperature Θ1 is reached after the elapse of the predetermined time T2.
[0017]
FIG. 4 is a graph for explaining a third reference example of the present invention, a graph showing the relationship between the elapsed time from the start of firing during the firing step and the detected temperature detected by the temperature detecting means 7, and at that time In the figure which showed the energization ratio to the heater 2, the elapsed time t from the start of baking is taken on the horizontal axis, and the temperature θ is taken on the vertical axis.
[0018]
When moving to the firing step, the control means 14 energizes the heater 2 continuously. When the first predetermined time T1 (4 minutes in the present reference example) has elapsed by the time measuring means 15, the temperature detecting means 7 detects the temperature θ1 in the baking chamber 1. Next, when the second predetermined time T2 (7 minutes in this reference example) is timed by the time measuring means 15, the temperature θ2 is detected by the temperature detecting means 7, and the temperature difference Δθ (= θ2−θ1) between θ1 and θ2. Get. The control means 14 then energizes the heater 2 continuously until it reaches a first predetermined temperature Θ1 (155 ° C. in this reference example). Θ1 is Θ1 = 155 ° C. (no correction) if the temperature difference Δθ is greater than or equal to ΔK1 and less than ΔK2 (ΔK1 ≦ Δθ <ΔK2), and Θ1 = 160 ° C. if the temperature difference Δθ is less than ΔK1 (Δθ <ΔK1). Correction + 5 ° C.) and Δθ is equal to or greater than ΔK 2 (ΔK 2 ≦ Δθ), Θ 1 = 150 ° C. (correction −5 ° C.). When the detected temperature reaches Θ1, the control means 14 energizes the heater 2 at an energization ratio that keeps the temperature of the baking mold constant, and when the baking process reaches 50 minutes, the bread making process ends.
[0019]
Thereby, the peak temperature can be corrected according to the rising time of the detected temperature, and the baked color of the finished bread can be made constant.
[0020]
FIG. 5 is a graph for explaining the invention of claim 1, a graph showing the relationship between the elapsed time from the start of firing during the firing step and the detected temperature detected by the temperature detecting means 7, and the heater 2 at that time In the graph showing the energization ratio, the horizontal axis represents elapsed time t from the start of firing, and the vertical axis represents temperature θ.
[0021]
When moving to the firing step, the control means 14 energizes the heater 2 continuously. When the first predetermined time T1 (4 minutes in this embodiment) has elapsed by the time measuring means 15, the temperature θ1 in the baking chamber 1 is detected by the temperature detecting means 7. Next, when the second predetermined time T2 (7 minutes in this embodiment) is timed by the time measuring means 15, the temperature θ2 is detected by the temperature detecting means 7, and the temperature difference Δθ (= θ2−θ1) between θ1 and θ2. Get. The control means 14 then energizes the heater 2 continuously until it reaches a first predetermined temperature Θ1 (155 ° C. in this embodiment). The control means 14 continuously energizes if the temperature difference Δθ is equal to or greater than ΔK1 (20 deg in this embodiment) and less than ΔK2 (40 deg in this embodiment) (ΔK1 ≦ Δθ <ΔK2) after the time T2 has elapsed since the start of the heating process. Is set to 10 minutes (standard time). If Δθ is less than the predetermined time ΔK1, the continuous energization time is 12 minutes (correction +2 minutes). If ΔT is T2 or more, the continuous energization time is 8 minutes (correction). -2 minutes), the heater 2 is energized continuously. After the continuous energization time has elapsed, the control means 14 energizes the heater 2 at an energization ratio (60% in this embodiment) that can keep the temperature of the bread baking mold almost constant, and when the baking process reaches 50 minutes, Terminate the process.
[0022]
Thereby, the heating time by continuous energization can be corrected according to the rising time of the detected temperature, and the baking color of the finished bread can be made constant.
[0023]
FIG. 6 is a graph for explaining a fourth reference example of the present invention . The elapsed time from the firing start and the temperature detection means 7 in the firing step when the firing color is selected by the firing color selection means 17. Is a graph showing the relationship between the detected temperatures detected and the ratio of energization to the heater 2 at that time, with the elapsed time t from the start of firing on the horizontal axis and the temperature θ on the vertical axis.
[0024]
When moving to the firing step, the control means 14 energizes the heater 2 continuously. When the first predetermined time T1 (4 minutes in this embodiment) has elapsed by the time measuring means 15, the temperature θ1 in the baking chamber 1 is detected by the temperature detecting means 7. Next, when the second predetermined time T2 (7 minutes in this embodiment) is timed by the time measuring means 15, the temperature θ2 is detected by the temperature detecting means 7, and the temperature difference Δθ (= θ2−θ1) between θ1 and θ2. Get. When the color selected by the color selection means 17 is “deep” and “medium”, the control means 14 is the first predetermined temperature Θ1 (165 ° C. when “dark”, 155 ° C. when “medium”, ) Until the first predetermined temperature Θ1 (140 ° C. when “light”) is reached when the selected baked color is “light”. 2 is energized. After reaching Θ1, energization is carried out at an energization ratio that keeps the temperature of the baking mold constant, and energization is performed until the baking process reaches a certain time (50 minutes), and the bread making process is completed.
[0025]
Thereby, even when the baked color “light” is selected, the temperature difference between the temperature detected by the temperature detecting means 7 and the baking mold 3 can be reduced, and the baked color can be made constant according to the selected baked color. It can be done.
[0026]
FIG. 7 is a graph for explaining a fifth reference example of the present invention, which is detected by the temperature detection means 7 and the elapsed time from the start of firing in the firing step when the capacity is selected by the capacity selection means 18. In the graph showing the relationship between the detected temperatures and the ratio of energization to the heater 2 at that time, the horizontal axis represents the elapsed time t from the start of firing, and the vertical axis represents the temperature θ.
[0027]
When moving to the firing step, the control means 14 energizes the heater 2 continuously. When the first predetermined time T1 (4 minutes in this embodiment) has elapsed by the time measuring means 15, the temperature θ1 in the baking chamber 1 is detected by the temperature detecting means 7. Next, when the second predetermined time T2 (7 minutes in this embodiment) is timed by the time measuring means 15, the temperature θ2 is detected by the temperature detecting means 7, and the temperature difference Δθ (= θ2−θ1) between θ1 and θ2. Get. When “1.5 斤” is selected by the capacity selector 18, the controller 14 energizes the heater 2 at an energization ratio of 60% after the temperature detected by the temperature detector 7 reaches the predetermined temperature Θ 1. However, when “1 に よ り” is selected by the capacity selection means 18, after reaching Θ 1, the heater 2 is energized at an energization ratio of 50%, and the time from the start of firing is set to a fixed time (50 minutes). Then, the bread making process is finished.
[0028]
As a result, the energization ratio can be corrected by the selected pan capacity, and the baked color can be made constant regardless of the capacity.
[0029]
【The invention's effect】
According to the first aspect of the invention, variation in heater power, power supply voltage, and room temperature fluctuated by changing the energization ratio and the time during which the heater is continuously energized from the temperature difference that rises in a certain time in the firing process. Even in this case, the baking color of the finished bread can be made constant.
[Brief description of the drawings]
FIG. 1 is a block diagram of a bread maker according to a first reference example of the present invention. FIG. 2 is a diagram showing detected temperatures and energization ratios during the baking process of the bread maker. FIG. 3 is a second reference of the present invention. FIG. 4 is a diagram showing the detected temperature and energization ratio during the baking process of the example bread maker. FIG. 4 is a diagram showing the detected temperature and energization ratio during the baking process of the bread maker of the third reference example of the present invention. The figure which shows the detection temperature and energization ratio at the baking process of the baking machine of one Example of invention. FIG. 6 The figure which shows the detection temperature and energization ratio at the baking process of the baking machine of the 4th reference example of this invention. FIG. 7 is a diagram showing detected temperatures and energization ratios in the baking process of the baking machine of the fifth reference example of the present invention. FIG. 8 is a block diagram of a conventional baking machine. FIG. 9 is a baking process of the conventional baking machine. Of the detected temperature and energization ratio at the time [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Baking chamber 2 Heater 3 Bread baking mold 7 Temperature detection means 14 Control means 15 Timekeeping means 16 Operation part 17 Baking color selection means 18 Capacity selection means

Claims (1)

ヒーターを有する焼成室と、前記焼成室内に着脱自在に装着されるパン焼き型と、前記焼成室内の温度を検知する温度検知手段と、前記温度検知手段の出力により前記ヒーターおよび前記モーターの制御を行う制御手段とを有し、前記制御手段は、焼成工程開始から第一の所定の時間経過後の検知温度と、焼成工程開始から第二の所定の時間経過後の検知温度との温度差により、前記ヒーターへの通電割合を決定すると共に、前記第二の所定の時間経過後から前記通電割合を変化させるまでの時間を決定することを特徴とするパン焼き器。  A baking chamber having a heater, a baking mold that is detachably mounted in the baking chamber, temperature detection means for detecting the temperature in the baking chamber, and the heater and the motor are controlled by the output of the temperature detection means. Control means, the control means, by the temperature difference between the detected temperature after the first predetermined time elapsed from the firing process start and the detected temperature after the second predetermined time elapsed from the firing process start, A bread baking machine characterized by determining an energization ratio to the heater and determining a time from when the second predetermined time elapses until the energization ratio is changed.
JP29034498A 1998-10-13 1998-10-13 Bread machine Expired - Fee Related JP3945044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29034498A JP3945044B2 (en) 1998-10-13 1998-10-13 Bread machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29034498A JP3945044B2 (en) 1998-10-13 1998-10-13 Bread machine

Publications (2)

Publication Number Publication Date
JP2000116525A JP2000116525A (en) 2000-04-25
JP3945044B2 true JP3945044B2 (en) 2007-07-18

Family

ID=17754845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29034498A Expired - Fee Related JP3945044B2 (en) 1998-10-13 1998-10-13 Bread machine

Country Status (1)

Country Link
JP (1) JP3945044B2 (en)

Also Published As

Publication number Publication date
JP2000116525A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
KR910003968B1 (en) Heating apparatus
US6186053B1 (en) Automatic bread maker
EP3320779B1 (en) Process for the leavening of a dough with mother yeast
JP3945044B2 (en) Bread machine
JPH07324757A (en) Heating cooker
JP2586258B2 (en) Toaster range
US5622640A (en) Control of warming time and/or power supplied to a heater in a bread warming system based on rate of temperature change during previous baking operation
JPH10192152A (en) Automatic bread baking oven
JP3303659B2 (en) Automatic bread maker
NZ503810A (en) Automatic bread maker
JP2976606B2 (en) Automatic bread maker
JPH10234583A (en) Home bread maker
JP3023639B2 (en) Automatic bread maker
JPH0533942A (en) Cooking device
JPH0282913A (en) Break making appliance
JP3038886B2 (en) High frequency heating equipment
JPH05115383A (en) Automatic bread baker
KR890009333Y1 (en) Baking apparatus
JP2004159976A (en) Automatic bread making machine
JP3211717B2 (en) Automatic bread maker
JPH0690861A (en) Automatically bread making apparatus
JPH04136622A (en) Heating cooker
JP2578904B2 (en) Bread making machine
JP2506846B2 (en) Bread making machine
JPH0523142B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees