JP3941264B2 - Method for producing soft cold-rolled steel sheet - Google Patents

Method for producing soft cold-rolled steel sheet Download PDF

Info

Publication number
JP3941264B2
JP3941264B2 JP29374298A JP29374298A JP3941264B2 JP 3941264 B2 JP3941264 B2 JP 3941264B2 JP 29374298 A JP29374298 A JP 29374298A JP 29374298 A JP29374298 A JP 29374298A JP 3941264 B2 JP3941264 B2 JP 3941264B2
Authority
JP
Japan
Prior art keywords
rolling
less
steel sheet
coil
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29374298A
Other languages
Japanese (ja)
Other versions
JP2000094001A (en
Inventor
透 稲積
洋一 本屋敷
啓泰 菊池
雅夫 納
善道 日野
淳 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP29374298A priority Critical patent/JP3941264B2/en
Publication of JP2000094001A publication Critical patent/JP2000094001A/en
Application granted granted Critical
Publication of JP3941264B2 publication Critical patent/JP3941264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、長尺スラブを用いて直送圧延を行う際に、鋳造から熱延までの履歴を制御することで材質変動の小さい軟質冷延鋼板を製造する方法に関し、例えば自動車、家電、パイプ等の広範な用途に対し、高品質な軟質冷延鋼板を低コストで製造する方法に関する。
【0002】
【従来の技術】
冷延鋼板は、自動車、家電、パイプ等の広範な分野で使用されているが、構造部材の加工精度や製品の性能安定性の観点から、供給されるコイル内の材質変動を極力低減することが切望されている。
【0003】
冷延コイル内の長手方向の材質変動を低減するためには、冷延及び焼鈍条件の長手方向の変動を極力低減することが重要であるが、これらについては、近年の冷延技術の進歩及び連続焼鈍技術の適用によりほぼ問題のないレベルまで改善されてきている。しかしながら、冷延の素材である熱延コイル内に材質変動が存在すると、冷延および焼鈍工程に係わらず、この影響で冷延コイル内にも材質変動が生じるため、この問題を解決することが重要課題となっている。熱延コイル内の長手方向の材質変動を低減する方法としては、スラブを加熱炉で加熱後粗バーまで圧延し、熱間で接続して仕上圧延を行う連続圧延を対象に、特開平9−241739号公報、特開平9−241740号公報、特開平9−241741号公報、特開平9−241742号公報に、コイル内仕上圧延温度差を50℃未満、仕上圧延機内での張力を0.1kgf/mm2 以内、仕上圧延機内での歪速度を少なくとも1パスで300/秒以上、コイル内仕上圧延速度差を400mpm未満、仕上圧延機入側と出側の温度差を100℃未満とする技術が提案されている。 一方、経済性の観点からは、上記技術のような加熱炉を使用しかつ粗バーで加熱接合を行う連続圧延に比べ、連続鋳造スラブを再加熱することなくあるいは簡単な加熱や保熱を行うだけで圧延を行う直送圧延が有利である。直送圧延については既に種々の技術が提案されているが、例えば、直送圧延の利点を最大限に生かして経済性をさらに高める方法として、スラブを従来の加熱炉用に比べて長尺化し、クロップロスやコイル先後端の非定常部比率を低減する方法が特開平9−253701号公報に提案されている。この技術では、コイルボックスでの保熱等による粗バーの均質化も考慮している。
【0004】
【発明が解決しようとする課題】
しかしながら、上記したような長尺スラブを用いた直送圧延では、スラブ長手方向の位置によって鋳造以降の熱履歴が大きく異なるため、コイルボックス等による均熱や前述の連続圧延技術における仕上圧延工程の温度および加工条件の制御のみではコイル内の材質変動を解消することはできないという問題があった。
【0005】
このように、長尺スラブによる直送圧延法は経済面での利点が非常に大きいにもかかわらず、コイル内で均一な材質が得られないという問題があるため、冷延鋼板用の素材の製造においては十分に実用化が進んでいない。
本発明は、このような事情を考慮したものであり、長尺スラブを用いた直送圧延を用いて、低コストでかつコイル内の材質変動が小さい軟質冷延鋼板の製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
前記課題を解決し目的を達成するために、本発明は以下に示す手段を用いている。
(1)本発明の製造方法は、質量%で、C:0.08%以下と、Si:0.1%以下と、Mn:0.1〜0.6%と、P:0.05%以下と、S:0.03%以下と、Al:0.01〜0.1%と、N:0.01%以下とを含有し、残部がFe及び不可避的不純物である組成を有する鋼板を製造する方法において、
該鋼を連続鋳造して直ちに粗圧延を行う工程と、
粗圧延で得られた粗バーを加熱して仕上圧延入側温度を調整し、下式(1)で与えられるF値の変動量がコイル内で0.8以下となるように仕上圧延を行って巻き取る工程と、
巻き取られた熱延鋼板を圧下率50%以上で冷間圧延を行い700〜900℃で30秒以上の焼鈍を施す工程と、
を備えたことを特徴とする、コイル内の材質変動が小さい軟質冷延鋼板の製造方法である。
F=In(Vf−350)・(tcf+95)1/2/exp(−5450/(Tf+273))/1000 …(1)
但し、Vf:仕上最終スタンドの圧延速度(mpm)、Tf:仕上圧延終了温度(℃)、tcf:鋳造終了後から粗圧延終了までの所要時間(分)。
【0007】
(2)本発明の製造方法は、質量%で、C:0.08%以下と、Si:0.1%以下と、Mn:0.1〜0.6%と、P:0.05%以下と、S:0.03%以下と、Al:0.01〜0.1%と、N:0.01%以下とを含有し、残部がFe及び不可避的不純物である組成を有する鋼板を製造する方法において、
該鋼を連続鋳造して直ちに圧下率80%以下の粗圧延を行う工程と、
粗圧延で得られた粗バーを加熱して仕上圧延入側温度を調整し、下式(1)で与えられるF値の変動量がコイル内で0.8以下となるように仕上圧延を行って巻き取る工程と、
巻き取られた熱延鋼板を圧下率50%以上で冷間圧延を行い700〜900℃で30秒以上の焼鈍を施す工程と、
を備えたことを特徴とする、コイル内の材質変動が小さい軟質冷延鋼板の製造方法である。
F=In(Vf−350)・(tcf+95)1/2/exp(−5450/(Tf+273))/1000 …(1)
但し、Vf:仕上最終スタンドの圧延速度(mpm)、Tf:仕上圧延終了温度(℃)、tcf:鋳造終了後から粗圧延終了までの所要時間(分)。
【0008】
(3)本発明の製造方法は、前記粗圧延工程において、少なくとも2本以上のコイル重量に相当する連続鋳造スラブを用いて粗圧延を行い、前記仕上圧延工程の後に、鋼板を分割して巻き取ることを特徴とする、上記(1)または(2)に記載のコイル内の材質変動が小さい軟質冷延鋼板の製造方法である。
(4)本発明の製造方法は、Ti:0.06〜0.08質量%及び/又はB:0.002〜0.003質量%を鋼板の成分として更に含有することを特徴とする、上記(1)乃至(3)いずれか記載のコイル内の材質変動が小さい軟質冷延鋼板の製造方法である。
【0009】
【発明の実施の形態】
本発明者らは、長尺スラブを用いた直送圧延について、スラブ長手方向の各位置における熱・加工履歴と材質の関連に注目して詳細な調査を行った。
その結果、連続鋳造で製造されるスラブが鋳型を出た時点から粗圧延を終了するまでの所要時間および粗圧延の圧下率が材質に大きく影響しており、この所要時間に応じて仕上圧延終了温度と仕上最終スタンドの圧延速度を規制するとともに粗圧延の圧下率を規制して得られた熱延コイルを用いることにより、冷延コイル内の材質変動を著しく低減できることを見いだした。
【0010】
この知見に基づき、本発明者らは、化学成分を特定した鋼を直送圧延する際の熱間圧延条件(即ち、鋳造終了後から粗圧延終了までの所要時間、粗圧延の圧下率、仕上圧延終了温度、及び仕上最終スタンドの圧延速度)を一定範囲内に制御するようにして、長尺スラブを用いた直送圧延において、コイル内の材質変動が小さい軟質冷延鋼板の製造方法を見出し、本発明を完成させた。
【0011】
すなわち、本発明は、鋼組成及び製造条件を下記範囲に限定することにより、自動車、家電、パイプ等の広範な用途に対し、高品質な軟質冷延鋼板を低コストで製造する方法を提供することができる。
以下に、本発明の成分添加理由、成分限定理由、及び製造条件の限定理由について説明する。
【0012】
(1)成分組成範囲
C:0.08%以下
Cは、鋼板を硬質低延性化させるので低いほうが好ましく、上限は0.08%である。
Si:0.1%以下
Siは、鋼板を硬質化させるとともに、赤スケールの発生による表面性状の劣化をもたらすので、0.1%以下である。
Mn:0.1〜0.6%
Mnは、SをMnSとして固定し熱間延性を確保する観点から0.1%以上添加するが、0.6%を越えて添加すると鋼板を硬質低延性化させるので、0.6%が上限である。
P:0.05%以下
Pは、鋼板を硬質低延性化させる元素であるから、0.05%以下である。
S:0.03%以下
Sは、熱間延性を低下させてスラブの割れ感受性を高めるばかりか、微細なMnSの析出を通じて粒成長性を阻害し、その結果加工性を劣化させるので0.03%以下である。
Al:0.01〜0.1%
Alは、Nを固定して無害化する元素であるが、そのためには0.01%以上の添加が必要である。ただし、その効果は0.1%を越えると飽和するので、上限は0.1%である。
N:0.01%以下
Nは、鋼板を硬質低延性化させる元素であり、0.01%以下とする必要がある。
なお、必要に応じて、Ti,Bなどの成分元素を本発明の効果を阻害しない範囲で添加してもよい。
上記の成分組成範囲に調整することにより、長尺スラブを用いた直送圧延を用いて、低コストでかつコイル内の材質変動が小さい軟質冷延鋼板を得ることが可能となる。
【0013】
このような特性の鋼板は、以下の製造方法により製造することができる。
(2)鋼板製造工程
(2−1)態様1の製造条件
(製造方法)
上記の成分組成範囲に調整した鋼を転炉で溶製し連続鋳造して直ちに粗圧延を行った後、得られた粗バーを圧延ライン内に配置した加熱装置により加熱して仕上圧延入側温度を調整し、下式(1)で与えられるF値の変動量がコイル内で0.8以下となるように仕上圧延を行って巻き取る。次いで、得られた熱延鋼板を圧下率50%以上で冷間圧延を行い700〜900℃で30秒以上の焼鈍を施す。 F=ln(Vf−350)・(tcf+95)1/2 /exp(−5450/(Tf+273))/1000 …(1)
但し、Vf:仕上最終スタンドの圧延速度(mpm)、Tf:仕上圧延終了温度(℃)、tcf:鋳造終了後から粗圧延終了までの所要時間(分)。
【0014】
また、前記粗圧延工程において、少なくとも2本以上のコイル重量に相当する連続鋳造スラブを用いて粗圧延を行い、前記仕上圧延工程の後に、鋼板を分割して巻き取ってもよい。
【0015】
連続鋳造で製造されるスラブが鋳型を出た時点から粗圧延を終了するまでの所要時間:tcf(分)、仕上最終スタンドの圧延速度:Vf(mpm)、仕上圧延終了温度:Tf(℃)の限定理由について説明する。
【0016】
本発明者らは、直送圧延材から製造した冷延コイル内の材質変動と製造条件の関係を詳細に調査した結果、tcfの影響が大きいとの知見を得た。そこで、tcfの変動の影響を軽減する上で有効な因子を抽出するため種々の解析を行った結果、VfおよびTfを制御することが最も有効であるとの結論を得た。
【0017】
図1は、(0.040%〜0.043%)C−(0.01%〜0.02%)Si−(0.21%〜0.25%)Mn鋼を用いて種々の条件で直送圧延を行い、75%の冷間圧延後、740〜760℃で連続焼鈍を行った冷延コイル内において、熱延の仕上圧延条件の実績がVf=700〜800mpm、Tf=850〜860℃の部分について、引張強さ(TS,MPa)を調べ、tcf(分)で整理した結果である。tcfの増加に伴い、TSは上昇することが解る。このメカニズムの詳細は不明であるが、tcfの増加に伴い熱延の粗圧延中に歪み誘起析出する硫化物や窒化物の形態がより微細分散型となり、仕上圧延における再結晶および粒成長が阻害されることによるものと推定している。
【0018】
図2は、上記試験コイルについて、冷延コイル内におけるTSの変動量をF=ln(Vf−350)・(tcf+95)1/2 /exp(−5450/(Tf+273))/1000の変動量で整理したものである。ここで、TSの変動量は、コイル長手方向先端および後端50mの位置からサンプルを採取して評価した。コイル内のTSの変動量はF値の変動量の増加に伴い増加する。本図から解るように、TSの変動量を低位安定化するには、F値の変動量を0.8以下とする必要がある。
【0019】
また、上記仕上圧延後巻き取られた熱延鋼板を冷間圧延を行う際の圧下率は、加工性、特に深絞り性の観点から50%以上が好ましい。焼鈍については、軟質化のため700℃以上、粗大粒抑制のため900℃以下である。均熱時間については、組織を安定化させるため30秒以上が好ましい。
(2−2)態様2の製造条件
(製造方法)
上記の成分組成範囲に調整した鋼を転炉で溶製し連続鋳造して直ちに圧下率80%以下の粗圧延を行った後、得られた粗バーを圧延ライン内に配置した加熱装置により加熱して仕上圧延入側温度を調整し、下式(1)で与えられるF値の変動量がコイル内で0.8以下となるように仕上圧延を行って巻き取る。次いで、得られた熱延鋼板を圧下率50%以上で冷間圧延を行い700〜900℃で30秒以上の焼鈍を施す。
【0020】
F=ln(Vf−350)・(tcf+95)1/2 /exp(−5450/(Tf+273))/1000 …(1)
但し、Vf:仕上最終スタンドの圧延速度(mpm)、Tf:仕上圧延終了温度(℃)、tcf:鋳造終了後から粗圧延終了までの所要時間(分)。
【0021】
また、前記粗圧延工程において、少なくとも2本以上のコイル重量に相当する連続鋳造スラブを用いて粗圧延を行い、前記仕上圧延工程の後に、鋼板を分割して巻き取ってもよい。
【0022】
粗圧延の圧下率、連続鋳造で製造されるスラブが鋳型を出た時点から粗圧延を終了するまでの所要時間:tcf(分)、仕上最終スタンドの圧延速度:Vf(mpm)、仕上圧延終了温度:Tf(℃)の限定理由について説明する。
【0023】
図3は、(0.040%〜0.043%)C−(0.01%〜0.02%)Si−(0.21%〜0.25%)Mn鋼を用いて種々の条件で直送圧延を行い、75%の冷間圧延後、740〜760℃で連続焼鈍を行った冷延コイル内において、熱延の仕上圧延条件の実績がVf=700〜800mpm、Tf=850〜860℃の部分について、引張強さ(TS,MPa)を調べ、粗圧延の圧下率が80%を越えるものと80%以下のものを区別してtcf(分)で整理した結果である。図2の例と同様にtcfの増加に伴い、TSは上昇するが、粗圧延の圧下率が80%以下のものはTSの上昇の割合が小さいという結果が得られた。これは、圧下率を下げることにより粗圧延時における硫化物や窒化物の歪誘起析出形態のtcf依存性が低下するためと考えられる。
【0024】
図4は、上記試験コイルの内、粗圧延の圧下率が80%以下であるものについて、冷延コイル内におけるTSの変動量をF=ln(Vf−350)・(tcf+95)1/2 /exp(−5450/(Tf+273))/1000の変動量で整理したものである。ここで、TSの変動量は、コイル長手方向先端および後端50mの位置からサンプルを採取して評価した。コイル内のTSの変動量はF値の変動量の増加に伴い増加する。本図から解るように、TSの変動量を低位安定化するには、F値の変動量を0.8以下とする必要がある。
【0025】
また、上記仕上圧延後巻き取られた熱延鋼板を冷間圧延を行う際の圧下率、焼鈍温度、及び均熱時間の限定理由については、上記態様1の製造条件と同様である。
なお、本発明は焼鈍後に各種電気メッキ処理やそれに加えて有機被覆処理を行う場合、ならびに、冷間圧延後に連続溶融亜鉛メッキライン等により焼鈍およびメッキ処理を行う場合でも、十分な効果が得られる。
以下に本発明の実施例を挙げ本発明の効果を立証する。
【0026】
【実施例】
(実施例1)
表1に示す組成を有する鋼(A〜D)を溶製して鋳造速度1.6〜2.2mpmで連続鋳造を行い厚さ250mm、長さ13mのスラブとし、表2に示すようにF値を種々変化させた条件(No.1〜5:本発明例、No.6〜9:比較例)にて直送熱延を行い、75%の冷間圧延を行った後に750℃で連続焼鈍を行って、各コイルの長手方向先端および後端からそれぞれ50mの位置からサンプルを採取して引張試験を行い、TSの変動量(ΔTS)により材質均一性を評価した。
表3の結果に示すように、表2においてF値の変動量を本発明の範囲内の0.8以下(本発明例No.1〜5)に抑えることにより、鋼種によらず従来法(比較例No.6〜9)に比べΔTSが5〜18程度と小さく、材質が均一な鋼板が得られることが解る。
一方、比較例No.6〜9は、F値の変動量が本発明の範囲から外れており、本発明例No.1〜5と比べた場合、ΔTSが大きくなっている。
【0027】
【表1】

Figure 0003941264
【0028】
【表2】
Figure 0003941264
【0029】
【表3】
Figure 0003941264
【0030】
(実施例2)
表4に示す組成を有する鋼(A〜D)を溶製して鋳造速度1.6〜2.2mpmで連続鋳造を行い厚さ250mm、長さ13mのスラブとし、表5に示すようにF値を種々変化させた条件(No.1〜5:本発明例、No.6〜9:比較例)にて直送熱延を行い、75%の冷間圧延を行った後に750℃で連続焼鈍を行って、各コイルの長手方向先端および後端からそれぞれ50mの位置からサンプルを採取して引張試験を行い、TSの変動量(ΔTS)により材質均一性を評価した。
表6の結果に示すように、表5においてF値の変動量を本発明の範囲内の0.8以下(本発明例No.1〜5)に抑えることにより、鋼種によらず従来法(比較例No.6〜9)に比べΔTSが5〜13程度と小さく、材質が均一な鋼板が得られることが解る。
【0031】
一方、比較例No.6〜9は、粗圧延の圧下率及びF値の変動量が本発明の範囲から外れており、本発明例No.1〜5と比べた場合、ΔTSが大きくなっている。
【0032】
【表4】
Figure 0003941264
【0033】
【表5】
Figure 0003941264
【0034】
【表6】
Figure 0003941264
【0035】
【発明の効果】
以上説明したように、本発明によれば、鋼組成及び製造条件を特定することにより、長尺スラブを用いた直送圧延を用いて、低コストでかつコイル内の材質変動が小さい軟質冷延鋼板の製造方法を提供することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態に係る直送圧延材の鋳造終了後から粗圧延終了までの所要時間(tcf)と引張強さ(TS)との関係を示す図。
【図2】 本発明の第1実施形態に係る直送圧延材の冷延コイル内のF値の変動量と冷延コイル内の引張強さ(TS)の変動量との関係を示す図。
【図3】 本発明の第2実施形態に係る直送圧延材の鋳造終了後から粗圧延終了までの所要時間(tcf)と引張強さ(TS)との関係を示す図。
【図4】 本発明の第2実施形態に係る直送圧延材の冷延コイル内のF値の変動量と冷延コイル内の引張強さ(TS)の変動量との関係を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a soft cold-rolled steel sheet with small material fluctuation by controlling the history from casting to hot rolling when performing direct rolling using a long slab, such as automobiles, home appliances, pipes, etc. The present invention relates to a method for producing a high-quality soft cold-rolled steel sheet at low cost for a wide range of applications.
[0002]
[Prior art]
Cold-rolled steel sheets are used in a wide range of fields such as automobiles, home appliances, and pipes. From the viewpoints of processing accuracy of structural members and product performance stability, the material fluctuation in the supplied coil should be reduced as much as possible. Is anxious.
[0003]
In order to reduce the longitudinal material fluctuation in the cold rolled coil, it is important to reduce the longitudinal fluctuation of the cold rolling and annealing conditions as much as possible. The application of continuous annealing technology has been improved to almost no problem level. However, if there is material variation in the hot-rolled coil, which is a cold-rolled material, the material variation also occurs in the cold-rolled coil due to this effect regardless of the cold-rolling and annealing processes, so this problem can be solved. It is an important issue. As a method of reducing the material fluctuation in the longitudinal direction in the hot-rolled coil, for continuous rolling in which a slab is heated to a rough bar after being heated in a heating furnace, and finish-rolling is performed by hot connection, JP-A-9- No. 241739, JP-A-9-241740, JP-A-9-241741, and JP-A-9-241742, the difference in finish rolling temperature in the coil is less than 50 ° C., and the tension in the finish mill is 0.1 kgf. / Mm 2 or less, a strain rate in the finishing mill of 300 / sec or more in at least one pass, a difference in finishing rolling speed in the coil of less than 400 mpm, and a temperature difference between the entry and exit sides of the finishing mill of less than 100 ° C. Has been proposed. On the other hand, from the viewpoint of economy, compared to continuous rolling using a heating furnace such as the above-mentioned technique and heat-joining with a coarse bar, the continuous cast slab is reheated or simply heated or kept warm. Direct feed rolling, in which rolling is performed alone, is advantageous. Various technologies have already been proposed for direct rolling. For example, as a method for further improving the economy by making full use of the advantages of direct rolling, the slab is made longer than conventional heating furnaces and cropped. Japanese Laid-Open Patent Publication No. 9-253701 proposes a method for reducing the loss and the ratio of the unsteady part at the front and rear ends of the coil. This technology also takes into account the homogenization of the coarse bar by heat retention in the coil box.
[0004]
[Problems to be solved by the invention]
However, in the direct rolling using a long slab as described above, the heat history after casting differs greatly depending on the position in the longitudinal direction of the slab, so the temperature of the finish rolling process in the soaking by the coil box or the above-mentioned continuous rolling technique is significant. Moreover, there is a problem that the material fluctuation in the coil cannot be eliminated only by controlling the processing conditions.
[0005]
Thus, although the direct feed rolling method using a long slab has a great economic advantage, there is a problem that a uniform material cannot be obtained in the coil. Is not sufficiently put into practical use.
The present invention has been made in consideration of such circumstances, and provides a method for producing a soft cold-rolled steel sheet that is low-cost and has a small material fluctuation in the coil by using direct rolling using a long slab. It is the purpose.
[0006]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, the present invention uses the following means.
(1) The production method of the present invention is mass %, C: 0.08% or less, Si: 0.1% or less, Mn: 0.1-0.6%, P: 0.05% A steel plate containing the following, S: 0.03% or less, Al: 0.01 to 0.1%, and N: 0.01% or less, with the balance being Fe and inevitable impurities In the manufacturing method,
A step of continuous casting and immediately rough rolling of the steel;
The rough bar obtained by rough rolling is heated to adjust the finish rolling entry temperature, and finish rolling is performed so that the fluctuation amount of the F value given by the following formula (1) is 0.8 or less in the coil. Winding process,
Cold rolling the rolled hot-rolled steel sheet at a reduction rate of 50% or more and annealing at 700 to 900 ° C. for 30 seconds or more;
A method for producing a soft cold-rolled steel sheet having a small material variation in the coil.
F = In (Vf−350) · (tcf + 95) 1/2 / exp (−5450 / (Tf + 273)) / 1000 (1)
However, Vf: Rolling speed (mpm) of final finishing stand, Tf: Finishing rolling finish temperature (° C.), tcf: Required time (minutes) from the end of casting to the end of rough rolling.
[0007]
(2) The production method of the present invention is mass %, C: 0.08% or less, Si: 0.1% or less, Mn: 0.1-0.6%, P: 0.05% A steel plate containing the following, S: 0.03% or less, Al: 0.01 to 0.1%, and N: 0.01% or less, with the balance being Fe and inevitable impurities In the manufacturing method,
A step of continuously casting the steel and immediately subjecting it to rough rolling at a reduction rate of 80% or less;
The rough bar obtained by rough rolling is heated to adjust the finish rolling entry temperature, and finish rolling is performed so that the fluctuation amount of the F value given by the following formula (1) is 0.8 or less in the coil. Winding process,
Cold rolling the rolled hot-rolled steel sheet at a reduction rate of 50% or more and annealing at 700 to 900 ° C. for 30 seconds or more;
A method for producing a soft cold-rolled steel sheet having a small material variation in the coil.
F = In (Vf−350) · (tcf + 95) 1/2 / exp (−5450 / (Tf + 273)) / 1000 (1)
However, Vf: Rolling speed (mpm) of final finishing stand, Tf: Finishing rolling finish temperature (° C.), tcf: Required time (minutes) from the end of casting to the end of rough rolling.
[0008]
(3) In the production method of the present invention, in the rough rolling step, rough rolling is performed using a continuous cast slab corresponding to at least two coil weights, and the steel sheet is divided and wound after the finish rolling step. The method for producing a soft cold-rolled steel sheet having a small material variation in the coil according to the above (1) or (2).
(4) The production method of the present invention further includes Ti: 0.06 to 0.08 mass% and / or B: 0.002 to 0.003 mass% as a component of the steel sheet. (1) It is a manufacturing method of the soft cold-rolled steel plate with the small material fluctuation | variation in the coil in any one of (3).
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have conducted a detailed investigation on direct feed rolling using a long slab, paying attention to the relationship between heat and processing history and material at each position in the longitudinal direction of the slab.
As a result, the time required from the time when the slab produced by continuous casting exits the mold to the end of rough rolling and the rolling reduction of the rough rolling greatly affect the material, and finish rolling is finished according to this required time. It has been found that the material fluctuation in the cold-rolled coil can be significantly reduced by using the hot-rolled coil obtained by regulating the temperature and the rolling speed of the final finishing stand and regulating the rolling reduction of the rough rolling.
[0010]
Based on this knowledge, the present inventors have determined the hot rolling conditions (i.e., the time required from the end of casting to the end of rough rolling, the rolling reduction of rough rolling, and finish rolling when direct rolling the steel with the specified chemical composition. The end temperature and the rolling speed of the final finishing stand) are controlled within a certain range, and in direct feed rolling using a long slab, a method for producing a soft cold-rolled steel sheet with a small material fluctuation in the coil is found. Completed the invention.
[0011]
That is, the present invention provides a method for producing a high-quality soft cold-rolled steel sheet at a low cost for a wide range of uses such as automobiles, home appliances, and pipes by limiting the steel composition and production conditions to the following ranges. be able to.
Below, the reason for component addition of the present invention, the reason for component limitation, and the reason for limitation of production conditions will be described.
[0012]
(1) Component composition range C: 0.08% or less C is preferable because it lowers the hardness and ductility of the steel sheet, and the upper limit is 0.08%.
Si: 0.1% or less Since Si hardens the steel sheet and causes deterioration of the surface properties due to the occurrence of red scale, it is 0.1% or less.
Mn: 0.1 to 0.6%
Mn is added in an amount of 0.1% or more from the viewpoint of securing S as MnS and ensuring hot ductility, but if added over 0.6%, the steel sheet is hard and ductile, so 0.6% is the upper limit. It is.
P: 0.05% or less P is 0.05% or less because P is an element that makes the steel sheet hard and ductile.
S: 0.03% or less S not only lowers hot ductility and increases crack susceptibility of slabs, but also inhibits grain growth through precipitation of fine MnS, resulting in deterioration of workability. % Or less.
Al: 0.01 to 0.1%
Al is an element that fixes N and renders it harmless. For this purpose, addition of 0.01% or more is necessary. However, since the effect is saturated when it exceeds 0.1%, the upper limit is 0.1%.
N: 0.01% or less N is an element that hardens and lowers the ductility of the steel sheet, and needs to be 0.01% or less.
In addition, you may add component elements, such as Ti and B, in the range which does not inhibit the effect of this invention as needed.
By adjusting to the above component composition range, it is possible to obtain a soft cold-rolled steel sheet with low cost and small material fluctuation in the coil by using direct feed rolling using a long slab.
[0013]
A steel plate having such characteristics can be manufactured by the following manufacturing method.
(2) Steel plate manufacturing process (2-1) Manufacturing conditions of manufacturing mode 1 (manufacturing method)
The steel adjusted to the above component composition range is melted in a converter and continuously casted and immediately subjected to rough rolling, and then the resulting rough bar is heated by a heating device arranged in the rolling line and finished rolling is entered. The temperature is adjusted, and finish rolling is performed so that the fluctuation amount of the F value given by the following formula (1) is 0.8 or less in the coil. Next, the obtained hot-rolled steel sheet is cold-rolled at a reduction rate of 50% or more and annealed at 700 to 900 ° C. for 30 seconds or more. F = ln (Vf−350) · (tcf + 95) 1/2 / exp (−5450 / (Tf + 273)) / 1000 (1)
However, Vf: Rolling speed (mpm) of final finishing stand, Tf: Finishing rolling finish temperature (° C.), tcf: Required time (minutes) from the end of casting to the end of rough rolling.
[0014]
Further, in the rough rolling step, rough rolling may be performed using a continuous cast slab corresponding to the weight of at least two coils, and the steel plate may be divided and wound after the finish rolling step.
[0015]
Time required from the time the slab produced by continuous casting exits the mold to the end of rough rolling: tcf (minutes), rolling speed of the final finishing stand: Vf (mpm), finishing rolling finishing temperature: Tf (° C.) The reason for limitation will be described.
[0016]
As a result of investigating in detail the relationship between material fluctuations in a cold-rolled coil manufactured from a direct-rolled rolled material and manufacturing conditions, the present inventors have found that the influence of tcf is large. Therefore, as a result of various analyzes to extract factors that are effective in reducing the influence of fluctuations in tcf, it was concluded that controlling Vf and Tf is most effective.
[0017]
FIG. 1 shows (0.040% to 0.043%) C- (0.01% to 0.02%) Si- (0.21% to 0.25%) Mn steel under various conditions. In the cold-rolled coil that was subjected to direct rolling and 75% cold-rolled and then subjected to continuous annealing at 740 to 760 ° C, the results of hot rolling finish rolling conditions were Vf = 700 to 800 mpm, Tf = 850 to 860 ° C. This is the result of examining the tensile strength (TS, MPa) and organizing by tcf (min). It can be seen that TS increases as tcf increases. The details of this mechanism are unknown, but with the increase of tcf, the form of sulfide and nitride that are strain-induced precipitation during hot rolling rough rolling becomes more finely dispersed, which hinders recrystallization and grain growth in finish rolling. It is presumed that it is due to being done.
[0018]
FIG. 2 shows the fluctuation amount of TS in the cold-rolled coil with the fluctuation amount of F = ln (Vf−350) · (tcf + 95) 1/2 / exp (−5450 / (Tf + 273)) / 1000 for the test coil. It has been organized. Here, the fluctuation amount of TS was evaluated by collecting samples from the positions of the front and rear ends of the coil in the longitudinal direction of the coil. The fluctuation amount of TS in the coil increases as the fluctuation amount of F value increases. As can be seen from this figure, in order to stabilize the TS fluctuation amount to a low level, the F value fluctuation amount needs to be 0.8 or less.
[0019]
Further, the rolling reduction when the hot-rolled steel sheet wound after the finish rolling is cold-rolled is preferably 50% or more from the viewpoint of workability, particularly deep drawability. About annealing, it is 700 degreeC or more for softening, and 900 degrees C or less for coarse grain suppression. The soaking time is preferably 30 seconds or longer in order to stabilize the structure.
(2-2) Manufacturing conditions (production method) of aspect 2
The steel adjusted to the above component composition range is melted in a converter and continuously casted, and immediately subjected to rough rolling with a reduction rate of 80% or less, and then the obtained coarse bar is heated by a heating device arranged in the rolling line. Then, the finish rolling entry temperature is adjusted, and finish rolling is performed so that the fluctuation amount of the F value given by the following formula (1) is 0.8 or less in the coil. Next, the obtained hot-rolled steel sheet is cold-rolled at a reduction rate of 50% or more and annealed at 700 to 900 ° C. for 30 seconds or more.
[0020]
F = ln (Vf−350) · (tcf + 95) 1/2 / exp (−5450 / (Tf + 273)) / 1000 (1)
However, Vf: Rolling speed (mpm) of final finishing stand, Tf: Finishing rolling finish temperature (° C.), tcf: Required time (minutes) from the end of casting to the end of rough rolling.
[0021]
Further, in the rough rolling step, rough rolling may be performed using a continuous cast slab corresponding to the weight of at least two coils, and the steel plate may be divided and wound after the finish rolling step.
[0022]
Rolling reduction ratio, time required from the time when the slab produced by continuous casting exits the mold to completion of rough rolling: tcf (minutes), rolling speed of the final finishing stand: Vf (mpm), finishing rolling finished The reason for limiting the temperature: Tf (° C.) will be described.
[0023]
FIG. 3 shows that (0.040% -0.043%) C- (0.01% -0.02%) Si- (0.21% -0.25%) Mn steel is used under various conditions. In the cold-rolled coil that was subjected to direct rolling and 75% cold-rolled and then subjected to continuous annealing at 740 to 760 ° C, the results of hot rolling finish rolling conditions were Vf = 700 to 800 mpm, Tf = 850 to 860 ° C. This is the result of examining the tensile strength (TS, MPa) for the portion of, and distinguishing between those with a rolling reduction ratio of over 80% and those with a rolling reduction of 80% or less, and arranging them in tcf (min). Similar to the example of FIG. 2, the TS increased with the increase of tcf, but the result of the increase in TS was small when the rolling reduction of rough rolling was 80% or less. This is considered to be because the tcf dependency of the strain-induced precipitation form of sulfide or nitride during rough rolling is lowered by lowering the rolling reduction.
[0024]
FIG. 4 shows the fluctuation amount of TS in the cold-rolled coil with F = ln (Vf−350) · (tcf + 95) 1/2 / These are arranged with a variation of exp (−5450 / (Tf + 273)) / 1000. Here, the fluctuation amount of TS was evaluated by collecting samples from the positions of the front and rear ends of the coil in the longitudinal direction of the coil. The fluctuation amount of TS in the coil increases as the fluctuation amount of F value increases. As can be seen from this figure, in order to stabilize the TS fluctuation amount to a low level, the F value fluctuation amount needs to be 0.8 or less.
[0025]
The reasons for limiting the rolling reduction, annealing temperature, and soaking time when the hot-rolled steel sheet wound up after the finish rolling is cold-rolled are the same as the production conditions of the above-described aspect 1.
In the present invention, sufficient effects can be obtained even when various electroplating treatments are performed after annealing or in addition to organic coating treatments, and when annealing and plating treatments are performed by a continuous hot dip galvanizing line after cold rolling. .
Examples of the present invention will be given below to prove the effects of the present invention.
[0026]
【Example】
Example 1
Steels (A to D) having the composition shown in Table 1 are melted and continuously cast at a casting speed of 1.6 to 2.2 mpm to form a slab having a thickness of 250 mm and a length of 13 m. As shown in Table 2, F Continuous annealing at 750 ° C. after direct hot rolling under conditions with various values changed (No. 1-5: invention examples, No. 6-9: comparative examples) and 75% cold rolling Then, samples were taken from positions 50 m from the front and rear ends in the longitudinal direction of each coil, a tensile test was performed, and the material uniformity was evaluated by the amount of TS variation (ΔTS).
As shown in the results of Table 3, in Table 2, the fluctuation amount of the F value is suppressed to 0.8 or less (invention example Nos. 1 to 5) within the range of the present invention, so that the conventional method ( It can be seen that a steel plate having a uniform material and a small ΔTS of about 5 to 18 compared with Comparative Examples No. 6 to 9) can be obtained.
On the other hand, Comparative Example No. Nos. 6 to 9 show that the fluctuation amount of the F value is out of the scope of the present invention. When compared with 1 to 5, ΔTS is larger.
[0027]
[Table 1]
Figure 0003941264
[0028]
[Table 2]
Figure 0003941264
[0029]
[Table 3]
Figure 0003941264
[0030]
(Example 2)
Steels (A to D) having the composition shown in Table 4 are melted and continuously cast at a casting speed of 1.6 to 2.2 mpm to form a slab having a thickness of 250 mm and a length of 13 m. As shown in Table 5, F Continuous annealing at 750 ° C. after direct hot rolling under conditions with various values changed (No. 1-5: invention examples, No. 6-9: comparative examples) and 75% cold rolling Then, samples were taken from positions 50 m from the front and rear ends in the longitudinal direction of each coil, a tensile test was performed, and the material uniformity was evaluated by the amount of TS variation (ΔTS).
As shown in the results of Table 6, the conventional method (regardless of the steel type) by suppressing the fluctuation amount of the F value to 0.8 or less (invention example Nos. 1 to 5) within the scope of the invention in Table 5. It can be seen that a steel plate having a uniform material and a small ΔTS of about 5 to 13 compared with Comparative Examples No. 6 to 9) can be obtained.
[0031]
On the other hand, Comparative Example No. In Nos. 6 to 9, the rolling reduction of the rough rolling and the fluctuation amount of the F value are out of the scope of the present invention. When compared with 1 to 5, ΔTS is larger.
[0032]
[Table 4]
Figure 0003941264
[0033]
[Table 5]
Figure 0003941264
[0034]
[Table 6]
Figure 0003941264
[0035]
【The invention's effect】
As described above, according to the present invention, by specifying the steel composition and production conditions, the soft cold-rolled steel sheet with low cost and small material fluctuation in the coil using direct feed rolling using a long slab. The manufacturing method of can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a required time (tcf) from the end of casting of a direct-rolled material according to the first embodiment of the present invention to the end of rough rolling and the tensile strength (TS).
FIG. 2 is a view showing the relationship between the fluctuation amount of the F value in the cold-rolled coil and the fluctuation amount of the tensile strength (TS) in the cold-rolled coil according to the first embodiment of the present invention.
FIG. 3 is a view showing a relationship between a required time (tcf) from the end of casting of the direct-rolled material according to the second embodiment of the present invention to the end of rough rolling and the tensile strength (TS).
FIG. 4 is a view showing the relationship between the fluctuation amount of the F value in the cold-rolled coil and the fluctuation amount of the tensile strength (TS) in the cold-rolled coil according to the second embodiment of the present invention.

Claims (4)

質量%で、C:0.08%以下と、Si:0.1%以下と、Mn:0.1〜0.6%と、P:0.05%以下と、S:0.03%以下と、Al:0.01〜0.1%と、N:0.01%以下とを含有し、残部がFe及び不可避的不純物である組成を有する鋼板を製造する方法において、
該鋼を連続鋳造して直ちに粗圧延を行う工程と、
粗圧延で得られた粗バーを加熱して仕上圧延入側温度を調整し、下式(1)で与えられるF値の変動量がコイル内で0.8以下となるように仕上圧延を行って巻き取る工程と、
巻き取られた熱延鋼板を圧下率50%以上で冷間圧延を行い700〜900℃で30秒以上の焼鈍を施す工程と、
を備えたことを特徴とする、コイル内の材質変動が小さい軟質冷延鋼板の製造方法。
F=In(Vf−350)・(tcf+95)1/2/exp(−5450/(Tf+273))/1000 …(1)
但し、Vf:仕上最終スタンドの圧延速度(mpm)、Tf:仕上圧延終了温度(℃)、tcf:鋳造終了後から粗圧延終了までの所要時間(分)。
In mass %, C: 0.08% or less, Si: 0.1% or less, Mn: 0.1-0.6%, P: 0.05% or less, S: 0.03% or less And, in a method for producing a steel sheet containing Al: 0.01 to 0.1%, N: 0.01% or less , the balance being Fe and inevitable impurities ,
A process of continuously casting and immediately rough rolling the steel;
The rough bar obtained by rough rolling is heated to adjust the finish rolling entry temperature, and finish rolling is performed so that the fluctuation amount of the F value given by the following formula (1) is 0.8 or less in the coil. Winding process,
Cold rolling the rolled hot-rolled steel sheet at a reduction rate of 50% or more and annealing at 700 to 900 ° C. for 30 seconds or more;
A method for producing a soft cold-rolled steel sheet having a small material variation in the coil.
F = In (Vf−350) · (tcf + 95) 1/2 / exp (−5450 / (Tf + 273)) / 1000 (1)
However, Vf: Rolling speed (mpm) of final finishing stand, Tf: Finishing rolling finish temperature (° C.), tcf: Required time (minutes) from the end of casting to the end of rough rolling.
質量%で、C:0.08%以下と、Si:0.1%以下と、Mn:0.1〜0.6%と、P:0.05%以下と、S:0.03%以下と、Al:0.01〜0.1%と、N:0.01%以下とを含有し、残部がFe及び不可避的不純物である組成を有する鋼板を製造する方法において、
該鋼を連続鋳造して直ちに圧下率80%以下の粗圧延を行う工程と、
粗圧延で得られた粗バーを加熱して仕上圧延入側温度を調整し、下式(1)で与えられるF値の変動量がコイル内で0.8以下となるように仕上圧延を行って巻き取る工程と、
巻き取られた熱延鋼板を圧下率50%以上で冷間圧延を行い700〜900℃で30秒以上の焼鈍を施す工程と、
を備えたことを特徴とする、コイル内の材質変動が小さい軟質冷延鋼板の製造方法。
F=In(Vf−350)・(tcf+95)1/2/exp(−5450/(Tf+273))/1000 …(1)
但し、Vf:仕上最終スタンドの圧延速度(mpm)、Tf:仕上圧延終了温度(℃)、tcf:鋳造終了後から粗圧延終了までの所要時間(分)。
In mass %, C: 0.08% or less, Si: 0.1% or less, Mn: 0.1-0.6%, P: 0.05% or less, S: 0.03% or less And, in a method for producing a steel sheet containing Al: 0.01 to 0.1%, N: 0.01% or less , the balance being Fe and inevitable impurities ,
A step of continuously casting the steel and immediately performing rough rolling at a reduction rate of 80% or less;
The rough bar obtained by rough rolling is heated to adjust the finish rolling entry temperature, and finish rolling is performed so that the fluctuation amount of the F value given by the following formula (1) is 0.8 or less in the coil. Winding process,
Cold rolling the rolled hot-rolled steel sheet at a reduction rate of 50% or more and annealing at 700 to 900 ° C. for 30 seconds or more;
A method for producing a soft cold-rolled steel sheet having a small material variation in the coil.
F = In (Vf−350) · (tcf + 95) 1/2 / exp (−5450 / (Tf + 273)) / 1000 (1)
However, Vf: Rolling speed (mpm) of final finishing stand, Tf: Finishing rolling finish temperature (° C.), tcf: Required time (min) from the end of casting to the end of rough rolling.
前記粗圧延工程において、少なくとも2本以上のコイル重量に相当する連続鋳造スラブを用いて粗圧延を行い、前記仕上圧延工程の後に、鋼板を分割して巻き取ることを特徴とする、請求項1または2に記載のコイル内の材質変動が小さい軟質冷延鋼板の製造方法。  In the rough rolling step, rough rolling is performed using a continuous cast slab corresponding to the weight of at least two coils, and the steel plate is divided and wound after the finish rolling step. Or the manufacturing method of the soft cold-rolled steel plate with a small material fluctuation | variation in the coil of 2. Ti:0.06〜0.08質量%及び/又はB:0.002〜0.003質量%を鋼板の成分として更に含有することを特徴とする、請求項1乃至3いずれか記載のコイル内の材質変動が小さい軟質冷延鋼板の製造方法。The coil according to any one of claims 1 to 3, further comprising Ti: 0.06 to 0.08 mass% and / or B: 0.002 to 0.003 mass% as a component of the steel sheet. Of soft cold-rolled steel sheet with small material fluctuation.
JP29374298A 1998-07-23 1998-10-15 Method for producing soft cold-rolled steel sheet Expired - Fee Related JP3941264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29374298A JP3941264B2 (en) 1998-07-23 1998-10-15 Method for producing soft cold-rolled steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20799998 1998-07-23
JP10-207999 1998-07-23
JP29374298A JP3941264B2 (en) 1998-07-23 1998-10-15 Method for producing soft cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2000094001A JP2000094001A (en) 2000-04-04
JP3941264B2 true JP3941264B2 (en) 2007-07-04

Family

ID=26516580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29374298A Expired - Fee Related JP3941264B2 (en) 1998-07-23 1998-10-15 Method for producing soft cold-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP3941264B2 (en)

Also Published As

Publication number Publication date
JP2000094001A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
CN111788324B (en) Cold-rolled steel sheet and method for producing same
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP3800902B2 (en) High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same
JP5310920B2 (en) High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening
JP3941264B2 (en) Method for producing soft cold-rolled steel sheet
JP2005290485A (en) Strain aging treatment method for steel plate and method for manufacturing high-strength structural member
JPH0582458B2 (en)
JP3799836B2 (en) Method for producing soft hot-rolled steel sheet
JP2002167645A (en) Baking hardening type cold rolled steel sheet and its production method
JPH0466653A (en) Manufacture of hot-dip galvanized steel sheet for high working excellent in surface property
JPH09256064A (en) Production of ferritic stainless steel thin sheet excellent in roping characteristic
JP3596045B2 (en) Manufacturing method of bake hardening type cold rolled steel sheet with excellent formability
JP3446001B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability
JPH0441620A (en) Production of high strength hot-dip galvanized steel sheet
JP3762085B2 (en) Manufacturing method of soft cold-rolled steel sheet by direct feed rolling with excellent workability
JPH03111519A (en) Production of high strength hot dip galvanized steel sheet having high r-value
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JPH05171351A (en) Cold rolled steel sheet for deep drawing having non-aging characteristic and excellent in baking hardenability and its production
JPH09125195A (en) Hot rolled steel plate excellent in workability and its production
JP3544441B2 (en) High-strength hot-rolled steel sheet and plated steel sheet with excellent deep drawability and method for producing the same
JPH108201A (en) Steel sheet for deep drawing, and its production
JP2000087141A (en) Production of thin high tensile hot rolled steel strip containing residual austenite
KR0143501B1 (en) The making method of galvanized steel plate
JP3443220B2 (en) Hot rolled steel sheet excellent in deep drawability and method for producing the same
JP3544440B2 (en) Hot rolled steel sheet and plated steel sheet excellent in deep drawability and ductility, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees