JP3942555B2 - Continuously variable transmission - Google Patents

Continuously variable transmission Download PDF

Info

Publication number
JP3942555B2
JP3942555B2 JP2003116724A JP2003116724A JP3942555B2 JP 3942555 B2 JP3942555 B2 JP 3942555B2 JP 2003116724 A JP2003116724 A JP 2003116724A JP 2003116724 A JP2003116724 A JP 2003116724A JP 3942555 B2 JP3942555 B2 JP 3942555B2
Authority
JP
Japan
Prior art keywords
output
input
rotator
shaft
input shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003116724A
Other languages
Japanese (ja)
Other versions
JP2004324685A (en
Inventor
幸男 椎田
Original Assignee
椎田建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 椎田建設株式会社 filed Critical 椎田建設株式会社
Priority to JP2003116724A priority Critical patent/JP3942555B2/en
Publication of JP2004324685A publication Critical patent/JP2004324685A/en
Application granted granted Critical
Publication of JP3942555B2 publication Critical patent/JP3942555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は非接触で回転動力を無段階に変速して伝達することが可能な無段変速機に関する
【0002】
【従来の技術】
従来の励磁コイル使用する無段変速機は大型機械または精密器機等多岐に渡り使用され電気的な回路での無段変速機が主流を成している。
【0003】
【発明が解決しようとする課題】
従来の無段変速機には何等かの手段で励磁コイルを使用しているため、通電時の発熱が理由で密閉が困難であり、さらに、励磁コイルの保守管理面で常時点検を要する等の課題がある。
【0004】
【課題を解決するための手段】
本発明の無段変速機は、出力軸と、該出力軸と同軸状に配置された入力軸と、前記出力軸に対して垂直状態で出力軸に固定された出力側旋回回転体と、該出力側旋回回転体の一方の面に固定された1つ以上の出力側永久磁石と、該出力側永久磁石が固定された出力側旋回回転体の面と対向するように配置された入力側旋回回転体と、該入力側旋回回転体の面に、前記出力側永久磁石の磁極と相反する磁極が対向するように固定された1つ以上の入力側永久磁石とからなり、前記入力側旋回回転体は、前記入力軸に対して垂直状態を維持し、かつ、前記出力側旋回回転体に対する距離が変化可能に、ばね手段で前記入力軸に取り付けられ、該入力側旋回回転体は、1つ以上の移動用ボールを備え、前記入力軸の外周面には、前記移動用ボールが転動可能な螺旋状の1つ以上のスライド溝を備え、入力軸の回転が、入力側旋回回転体を回転させると共に、入力軸のスライド溝内を前記移動用ボールが移動して前記入力側旋回回転体を出力側旋回回転体に近づかせ、スリップ回転の程度に応じて、入力軸の回転動力を出力軸の回転動力として伝達する。さらに、前記出力側旋回回転体から所定距離以上、接近できないように衝突緩衝手段を備えることが望ましい。回転動力を、非接触で伝達し機械的構造で自動化され、発熱がなく密閉を可能とする
【0005】
発明の実施の形態
本発明について、図面に基いて詳細に説明する。図1は、本発明の一実施例の無段変速機を示す斜視図である。図2は、本発明の一実施例の無段変速機を示す断面図である。図3は、図2のA−A視断面図である。図4は、図2のB−B視断面図である。図5は、スライド溝を示す拡大断面図である。図6は、図5のC−C視断面図である。本発明の無段変速機は、出力軸12と、出力軸12と同軸状に配置された入力軸1と、出力軸12に対して垂直状態で出力軸12に固定された出力側旋回回転体11と、出力側旋回回転体11の一方の面に固定された図示した例では3つの出力側永久磁石8と、出力側永久磁石8が固定された出力側旋回回転体11の面と対向するように配置された入力側旋回回転体7と、入力側旋回回転体7の面に、出力側永久磁石8の磁極と相反する磁極が対向するように固定された図示した例では3つの入力側永久磁石8とからなり、入力側旋回回転体7は、入力軸1に対して垂直状態を維持し、かつ、出力側旋回回転体11に対する距離が変化可能に、バネ固定板2および引張バネ4で入力軸1に取り付けられ、入力側旋回回転体7は、図示した例では2つの移動用ボール6を備え、入力軸1の外周面には、移動用ボール6が転動可能な螺旋状の図示した例では2つのスライド溝5を備え、入力軸1の回転が、入力側旋回回転体7を回転させると共に、入力軸1のスライド溝5内を移動用ボール6が移動して入力側旋回回転体7を出力側旋回回転体11に近づかせ、スリップ回転の程度に応じて、入力軸1の回転動力を出力軸12の回転動力として伝達する。さらに、出力側旋回回転体11から所定距離以上、接近できないように衝突緩衝手段を備える。衝突緩衝手段は、図示した例では、位置決めストッパー9と圧縮バネ10からなる。このように、入力軸1の回転速度が上昇することにより、入力側永久磁石8と出力側永久磁石8同士を接近させ結合力を回転動力伝達手段とすることで非接触となり、変速時のショックがなく、静粛にしてスムーズな回転が得られる。また、出力軸12の急激な回転数変化に対しては、入力軸1とのスリップ回転で対応することにより、安全保守の手段となる。入力軸1の回転が加速する時、および高速で回転する時には、入力側旋回回転体7の回転により、圧縮バネ10が縮んで、出力側永久磁石8と入力側永久磁石8の接近間隙を最小として牽引力が上昇し、速やかに、追従回転が起きる。人力軸1の制止時には、圧縮バネ10と引張バネ4が共に機能し、出力側永久磁石8と入力側永久磁石8同士が確実に分断される。また、入力側旋回回転体7の軸受部にベアリング3を設け、連結棒14を、入力側旋回回転体7に摺動可能に、出力側旋回回転体11に固定し、入力側旋回回転体7の姿勢制御手段とする。
【0006】
スライド溝5の傾斜角度により、移動用ボール6の移動距離が決定され、傾斜角度を増す程、入力側旋回回転体7の移動は速くなり、位置決めストッパー9へ衝突する衝撃が大きくなる。傾斜角度は適宜に設定し、また、回転動力の入力は、入力軸1または入力側旋回回転体7の双方共が使用可能で、各種の無段変速機の利用に対応することができる
【0007】
入力軸1と出力軸12は、出力側旋回回転体11の位置で間隙を設けて対向する状態で、同軸状に配置され、出力側旋回回転体11はキー13にて出力軸12に固定され、入力軸1に、入力側旋回回転体7が移動するためのスライド溝5が適宜な傾斜角度で設けられる。入力側旋回回転体7に固定されている移動用ボール6が、スライド溝5に沿って、入力軸と共回りしながら移動することにより、入力軸1に対して入力側旋回回転体7が回転しつつ、出力側旋回回転体11の方へ移動する。
【0008】
出力側旋回回転体11と入力側旋回回転体7に複数の永久磁石8を対向して固定し、永久磁石の牽引力を利用して、回転動力の伝達とし、入力軸1に固定された位置決めストッパー9に備える圧縮バネ10により、入力側旋回回転体7の急激な移動を吸収し、さらに、入力軸1の回転が加速する時、および高速で回転する時には、圧縮バネ10が縮んで磁気結合を高めることにより、スリップ回転の程度を軽減する。バネ固定板2は軸受3を介 して入力軸1と同軸状に回転可能に取り付けられ、入力側旋回回転体7に固定した連結棒14が、バネ固定板2に開けられた孔の中を摺動可能とする。以上のような構造により、入力側旋回回転体7は、入力軸1に対して垂直な状態を維持し、僅かに回転しつつ、出力側旋回回転体の方へ移動することができる。
【0009】
以下に、本発明の無段変速機の動作について説明する。入力軸1の回転に伴い、入力側旋回回転体7に固定された移動用ボール6がスライド溝5と係合することにより回転すると共に、移動用ボール6がスライド溝5の中を移動することにより、入力側旋回回転体7が出力側旋回回転体11の方に移動し、入力側永久磁石8と出力側永久磁石8との牽引力でさらに接近し、スリップ回転を伴いながら、磁気的結合により回転動力を出力軸に伝達する。入力軸1の回転が加速する時、および高速で回転する時には、入力側旋回回転体7がさらに出力側旋回回転体12の方に移動することにより、磁気的結合が高まり、スリップ回転の程度を軽減する。従って、速やかな従動回転へ移行することになり、また、出力軸12の急激な回転数の変動に対しては、入力軸1とのスリップ回転で対応することができるので、変速時のショックがなく、連続的な加減速回転をすることが可能となる。
【0010】
入力軸の制止では、圧縮バネ10および引張バネ4の復元力により、入力側旋回回転体7が出力側旋回回転体12から遠ざかるように移動することにより、出力側永久磁石8と入力側永久磁石8との磁気的結合が減少し、入力側旋回回転体7は、引張バネ4により初動位置に戻る。以上のように、全体が機械的に構成されて作用し、磁力とバネのバランスで機能するため、回転動力の伝達が非接触で行われるため、振動、騒音、発熱等の発生がない
【0011】
【発明の効果】
入力軸が低速で回転する間は、スリップ回転が頻繁に起きて、回転動力が伝達されず、入力軸の回転が加速する時、および高速で回転する時は、スリップ回転が最小となり、回転動力が最大に伝達される。このように、入力軸の回転速度の変化に伴い、入力軸の回転速度に対する出力軸の回転速度の比である変速比が、無段階に変化することとなる。従って、全体が機械的に構成されて作用し、電気的な回路などを使用しないために、過度の発熱がなく、本発明の無段変速機は、密閉することができる。
【図面の簡単な説明】
【図1】 本発明の一実施例の無段変速機を示す斜視図である。
【図2】 本発明の一実施例の無段変速機を示す断面図である。
【図3】 図2のA−A視断面図である。
【図4】 図2のB−B視断面図である。
【図5】 スライド溝を示す拡大断面図である。
【図6】 図5のC−C視断面図である。
【符号の説明】
1 入力軸
2 バネ固定板
3 軸受
4 引張バネ
5 スライド溝
6 移動用ボール
入力側旋回回転体
入力側永久磁石、出力側永久磁石
9 位置決めストッパー
10 圧縮バネ
11 出力側旋回回転体
12 出力軸
13 キー
14 連結棒
[0001]
[Technical field to which the invention belongs]
The present invention is a non-contact, relates the rotational power to the continuously variable transmission capable of shifting to transmit continuously.
[0002]
[Prior art]
A continuously variable transmission using a conventional excitation coil is large machines or precision equipment such as is used over a wide range, the electrically controlled continuously variable transmission of the circuit is the mainstream.
[0003]
[Problems to be solved by the invention]
Conventional continuously variable transmission, because it uses an exciting coil with some kind of means, heat generation during energization is difficult sealed reason, further, in the maintenance surface of the exciting coil, at all times, the inspection There is a problem such as need.
[0004]
[Means for Solving the Problems]
A continuously variable transmission according to the present invention includes an output shaft, an input shaft arranged coaxially with the output shaft, an output-side turning rotary body fixed to the output shaft in a state perpendicular to the output shaft, One or more output-side permanent magnets fixed to one surface of the output-side swivel rotator, and input-side swivel arranged so as to face the surface of the output-side swivel rotator to which the output-side permanent magnet is fixed The input-side swivel rotation is composed of a rotating body and one or more input-side permanent magnets fixed on the surface of the input-side swivel rotating body so that the magnetic poles opposite to the magnetic poles of the output-side permanent magnets face each other. The body is attached to the input shaft by spring means so as to maintain a vertical state with respect to the input shaft and the distance to the output-side swivel rotating body can be changed. The above moving balls are provided, and the moving balls are disposed on the outer peripheral surface of the input shaft. Provided with one or more movable spiral slide grooves, the rotation of the input shaft rotates the input-side turning rotary body, and the moving ball moves in the slide groove of the input shaft so that the input-side turning The rotating body is brought close to the output-side turning rotating body, and the rotational power of the input shaft is transmitted as the rotational power of the output shaft according to the degree of slip rotation. Furthermore, it is desirable to provide a collision buffering means so that it cannot approach the output side turning rotator for a predetermined distance or more. Rotational power, transmitted in a non-contact, automated mechanical structure, heat is not to allow the sealing.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a continuously variable transmission according to an embodiment of the present invention. FIG. 2 is a sectional view showing a continuously variable transmission according to an embodiment of the present invention. FIG. 3 is a cross-sectional view taken along line AA in FIG. 4 is a cross-sectional view taken along the line B-B in FIG. 2. FIG. 5 is an enlarged cross-sectional view showing a slide groove. 6 is a cross-sectional view taken along the line CC of FIG. The continuously variable transmission of the present invention includes an output shaft 12, an input shaft 1 arranged coaxially with the output shaft 12, and an output-side turning rotary body fixed to the output shaft 12 in a state perpendicular to the output shaft 12. 11, in the illustrated example fixed to one surface of the output-side turning rotator 11, the three output-side permanent magnets 8 are opposed to the surface of the output-side turning rotator 11 to which the output-side permanent magnet 8 is fixed. In the illustrated example, the input side swivel rotator 7 and the input side swivel rotator 7 are fixed on the surface of the input side swivel rotator 7 so that the magnetic poles opposite to the magnetic poles of the output side permanent magnet 8 face each other. The spring fixing plate 2 and the tension spring 4 are composed of a permanent magnet 8 so that the input-side turning rotator 7 maintains a vertical state with respect to the input shaft 1 and the distance to the output-side turning rotator 11 can be changed. Is attached to the input shaft 1 and the input-side turning rotator 7 is shown in the illustrated example. Two movement balls 6 are provided, and the outer peripheral surface of the input shaft 1 is provided with two slide grooves 5 in the illustrated spiral shape on which the movement balls 6 can roll, and the rotation of the input shaft 1 is input. The side turning rotator 7 is rotated, and the moving ball 6 moves in the slide groove 5 of the input shaft 1 to bring the input side turning rotator 7 closer to the output side turning rotator 11, depending on the degree of slip rotation. Thus, the rotational power of the input shaft 1 is transmitted as the rotational power of the output shaft 12. Furthermore, a collision buffer means is provided so that it cannot approach the output side turning rotator 11 beyond a predetermined distance. The collision buffering means includes a positioning stopper 9 and a compression spring 10 in the illustrated example. Thus, by the rotation speed of the input shaft 1 is raised to approximate the output side permanent magnet 8 between the input side permanent magnet 8, by a rotational power transmission means bonding strength, non-contact, and the time shift no shock, Ru smooth rotation is obtained in the quietness. Further, a sudden change in the rotational speed of the output shaft 12 is handled by a slip rotation with the input shaft 1 , thereby providing a means for safety maintenance . When the rotation of the input shaft 1 is accelerated and at a high speed, the compression spring 10 is contracted by the rotation of the input side turning rotator 7, and the approach gap between the output side permanent magnet 8 and the input side permanent magnet 8 is minimized. As a result, the traction force increases and a follow-up rotation occurs promptly. When the human power shaft 1 is stopped, the compression spring 10 and the tension spring 4 function together, and the output-side permanent magnet 8 and the input-side permanent magnet 8 are reliably separated. Further, the bearing 3 is provided in the bearing portion of the input-side turning rotator 7, and the connecting rod 14 is fixed to the output-side turning rotator 11 so as to be slidable on the input-side turning rotator 7. The attitude control means.
[0006]
The moving distance of the moving ball 6 is determined by the inclination angle of the slide groove 5, and as the inclination angle is increased , the input side turning rotary body 7 moves faster and the impact that collides with the positioning stopper 9 increases . Tilt angle is appropriately set, also the input rotational power may be both of the input shaft 1 or the input side turning rotary member 7 is available and corresponds to the use of various continuously variable transmission.
[0007]
Input shaft 1 and the output shaft 12 is in a state of opposing is provided a gap at the location of the output-side turning rotor 11 are arranged coaxially, the output-side turning rotor 11 is fixed to the output shaft 12 at key 13 is, the input shaft 1, the slide groove 5 for the input-side turning rotary member 7 is moved, Ru provided at an appropriate angle of inclination. The moving ball 6 fixed to the input-side turning rotator 7 moves along the slide groove 5 while rotating together with the input shaft, whereby the input-side turning rotator 7 rotates with respect to the input shaft 1. However, it moves toward the output side turning rotary body 11 .
[0008]
A plurality of permanent magnets 8 are fixed to the output-side turning rotator 11 and the input-side turning rotator 7 so as to face each other, and the traction force of the permanent magnets is used to transmit rotational power, which is a positioning stopper fixed to the input shaft 1. 9 absorbs a sudden movement of the input-side turning rotator 7, and further, when the rotation of the input shaft 1 accelerates and rotates at a high speed, the compression spring 10 contracts and magnetically couples. By increasing it, the degree of slip rotation is reduced. Spring fixing plate 2 is rotatably mounted on the input shaft 1 coaxially with through the bearing 3, the connecting rod 14 fixed to the input side turning rotary member 7, through the drilled hole in the spring fixing plate 2 Make it slidable. With the structure described above, the input-side turning rotator 7 can move toward the output-side turning rotator while maintaining a state perpendicular to the input shaft 1 and slightly rotating.
[0009]
Below, operation | movement of the continuously variable transmission of this invention is demonstrated . As the input shaft 1 rotates, the moving ball 6 fixed to the input-side turning rotator 7 rotates by engaging with the slide groove 5, and the moving ball 6 moves in the slide groove 5. As a result, the input-side turning rotator 7 moves toward the output-side turning rotator 11, approaches further by the traction force between the input-side permanent magnet 8 and the output-side permanent magnet 8, and is magnetically coupled with slip rotation. Rotational power is transmitted to the output shaft. When the rotation of the input shaft 1 is accelerated and when the input shaft 1 rotates at a high speed, the input-side turning rotator 7 further moves toward the output-side turning rotator 12, thereby increasing the magnetic coupling and reducing the degree of slip rotation. Reduce. Accordingly, a transition to quick driven rotation is made, and a sudden change in the rotational speed of the output shaft 12 can be dealt with by a slip rotation with the input shaft 1, so that a shock at the time of shifting is reduced. In this way, continuous acceleration / deceleration rotation can be performed.
[0010]
In stopping the input shaft, the restoring force of the compression spring 10 and the tension spring 4 moves the input-side turning rotator 7 away from the output-side turning rotator 12, thereby causing the output-side permanent magnet 8 and the input-side permanent magnet to move away from each other. 8 is reduced, and the input-side turning rotator 7 is returned to the initial movement position by the tension spring 4. As described above, the entire device is mechanically configured and functions, and functions in a balance between magnetic force and spring. Therefore, transmission of rotational power is performed in a non-contact manner, so that vibration, noise, heat generation, and the like are not generated.
[0011]
【The invention's effect】
While the input shaft rotates at a low speed, slip rotation frequently occurs and the rotational power is not transmitted. When the input shaft rotates at a high speed and when it rotates at a high speed, the slip rotation is minimized and the rotational power is reduced. Is transmitted to the maximum. As described above, with the change in the rotation speed of the input shaft, the gear ratio, which is the ratio of the rotation speed of the output shaft to the rotation speed of the input shaft, changes steplessly. Therefore, since the whole is mechanically configured and operates and does not use an electric circuit or the like, there is no excessive heat generation, and the continuously variable transmission of the present invention can be sealed.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a continuously variable transmission according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a continuously variable transmission according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view taken along line AA in FIG.
4 is a cross-sectional view taken along the line BB in FIG . 2. FIG.
FIG. 5 is an enlarged sectional view showing a slide groove.
6 is a cross-sectional view taken along the line CC of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Input shaft 2 Spring fixed plate 3 Bearing 4 Tension spring 5 Slide groove 6 Moving ball 7 Input side turning rotary body 8 Input side permanent magnet, Output side permanent magnet 9 Positioning stopper 10 Compression spring 11 Output side turning rotary body 12 Output shaft 13 key 14 connecting rod

Claims (2)

出力軸と、該出力軸と同軸状に配置された入力軸と、前記出力軸に対して垂直状態で出力軸に固定された出力側旋回回転体と、該出力側旋回回転体の一方の面に固定された1つ以上の出力側永久磁石と、該出力側永久磁石が固定された出力側旋回回転体の面と対向するように配置された入力側旋回回転体と、該入力側旋回回転体の面に、前記出力側永久磁石の磁極と相反する磁極が対向するように固定された1つ以上の入力側永久磁石とからなり、前記入力側旋回回転体は、前記入力軸に対して垂直状態を維持し、かつ、前記出力側旋回回転体に対する距離が変化可能に、ばね手段で前記入力軸に取り付けられ、該入力側旋回回転体は、1つ以上の移動用ボールを備え、前記入力軸の外周面には、前記移動用ボールが転動可能な螺旋状の1つ以上のスライド溝を備え、入力軸の回転が、入力側旋回回転体を回転させると共に、入力軸のスライド溝内を前記移動用ボールが移動して前記入力側旋回回転体を出力側旋回回転体に近づかせ、スリップ回転の程度に応じて、入力軸の回転動力を出力軸の回転動力として伝達する無段変速機。 An output shaft, an input shaft arranged coaxially with the output shaft, an output-side turning rotator fixed to the output shaft in a state perpendicular to the output shaft, and one surface of the output-side turning rotator One or more output-side permanent magnets fixed to the output side, an input-side swivel rotary body arranged to face the surface of the output-side swivel rotary body to which the output-side permanent magnet is fixed, and the input-side swivel rotation The surface of the body comprises one or more input-side permanent magnets fixed so that the magnetic poles opposite to the magnetic poles of the output-side permanent magnets face each other, and the input-side swivel rotating body is It is attached to the input shaft by a spring means so as to maintain a vertical state and the distance to the output-side swivel rotator is variable. The input-side swivel rotator includes one or more moving balls, On the outer peripheral surface of the input shaft, there is a spiral one on which the moving ball can roll. The slide groove is provided, and the rotation of the input shaft rotates the input-side turning rotator, and the moving ball moves in the slide groove of the input shaft to turn the input-side turning rotator into the output-side turning rotator. A continuously variable transmission that transmits the rotational power of the input shaft as the rotational power of the output shaft according to the degree of slip rotation . 前記出力側旋回回転体から所定距離以上、接近できないように衝突緩衝手段を備えることを特徴とする請求項1に記載の無段変速機。 2. The continuously variable transmission according to claim 1, further comprising a collision buffering unit so as not to approach the output-side turning rotary body beyond a predetermined distance .
JP2003116724A 2003-04-22 2003-04-22 Continuously variable transmission Expired - Fee Related JP3942555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116724A JP3942555B2 (en) 2003-04-22 2003-04-22 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116724A JP3942555B2 (en) 2003-04-22 2003-04-22 Continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2004324685A JP2004324685A (en) 2004-11-18
JP3942555B2 true JP3942555B2 (en) 2007-07-11

Family

ID=33496837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116724A Expired - Fee Related JP3942555B2 (en) 2003-04-22 2003-04-22 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JP3942555B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4813302B2 (en) * 2006-09-07 2011-11-09 株式会社椿本チエイン Magnetic torque transmission device
CN101397108B (en) * 2007-09-28 2010-12-01 北京京东方光电科技有限公司 Automatic adjusting torquer apparatus
JP5859216B2 (en) * 2011-03-18 2016-02-10 株式会社プロスパイン Magnetic coupling device

Also Published As

Publication number Publication date
JP2004324685A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
US6411001B1 (en) Variable ratio angled magnetic drive
JP2002199689A (en) Linear oscillator
GB2481092A (en) Thermal imaging camera having a fast electromechanical shutter arrangement
CN107091285B (en) Overrunning clutch
KR20100129286A (en) Ball speed reducer and rotary table device using same
CN107725631A (en) Electromagnetic torque clutch
US5437353A (en) Magnetic adjustable braking device
JP3942555B2 (en) Continuously variable transmission
CN107612263A (en) The rotation of multiple degrees of freedom electromagnetic machine and inclination control
US7226378B2 (en) Driving device for automatically exerting a variable torque on an output shaft that rotates at a constant speed
JP4410209B2 (en) Power transmission device
CN108145642A (en) Hand held power machine with spindle lock equipment
EP3376068B1 (en) Dual-mode transmission mechanism based on twisted string actuation
KR102103200B1 (en) Magnetic gear having air barrier
US6695070B1 (en) Magnetic impact device and method for magnetically generating impact motion
KR20220098646A (en) Speed maintenance system using N-pole and S-pole magnetic force
JP5432408B1 (en) A transmission suitable for using a plurality of large-diameter thin rotary electric machines that rotate in reverse to each other as a drive motor for an electric vehicle.
US6652406B2 (en) Transmission
JP2001124169A (en) Driving device using linear motor
TWM581328U (en) Continuously variable transmission power generation device
JP2002031165A (en) Load sensitive position switching device, position switching device for load sensitive automatic transmission and load sensitive automatic transmission
US11073196B2 (en) Rotation transmitting device
JP2022148221A (en) Rotary driving power transmission device for game machine
JPH03285556A (en) Magnetic gear unit
JPH0744822Y2 (en) Torque limiter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070403

R150 Certificate of patent or registration of utility model

Ref document number: 3942555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160413

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees