JP3942140B2 - Al-Fe alloy foil with excellent corrosion resistance - Google Patents

Al-Fe alloy foil with excellent corrosion resistance Download PDF

Info

Publication number
JP3942140B2
JP3942140B2 JP2000316216A JP2000316216A JP3942140B2 JP 3942140 B2 JP3942140 B2 JP 3942140B2 JP 2000316216 A JP2000316216 A JP 2000316216A JP 2000316216 A JP2000316216 A JP 2000316216A JP 3942140 B2 JP3942140 B2 JP 3942140B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
alloy foil
foil
ral
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000316216A
Other languages
Japanese (ja)
Other versions
JP2002121633A (en
Inventor
徹也 本居
淳 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2000316216A priority Critical patent/JP3942140B2/en
Publication of JP2002121633A publication Critical patent/JP2002121633A/en
Application granted granted Critical
Publication of JP3942140B2 publication Critical patent/JP3942140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐食性に優れたAl−Fe合金箔、とくに耐食性に優れるとともに、ピンホールや破断を生じることなく薄肉化することを可能とするAl−Fe合金箔に関する。
【0002】
【従来の技術】
従来、食塩や酢酸などとの接触が避けられない食品包装用アルミニウム箔としては、一般的に、耐食性の良好な純アルミニウム系の箔材が使用されてきたが、純アルミニウム系箔材は、強度が低いため破断が生じ易く、また比較的粗大な金属間化合物が存在するため金属間化合物に起因するピンホールが多くなって包装材として光、湿気の遮断性において劣ることから、近年の包装用箔の薄肉化の要求に十分対応することができないのが現状である。
【0003】
一方、ピンホールや破断が生じることなく薄肉化することを可能とするAl−Fe合金箔においては、耐食性が純アルミニウム系箔に比べて劣るため、食塩、酢酸などの腐食性内容物の包装には使用し得ない。
【0004】
発明者らは、包装材の薄肉化を可能とするAl−Fe合金箔の腐食性内容物の包装材としての使用可能性について、種々の角度から検討を加えた結果、マトリックス中に存在するAl−Fe系金属間化合物のうち、Al3 Feに対するAl6 Feの存在比率が耐食性に大きく影響することを見出した。
【0005】
【発明が解決しようとする課題】
本発明は、上記知見に基づいてさらに実験、検討を行った結果としてなされたものであり、その目的は、腐食性内容物の包装材として適した優れた耐食性をそなえ、高強度でピンホールを生じることなく、薄肉化の要求に対応可能なAl−Fe合金箔を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するための本発明による耐食性に優れたAl−Fe合金箔は、Fe:1.25〜2.0%(質量%、以下同じ)を含有し、残部Alおよび不純物からなるアルミニウム合金箔であって、不純物としてのSiを0.2%未満に制限し、該アルミニウム合金箔のマトリックス中に存在する金属間化合物AlFeおよびAlFeのうち、下記(1)式で示されるAlFeの比率RAlFeを100%未満としたことを特徴とする。
RAlFe=l AlFe/I AlFe×100%---(1)
但し、l AlFeはX線回折パターンにおけるAlFeのピーク強度(d=0.4891nm)、I AlFeはX線回折パターンにおけるAlFeのピーク強度(d=0.3962nm)
【0007】
【発明の実施の形態】
本発明における合金成分の意義および限定理由、金属間化合物Al6 Feの比率限定理由について説明する。
Feは、AlとともにAl−Fe系金属間化合物を形成し、強度と箔圧延性を向上させるよう機能する。Feの好ましい含有量は0.7〜2.0%の範囲であり、0.7%未満ではその機能が十分でなく、2.0%を越えて含有すると、上記金属間化合物に粗大なものが形成され、機械的性質が低下し、粗大な金属間化合物の形成に起因してピンホールが生じ易くなり、また耐食性も低下する。
【0008】
不純物としてのSiは0.2%未満に制限する。0.2%以上では、鋳造時にAl−Fe−Si系の金属間化合物が形成し、この金属間化合物は球体であり、ピンホールを発生させ易くするため好ましくない。
【0009】
本発明のAl−Fe合金箔中に存在するAl−Fe系金属間化合物は主としてAl6 FeおよびAl3 Feであり、発明者らの実験、検討によれば、X線回折におけるAl6 Feのピーク強度がAl3 Feのピーク強度に比べて高い場合には顕著に耐食性が劣り、逆に、Al6 Feのピーク強度がAl3 Feのピーク強度より低い場合には、前記Al6 Feの比率RAl6Fe が低いほど耐食性が良好となることが認められ、Al6 Feの比率RAl6Fe を100%未満とした場合に、包装材として必要な耐食性が得られることが見出された。
【0010】
Al6 Feの比率RAl6Fe は、対象となる箔の表面にX線を照射し、得られたX線回折強度から、d=0.4891nmにおけるAl6 Feのピーク強度およびd=0.3962nmにおけるAl3 Feのピーク強度を測定し、これらの値を前記(1)式に代入することにより求める。
【0011】
この際、Al3 Feの2θ値は、ASTMカードNo.29−42に記載された面間隔d=0.3962nm(hkl)=(003)を用いた計算値2θ=22.5degを使用し、また、Al6 Feの2θ値は、TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME 、VOLUME 224、188 頁(1962 年) に記載された単位格子長さ、a0=0.6492nm、b0=0.7437nm、c0=0.8788nmを用いて算出した斜方晶の面間隔d=0.489nm(hkl)=(110)から求められる2θ=18.1degを使用した。但し、実際の測定値は誤差が生じるため、計算値の±3%以内を許容範囲として、それぞれのピーク強度を測定した。X線源としてはCuKα線を用いた。
【0012】
本発明によるAl−Fe合金箔は、上記の組成を有するアルミニウム合金を、例えば、通常のDC鋳造によって造塊し、得られた鋳塊を常法に従って均質化処理後熱間圧延し、ついで中間焼鈍を行いまたは中間焼鈍なしに冷間圧延する通常のアルミニウム箔の製造工程に従って製造されるが、本発明に規定されるAl6 Feの存在比率RAl6Fe は、鋳造速度、均質化処理条件、熱間圧延温度あるいはこれらの条件と中間焼鈍温度の組み合わせを調整することで得ることができる。
【0013】
【実施例】
以下、本発明の実施例を比較例と対比して説明するとともに、それに基づいてその効果を実証する。なお、これらの実施例は、本発明の好ましい一実施態様を説明するものであって、これにより本発明が制限されるものではない。
【0014】
実施例1
DC鋳造法(鋳造速度30〜40mm/分)によって表1に示す組成を有するAl−Fe合金を造塊し、得られた鋳塊を、表2に示す条件により均質化処理し、熱間圧延により厚さ2mmの熱延板とし、必要に応じて中間焼鈍を行った後、冷間圧延する工程を経て、厚さ6μmのAl−Fe合金箔を製造した。
【0015】
得られたAl−Fe合金箔(圧延箔)について、X線回折を行い、前記の方法に従ってAl6 Feの比率RAl6Fe を求めた。X線回折結果を表2に示す。
【0016】
また得られたAl−Fe合金箔(試験材)について、引張強さを測定し、ピンホール数を測定し、耐食性試験として、100時間の塩水噴霧試験、酢酸を加えてpH3に調整した50℃の3%食塩水中に500時間まで浸漬する食塩水浸漬試験を行った。これらの測定、試験結果を表3に示す。
【0017】
【表1】

Figure 0003942140
【0018】
【表2】
Figure 0003942140
【0019】
【表3】
Figure 0003942140
【0020】
表3にみられるように、本発明に従う試験材はいずれも従来の純アルミニウム系箔材に近い耐食性を示し、塩水噴霧試験においては変色無しかあるいは僅かな変色が生じたのみであり、食塩水浸漬試験においては、白変色の僅かな腐食、または貫通孔を生じたものでも150時間を越える耐久性を有していた。また、従来の純アルミニウム系箔材と比べて強度が高く、ピンホールの発生は少ない。
【0021】
比較例1
DC鋳造法(鋳造速度30〜70mm/分)によって表4に示す組成を有するAl−Fe合金、純アルミニウムを造塊し、得られた鋳塊を、表5に示す条件により均質化処理し、熱間圧延により厚さ2mmの熱延板とし、必要に応じて中間焼鈍を行った後、冷間圧延する工程を経て、厚さ6μmのAl−Fe合金箔を製造した。
【0022】
得られた箔(圧延箔)について、実施例1と同様、X線回折を行い、前記の方法に従ってAl6 Feの比率RAl6Fe を求めた。X線回折結果を表5に示す。
【0023】
また得られたAl−Fe合金箔(試験材)について、実施例1と同様、引張強さを測定し、ピンホール数を測定し、耐食性試験として、100時間の塩水噴霧試験、酢酸を加えてpH3に調整した50℃の3%食塩水中に500時間まで浸漬する食塩水浸漬試験を行った。これらの測定、試験結果を表6に示す。
【0024】
【表4】
Figure 0003942140
【0025】
【表5】
Figure 0003942140
【0026】
【表6】
Figure 0003942140
【0027】
表6に示すように、試験材No.5〜8はいずれもRAl6Fe が100%を越えているため、塩水噴霧試験において貫通孔が生じ、食塩水浸漬試験においては、8〜21時間で貫通孔が生じ、いずれも耐食性が劣っている。また試験材No.9はRAl6Fe が100%未満であるが、含有するFe量が2%を越えているため、粗大な金属間化合物が多数存在し、耐食性が劣っている。純アルミニウム系の箔材(試験材No.10〜11)は、耐食性が優れているが、強度が十分でなく、ピンホールの発生数が多い。
【0028】
【発明の効果】
本発明によれば、純アルミニウム系箔材に匹敵する優れた耐食性を備え、高強度でピンホールの少ないAl−Fe合金箔が提供される。当該合金箔は、腐食性内容物の包装材として好適に使用することができ、薄肉化の要求に対応することが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an Al—Fe alloy foil having excellent corrosion resistance, and particularly to an Al—Fe alloy foil that has excellent corrosion resistance and can be thinned without causing pinholes or breakage.
[0002]
[Prior art]
Conventionally, as aluminum foil for food packaging, in which contact with salt, acetic acid, etc. is unavoidable, generally pure aluminum foil material with good corrosion resistance has been used. Since it is low, breakage is likely to occur, and since there are relatively coarse intermetallic compounds, pinholes resulting from intermetallic compounds increase, resulting in poor light and moisture blocking properties as packaging materials. The current situation is that it cannot sufficiently meet the demand for thin foil.
[0003]
On the other hand, Al-Fe alloy foils that can be thinned without causing pinholes or breakage are inferior to pure aluminum-based foils in corrosion resistance, such as salt and acetic acid. Cannot be used.
[0004]
The inventors have examined the possibility of using the corrosive contents of the Al-Fe alloy foil that enables the packaging material to be thinned as a packaging material, as a result of various investigations. As a result, Al present in the matrix can be obtained. It has been found that the abundance ratio of Al 6 Fe to Al 3 Fe among the Fe-based intermetallic compounds greatly affects the corrosion resistance.
[0005]
[Problems to be solved by the invention]
The present invention was made as a result of further experiments and examinations based on the above findings, and its purpose is to provide excellent corrosion resistance suitable as a packaging material for corrosive contents, and to provide pinholes with high strength. An object of the present invention is to provide an Al—Fe alloy foil that can meet the demand for thinning without being generated.
[0006]
[Means for Solving the Problems]
The Al—Fe alloy foil excellent in corrosion resistance according to the present invention for achieving the above object contains Fe: 1.25 to 2.0% (mass%, the same shall apply hereinafter), with the balance being Al and impurities. An alloy foil, in which Si as an impurity is limited to less than 0.2%, and among the intermetallic compounds Al 6 Fe and Al 3 Fe present in the matrix of the aluminum alloy foil, the following formula (1) The ratio of Al 6 Fe RAl 6 Fe is less than 100%.
RAl 6 Fe = l Al 6 Fe / I Al 3 Fe × 100% --- (1)
However, 1 Al 6 Fe is the peak intensity of Al 6 Fe in the X-ray diffraction pattern (d = 0.4891 nm), and I Al 3 Fe is the peak intensity of Al 3 Fe in the X-ray diffraction pattern (d = 0.3962 nm).
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The significance and reason for limitation of the alloy components in the present invention and the reason for limiting the ratio of the intermetallic compound Al 6 Fe will be described.
Fe forms an Al—Fe-based intermetallic compound together with Al, and functions to improve strength and foil rollability. The preferable content of Fe is in the range of 0.7 to 2.0%. If the content is less than 0.7%, the function is not sufficient. If the content exceeds 2.0%, the intermetallic compound is coarse. Are formed, mechanical properties are lowered, pinholes are easily generated due to the formation of coarse intermetallic compounds, and corrosion resistance is also lowered.
[0008]
Si as an impurity is limited to less than 0.2%. If it is 0.2% or more, an Al—Fe—Si-based intermetallic compound is formed at the time of casting, and this intermetallic compound is a sphere, which is not preferable because it easily generates pinholes.
[0009]
The Al—Fe-based intermetallic compounds present in the Al—Fe alloy foil of the present invention are mainly Al 6 Fe and Al 3 Fe. According to the experiments and examinations by the inventors, the Al 6 Fe significantly poor corrosion resistance when the peak intensity is higher than the peak intensity of Al 3 Fe, conversely, when the peak intensity of Al 6 Fe is less than the peak strength of the Al 3 Fe, the ratio of the Al 6 Fe corrosion resistance as RAl 6 Fe is less was observed to be a good, when the ratio RAl 6 Fe of Al 6 Fe is less than 100%, the required corrosion resistance was found to be obtained as a packaging material.
[0010]
Al 6 Fe ratio RAl 6 Fe in irradiates X-rays to the surface of the foil of interest, from the obtained X-ray diffraction intensity, d = peak intensity of Al 6 Fe in 0.4891nm and d = 0.3962nm The peak intensity of Al 3 Fe is measured, and these values are obtained by substituting these values into the above equation (1).
[0011]
At this time, the 2θ value of Al 3 Fe is determined according to ASTM card no. The calculated value 2θ = 22.5 deg using the interplanar spacing d = 0.39662 nm (hkl) = (003) described in 29-42 is used, and the 2θ value of Al 6 Fe is TRANSACTIONS OF THE METALLURGICAL SOCIETY. OF AIME, VOLUME 224, page 188 (1962), orthorhombic plane spacing d calculated using unit cell lengths a0 = 0.6492 nm, b0 = 0.7437 nm, c0 = 0.8788 nm = 0.489 nm (hkl) = 2θ = 18.1 deg determined from (110) was used. However, since an actual measurement value has an error, each peak intensity was measured within an allowable range of ± 3% of the calculated value. CuKα rays were used as the X-ray source.
[0012]
The Al-Fe alloy foil according to the present invention is an ingot of an aluminum alloy having the above composition, for example, by ordinary DC casting, and the obtained ingot is homogenized according to a conventional method and hot-rolled, and then intermediate Although it is manufactured according to a manufacturing process of a normal aluminum foil that is annealed or cold-rolled without intermediate annealing, the Al 6 Fe abundance ratio RAl 6 Fe defined in the present invention is determined by casting speed, homogenization treatment conditions, It can be obtained by adjusting the hot rolling temperature or the combination of these conditions and the intermediate annealing temperature.
[0013]
【Example】
Examples of the present invention will be described below in comparison with comparative examples, and the effects will be demonstrated based on the examples. In addition, these Examples demonstrate one preferable embodiment of this invention, and this invention is not restrict | limited by this.
[0014]
Example 1
An Al—Fe alloy having the composition shown in Table 1 is ingoted by a DC casting method (casting speed 30 to 40 mm / min), and the resulting ingot is homogenized under the conditions shown in Table 2 and hot rolled. Thus, a hot-rolled sheet having a thickness of 2 mm was obtained, and an intermediate annealing was performed as necessary, and then a cold-rolling process was performed to produce an Al—Fe alloy foil having a thickness of 6 μm.
[0015]
The obtained Al—Fe alloy foil (rolled foil) was subjected to X-ray diffraction, and the Al 6 Fe ratio RAl 6 Fe was determined according to the above method. Table 2 shows the X-ray diffraction results.
[0016]
Moreover, about the obtained Al-Fe alloy foil (test material), the tensile strength was measured, the number of pinholes was measured, and as a corrosion resistance test, a salt spray test for 100 hours, and 50 ° C adjusted to pH 3 by adding acetic acid. A saline immersion test was conducted in which the sample was immersed in 3% saline for up to 500 hours. These measurements and test results are shown in Table 3.
[0017]
[Table 1]
Figure 0003942140
[0018]
[Table 2]
Figure 0003942140
[0019]
[Table 3]
Figure 0003942140
[0020]
As seen in Table 3, all of the test materials according to the present invention showed corrosion resistance similar to that of the conventional pure aluminum foil material, and in the salt spray test, there was no discoloration or only slight discoloration. In the immersion test, even a slight corrosion of white discoloration or a through hole had a durability exceeding 150 hours. Further, the strength is higher than that of a conventional pure aluminum foil material, and the occurrence of pinholes is small.
[0021]
Comparative Example 1
Ingot of Al-Fe alloy having a composition shown in Table 4 and pure aluminum by DC casting method (casting speed 30 to 70 mm / min), and the resulting ingot is homogenized under the conditions shown in Table 5, A hot-rolled sheet having a thickness of 2 mm was formed by hot rolling, and an intermediate annealing was performed as necessary, and then a cold-rolling process was performed to produce an Al—Fe alloy foil having a thickness of 6 μm.
[0022]
The obtained foil (rolled foil), as in Example 1, subjected to X-ray diffraction to determine the ratio RAl 6 Fe of Al 6 Fe in accordance with the method. The X-ray diffraction results are shown in Table 5.
[0023]
Moreover, about the obtained Al-Fe alloy foil (test material), as in Example 1, the tensile strength was measured, the number of pinholes was measured, and as a corrosion resistance test, a salt spray test for 100 hours and acetic acid were added. A saline immersion test was conducted in which the sample was immersed in 3% saline at 50 ° C. adjusted to pH 3 for up to 500 hours. These measurements and test results are shown in Table 6.
[0024]
[Table 4]
Figure 0003942140
[0025]
[Table 5]
Figure 0003942140
[0026]
[Table 6]
Figure 0003942140
[0027]
As shown in Table 6, the test material No. In all of Nos. 5 to 8, since RAl 6 Fe exceeds 100%, a through-hole is generated in the salt spray test, and in the saline immersion test, a through-hole is generated in 8 to 21 hours. Yes. In addition, the test material No. No. 9 has a RAl 6 Fe content of less than 100%, but the amount of Fe contained exceeds 2%, so there are many coarse intermetallic compounds and the corrosion resistance is poor. Pure aluminum foil materials (test materials No. 10 to 11) have excellent corrosion resistance, but do not have sufficient strength and have a large number of pinholes.
[0028]
【The invention's effect】
According to the present invention, an Al—Fe alloy foil having excellent corrosion resistance comparable to that of a pure aluminum foil material, high strength and few pinholes is provided. The alloy foil can be suitably used as a packaging material for corrosive contents, and can meet the demand for thinning.

Claims (1)

Fe:1.25〜2.0%(質量%、以下同じ)を含有し、残部Alおよび不純物からなるアルミニウム合金箔であって、不純物としてのSiを0.2%未満に制限し、該アルミニウム合金箔のマトリックス中に存在する金属間化合物AlFeおよびAlFeのうち、下記(1)式で示されるAlFeの比率RAlFeを100%未満としたことを特徴とする耐食性に優れたAl−Fe合金箔。
RAlFe=l AlFe/I AlFe×100%---(1)
但し、l AlFeはX線回折パターンにおけるAlFeのピーク強度(d=0.4891nm)、I AlFeはX線回折パターンにおけるAlFeのピーク強度(d=0.3962nm)
Fe: an aluminum alloy foil containing 1.25 to 2.0% (mass%, the same shall apply hereinafter), the balance being Al and impurities, wherein Si as impurities is limited to less than 0.2%, and the aluminum Among the intermetallic compounds Al 6 Fe and Al 3 Fe present in the matrix of the alloy foil, the ratio of Al 6 Fe represented by the following formula (1) RAl 6 Fe is less than 100%, and the corrosion resistance is characterized by Excellent Al-Fe alloy foil.
RAl 6 Fe = l Al 6 Fe / I Al 3 Fe × 100% --- (1)
However, 1 Al 6 Fe is the peak intensity of Al 6 Fe in the X-ray diffraction pattern (d = 0.4891 nm), and I Al 3 Fe is the peak intensity of Al 3 Fe in the X-ray diffraction pattern (d = 0.3962 nm).
JP2000316216A 2000-10-17 2000-10-17 Al-Fe alloy foil with excellent corrosion resistance Expired - Lifetime JP3942140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000316216A JP3942140B2 (en) 2000-10-17 2000-10-17 Al-Fe alloy foil with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000316216A JP3942140B2 (en) 2000-10-17 2000-10-17 Al-Fe alloy foil with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2002121633A JP2002121633A (en) 2002-04-26
JP3942140B2 true JP3942140B2 (en) 2007-07-11

Family

ID=18795197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000316216A Expired - Lifetime JP3942140B2 (en) 2000-10-17 2000-10-17 Al-Fe alloy foil with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP3942140B2 (en)

Also Published As

Publication number Publication date
JP2002121633A (en) 2002-04-26

Similar Documents

Publication Publication Date Title
CN105189795B (en) Aluminum alloy plate having high-strength alumite coating film for electronic equipment frame and manufacturing method of aluminum alloy plate
TWI631226B (en) Cuppor alloy plate and method for producing the same and conductive parts
KR970005419B1 (en) Aluminium products having improved corrosion resistance
WO2011125554A1 (en) Cu-ni-si-co copper alloy for electronic material and process for producing same
JP5728580B2 (en) Aluminum alloy plate and method for producing aluminum alloy plate
CN103374672B (en) The aluminium alloy plate and its production method of excellent surface quality are shown after anodization
JP5944862B2 (en) Aluminum alloy plate excellent in surface quality after anodizing treatment and manufacturing method thereof
JP5985165B2 (en) Aluminum alloy sheet with excellent bake hardenability
JP5820315B2 (en) Aluminum alloy sheet with excellent hemmability and bake hardenability after aging at room temperature
KR20130130828A (en) Aluminum alloy plate having superior baking finish hardening
JP2009209426A (en) Aluminum alloy material for housing
JP4799903B2 (en) Aluminum alloy foil with excellent corrosion resistance and strength and method for producing the same
JP2014074213A (en) High strength aluminum alloy extruded material and method of producing the same
KR20150070201A (en) Aluminium alloy foil
JP3563323B2 (en) Aluminum alloy plate excellent in thread rust resistance and method for producing the same
JPS60121249A (en) Stress corrosion resistant aluminum base alloy
JP4712159B2 (en) Aluminum alloy plate excellent in strength and corrosion resistance and method for producing the same
JP3942140B2 (en) Al-Fe alloy foil with excellent corrosion resistance
JP4098917B2 (en) High strength aluminum alloy
JP2006009108A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY
JP4753327B2 (en) Aluminum alloy hard foil for electrolytic capacitor cathode
JPS6410584B2 (en)
JP2826590B2 (en) Manufacturing method of aluminum alloy foil for anode of electrolytic capacitor
JPH07197177A (en) Aluminum alloy rolled sheet for superplastic formation and low in cavitation
JPH03294445A (en) High strength aluminum alloy having good formability and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350