JP3941105B2 - Sintered body for brazing and manufacturing method thereof - Google Patents

Sintered body for brazing and manufacturing method thereof Download PDF

Info

Publication number
JP3941105B2
JP3941105B2 JP2002195199A JP2002195199A JP3941105B2 JP 3941105 B2 JP3941105 B2 JP 3941105B2 JP 2002195199 A JP2002195199 A JP 2002195199A JP 2002195199 A JP2002195199 A JP 2002195199A JP 3941105 B2 JP3941105 B2 JP 3941105B2
Authority
JP
Japan
Prior art keywords
sintered body
brazing
mass
raw material
iron powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002195199A
Other languages
Japanese (ja)
Other versions
JP2003253407A (en
Inventor
欣也 川瀬
義成 石井
勝彦 矢野
Original Assignee
三菱マテリアルPmg株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアルPmg株式会社 filed Critical 三菱マテリアルPmg株式会社
Priority to JP2002195199A priority Critical patent/JP3941105B2/en
Publication of JP2003253407A publication Critical patent/JP2003253407A/en
Application granted granted Critical
Publication of JP3941105B2 publication Critical patent/JP3941105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ろう付けに適したろう付け用焼結体とその製造方法に関する。
【0002】
【発明が解決しようとする課題】
粉末冶金では、金属を主原料とする原料粉末を圧縮して圧粉体を形成した後、この圧粉体を加熱して焼結し、これにより所定形状の焼結体を成形することが知られいる。
【0003】
このように原料粉末を圧縮成形した後、焼結する焼結体は多数の気孔を有する。この気孔はろう付けの妨げとなり、例えば図6に示すように、鋼製の部材1と焼結体2とをろう材3によるろう付けを行おうとしても、溶融したろう材3が焼結体2の気孔に侵入して接合不良を発生するという問題がある。
【0004】
そこで、従来は、ろう付けを可能にするため、熱間鍛造処理等を行って気孔を封じる必要があった。
【0005】
このような問題を考慮して、特開昭55−122803号公報には、還元鉄粉と、リン量が0.5〜2.0質量%になる様リン化鉄粉を配合し、この粉末を圧縮成形した後に焼結してなる気密性を有する焼結部材が提案され、この焼結部材では、ろう付けに用いる場合、焼結密度が6.8g/cm3以上であることが好ましいと記載されている。
【0006】
しかし、前記原料粉末には、還元粉以外にアトマイズ粉も広く用いられており、上記の焼結部材では、還元鉄粉を主として用いなければならないという制約がある。
【0007】
また、従来技術を踏まえて、発明者はさらにろう付けに適した焼結体とその製造方法を得るため、各種の実験を行ったが、単に焼結部材の焼結密度を高めただけでは気孔の発生を効果的に抑制することができないことを見出した。
【0008】
そこで、本発明は、ろう付けに適したろう付け用焼結体とその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1のろう付け用焼結体は、前記目的を達成するために、料粉末を成形すると共に窒素雰囲気ガス中で焼結してなるろう付け用焼結体において、前記原料粉末が、鉄粉とFe 3 Pの組合せからなり、かつ還元鉄粉を40質量%以上含み、開放気孔率が2%以下で、前記窒素雰囲気ガスを用いることにより窒素量が60〜300ppmであるものである。
【0010】
焼結時に窒素が核となって鉄結晶粒の成長が抑制されるため、強度とじん性が向上すると共に、ろう材との密着性が高まる。
【0011】
そして、原料粉末には還元鉄粉以外にアドマイズ鉄粉(噴霧鉄粉)等を用いることができるが、還元鉄粉が40質量%未満になると、条件により焼結体の開放気孔率がろ付けに好ましい範囲を外れる場合があるため、還元鉄粉を40質量%以上とし、開放気孔率が2%以下であるから、ろう付けに適したものになる。
【0012】
また、焼結時に窒素が核となって鉄結晶粒の成長が抑制されるため、強度とじん性が向上すると共に、ろう材との密着性が高まる。特に、焼結時における鉄粉結晶の成長を抑制するには、窒素量を60ppm以上とすることが好ましく、一方、窒素量が300ppmを超えると焼結の進行が窒化により妨げられ、急激に強度が低下するため、上記の窒素量とすることが好ましい。
【0013】
そして、原料粉末には還元鉄粉、アドマイズ鉄粉(噴霧鉄粉)、カルボニル鉄粉等を用いることができ、開放気孔率が2%以下であるから、ろう付けに適したものになる。
【0014】
また、請求項の発明は、請求項1の焼結体において、前記原料粉末が0.2〜1.0質量%のリンを含むものである。
【0015】
リンを含むことにより、一層、緻密な焼結体が得られる。そして、リンが0.2質量%未満であると、緻密化の効果が得られず、一方、リンが1.0質量%を超えると、焼結体の強度とじん性が低下するため、含まれるリンは0.2〜1.0質量%とした。
【0016】
また、請求項の発明は、請求項1又は2の焼結体において、前記焼結体の平均結晶粒径が40μm以下である。
【0017】
焼結体の平均結晶粒径が40μm以下の緻密な組織となり、ろう付けに適した焼結体となる。
【0018】
請求項4の焼結体の製造方法は、前記目的を達成するために、料粉末を加圧して圧粉体を形成した後、この圧粉体を窒素雰囲気ガス中で焼結することにより窒素量を60〜300ppmとするろう付け用焼結体の製造方法において、前記原料粉末が、鉄粉とFe 3 Pの組合せからなり、かつ還元鉄粉を40質量%以上含み、前記窒素雰囲気ガスが90容積%以上の窒素を含む方法である。
【0019】
この方法を用いることにより、強度とじん性が向上すると共に、ろう材との密着性に優れた焼結体が得られ、この焼結体は、開放気孔率が低く、ろう付けに適したものになる。
【0020】
また、請求項の発明は、請求項の焼結体の製造方法において、前記原料粉末が0.2〜1.0質量%のリンを含む方法である。
【0021】
リンを含むことにより、一層、緻密な焼結体が得られる。
【0022】
【発明の実施形態】
以下、本発明の実施形態を添付図面を参照して説明する。図1〜図5は本発明の一実施形態を示し、焼結体2は図6で示したものと同一のものを用いて説明する。
【0023】
まず、本発明の製造方法においては、図1のフローチャートに示すように、金属である鉄を主とした原料粉末を混合(S1)し、この原料粉末を圧縮して圧粉体を成形(S2)し、この圧粉体を焼結炉により焼結(S)して前記焼結体2が得られる。本発明では、原料粉末に所定量以上の還元鉄粉を使用することが好ましい。また、その還元鉄粉は各種方法により還元されたものを用いることができる。
【0024】
発明者は、ろう付けに適した焼結体とその製造方法を得るため、各種の実験を行った結果、焼結体の焼結密度を上げると、開放気孔率が一般に低下するものの、同程度の焼結密度を持つものであっても、開放気孔率が大きく異なることがあることを見出し、本発明に至ったものである。
【0025】
以下に、それを証明する実験例の一例を説明する。
【0026】
実験例
実験例(1),(2),(3)は、原料粉末(Fe−0.6%P)における還元鉄粉の割合が異なる以外は同一条件で製造した鉄系焼結体2の開放気孔率を示し、実験例(1),実験例(2)では、原料粉末に対して還元鉄粉を40質量%,70質量%混合し、残りをアトマイズ鉄粉と、0.6質量%のリン(P)とする。また、実験例(3)では原材粉末は還元鉄粉を使用し、リンを0.6質量%含み、アドマイズ鉄粉は含まれていない。一方、比較例は、原料粉末にアトマイズ鉄粉を使用し、還元鉄粉は含まれていない
【0027】
そして、実験例(1)(2)(3)及び比較例の圧粉体をそれぞれ窒素雰囲気ガス(N2ベースガス:N2−3vol%H2)中で焼結(S3)し、各焼結体の開放気孔率を計測し、これを図2のグラフに示す。尚、各例に付記した数値は、括弧内の数値が前記圧縮による成形(S2)後の圧粉体の成形密度であり、また、各例には焼結密度も記載し、これら密度の単位はいずれも「g/cm3」である。尚、リンは焼結体2の緻密化に寄与するが、0.2〜1質量%の範囲でその効果が顕著に得られる。
【0028】
図2のグラフから、還元鉄粉が40質量%のものであれば、上記の製造方法を用いることにより、開放気孔率が1%以下となり、ろう付けに適した焼結体2が得られる。また、実験例(1)(2)(3)による焼結体の拡大組織写真により、鉄結晶粒の成長が抑制されるていることが確認され、これは焼結(S2)時の雰囲気ガスに窒素雰囲気ガスを用いることにより、窒素が核となって鉄結晶粒の拡大成長が抑制されたためである。
【0029】
尚、本発明における開放気孔率は、JIS Z 2501(2000)の焼結金属材料−密度,含油率及び開放気孔率試験方法により算出される。この試験方法の概略について説明すると、装置としては、十分な測定容量をもち、精度0.01%以内の分析用天びんと、ソックスレー抽出器(JIS Z 2501の付図1に例示)と、試験片の質量を空中と液中(液体は一般的に水)とで図るためのジグ(JIS Z 2501の付図2〜付図4に例示)と、試験片とそれを図るジグとを十分に入れられるだけの大きさで、0.05〜0.10vol%の界面活性剤が入った蒸留水か、なるべくなら脱気された水が入っている容器と、真空含油装置と、密度の分かっている含浸油と、精度±0.5℃の温度計を用いる。試験片は、通常は、試験片全体を試験する。できない場合には、操作を容易にするために試験片を切断又は破壊して小片にしてもよい。部品の代表部分だけの試験にも適用できる。試験片の質量が5gに満たない場合には、試験片を幾つか集めて測定することによって、平均値を得る。試験片の表面には、汚れ、油、その他の異物付着があってはならない。試験片の表面には、過剰表面油が付着していてはならない。油吸収剤で余分な油を取り除くときは、気孔部内の油まで取り除かないように注意しなければならない。試験方法は、(7-1)試験片の最初の質量測定として、受け入れたままの試験片の質量をひょう量し、m1(試験片の最初の質量:単位g)を得る。尚、試験片が油を含んでいないことが分かっている場合、後述する「(7-2)溶剤による試験片の油除去」と「(7-3)乾燥試験片の質量測定」に記載した方法は省略できる。
【0030】
(7-2)溶剤による試験片の油除去として、溶剤に約3時間浸し、普通の密度で薄肉の試験片から脂を取り除くには、およそ10回の溶剤交換が必要である。肉厚で高密度の試験片に対しては、24時間まで浸す場合がある。気孔の溶剤を蒸発させた後の質量が一定になるまで抽出を続ける。試験片が一定質量になるまで乾燥する(最後の抽出での質量の減少が0.01%を超えてはならない)。乾燥温度は溶剤の沸点より20℃高く設定し、その後、デシケータ中で冷やしてから質量を計測する。油を完全に溶解する溶剤を選定する。それについては別途試験する必要がある。試験報告書には、使用した溶剤名を明記する。実際上では、油を取り除く他の方法が行われるかもしれない(例えば、保護雰囲気中で熱するような)。議論が起こる場合は、ソックスレー抽出法を参考としなければならない。(7-3)乾燥試験片の質量測定として、試験片を脱油,乾燥後にひょう量し、m2(脱脂,乾燥後の試験片の質量:単位g)を得る。
【0031】
完全含浸(開放気孔率の測定用)として、真空状態に耐える適当な容器中の油に試験片を浸す。最大70kPaまで、油表面の圧力を下げる。油表面に泡がでなくなるまで、真空処理を続ける。真空部の圧力を周囲の圧力になるまで戻す。10分間、試験片を油に浸し続けてもよい。油は、水と絶対に混ざり合っては成らないし、多孔質金属をぬらさなければならない。油から試験片を取り出し、油切りし、過剰表面油を除去する。この場合、試験片の表面には、過剰表面油が付着していてはならない。油吸収剤で余分な油を取り除くときは、気孔部内の油まで取り除かないように注意しなければならない。完全含浸した試験片の質量測定として、完全含浸後の試験片をひょう量し、m3(完全含浸後の試験片の質量:単位g)を得る。試験片の体積の測定として、試験片の体積Vを求めるために、空中でひょう量し、ma(含浸させた試験片と支持ジグ(例えば、つり針金)との空中質量:単位g)を得、その後、既知の密度ρWの水又は液体に浸してmW(含浸させた試験片と支持ジグ(例えば、つり針金)との水中質量:単位g)を得る。体積Vcm3を次の式によって算出する。
【0032】
V=(ma−mW)/ρW
多孔質金属では、使用した液体が気孔に吸収されていないことが重要である。このため、気孔を油で含浸する。また、一般に、ジグの質量と体積はできる限り小さくすることが望ましい。また、体積の測定において、試験片を細い針金でつり、試験片と針金との合計質量を空中と水中とでひょう量する。水中の針金の堆積で許容誤差を生じるが、試験片の体積に比べれば小さいので問題はない。この許容誤差は、水中質量をひょう量した後、水中での深さを正確にしてひょう量することによって把握できる。もう一つの求め方としては、針金の単位長さの体積が既知であれば、水中部分の長さを測ることである。試験片の表面と保持ジグから泡が全く出ていないことを確認する。水に0.05〜0.10vol%の界面活性剤を入れても差し支えない。試験片と水は同一温度とする。通常の試験温度は18〜22℃で、この範囲の純水の密度ρWは0.0998g/cm3である。
【0033】
上記の測定により得られた数値に基き、乾燥密度は次の式により求められる。
【0034】
乾燥密度(g/cm3)=m2/V
また、開放気孔率は下記の式により求められる。
【0035】
開放気孔率(vol%)=(m3−m2)/(ρ2V)×100
尚、ρ2は、含浸に使った油の密度である。
【0036】
本発明では、単に焼結密度でなく、実際にろう材が侵入する気孔の割合を示す開放気孔率を2%以下と極めて低く設定しているから、焼結時の窒素による鉄結晶粒の拡大抑制効果と合せて、ろう付け性に優れた焼結体2を得ることができる。
【0037】
このような焼結時の窒素による鉄結晶粒の拡大抑制効果により、ろう付け性が向上する点について図面を参照して説明すると、図3は焼結体2の要部の断面説明図であり、焼結体2の表面にろう材3が設けられ、原料粉末を焼結してなる結晶粒4において、ろう材3は境界すなわち結晶粒界5に入り込み、この結晶粒界5に入り込んだろう材3は楔を打ち込んだような形状となり、ろう材3が焼結体2の表面に密着する。そして、結晶粒径が大きくなると、単位面積当りのろう材の結晶粒界への入り込みによる前記楔の数が減少するため、密着性に劣る。これに対して、本発明では、結晶粒4の拡大抑制効果により、単位面積当りの前記楔の数が多くなり、ろう付け性に優れたものとなる。
【0038】
以下、実施例について説明する。
【0039】
実施例1〜7及び比較例1〜6
平均粒径87μm(ミクロン)の還元鉄粉、平均粒径82μmのアトマイズ鉄粉、平均粒径5μmのカルボニル鉄粉、平均粒径5μmのFe3P(P含有率15質量%)を表1に示す配合比率とし、さらに、金型圧粉成形用潤滑剤として平均粒径20μmのステアリン酸亜鉛粉末0.8質量%を添加した後、混合し、成形圧力700MPaで、図4に示すように、外径44mm、内径36mm、高さ10mmのリング形状に圧粉成形した。得られた圧粉成形体を1140℃で20分、表1で示す焼結雰囲気で焼結することによりリング状の試験片11を得た。得られた試験片11を用いて開放気孔率と密度(乾燥密度)及び窒素量、酸素量、平均結晶粒径を測定した結果を表1に示す。前記開放気孔率と密度とはJIS Z 2501(2000)に基いて測定した。尚、原料粉末において、還元鉄粉は、開放気孔率の低減及び低コストの長所があり、一方、他の鉄粉に比べて、強度及び圧縮性が低く、アトマイズ鉄粉には、高強度、高圧縮性、低コストという長所があるが、開放気孔率の低減効果は低く、カルボニル鉄粉は、高強度、開放気孔率の低減の長所があるが、低圧縮性、高コストの短所がある。
【0040】
また、図5に示すように、前記リング状の試験片11の内側に、直径35mm、高さ10mmのステンレス製円盤12を配置し、試験片11と円盤12との境界にCu合金ろう材13を配置した後、N2−90vol%H2雰囲気中1130℃で20分間の条件でろう付けをした。得られたろう付け体の接合強度を測定した結果を表1に示す。
【0041】
また、前記試験片11と同一条件で、外径40mm、内径10mm、高さ5mmの焼結体を作製した。蒸発源にTiを用い窒素雰囲気中アーク電流100A、バイアス電圧150V、圧力1Paの条件で真空アーク放電蒸着法により焼結体にTiNコーティング層を形成させた。皮膜表面を先端曲率半径200μmの円錐ダイヤモンド圧子で荷重を増加させながら引っかき試験をし、皮膜が剥離した時点での荷重を測定することにより焼結体とTiNコーティング層の密着力を測定した結果を表1に示す。尚、表1の実験例1〜3は、上記実験例(1)(3)とは異なる例である。
【0042】
【表1】

Figure 0003941105
上記表1に示すように、実施例5で還元鉄粉を40質量%用い、開放気孔率が1%では、接合強度450MPa、密着力62Nと所望の性能が得られ、一方、還元鉄粉が30質量%では、開放気孔率が2.1%となり、「ろう付けせず」となり、還元鉄粉は開放気孔率を低減するから、実験例5などのように還元鉄粉を40質量%用いることが好ましい。
【0043】
また、比較例3,4及び6のように、開放気孔率が2%を超えると、「ろう付けせず」となり、ろう付けには開放気孔率を2%以下にする必要がある。
【0044】
また、窒素量については、焼結時に窒素が核となって鉄結晶粒の成長が抑制するから、60ppm以上とすることが好ましく、一方、窒素量が300ppmを超えると焼結の進行が窒化により妨げられ、急激に強度が低下する。表1に示すように、実験例5において、窒素量70ppmで所定のろう付けに必要な性能がえられ、また、実験例6において、窒素量230ppmで所定のろう付けに必要な性能が得れ、さらに、窒素量を70〜200ppmとすることが、緻密化と強度の面から一層好ましい。
【0045】
次に、リンの量については、比較例5は、Fe3P(P含有率15質量%)を8質量%含むから、1.2質量%のリンを含み、接合強度と密着力が他の例に比べて低いことが分かる。また、比較例6は、0.15質量%のリンを含み、「ろう付けせず」となり、原料粉末には0.2〜1.0質量%のリンを含むことが好ましい。
【0046】
酸素量については、酸素量90ppmの比較例1と、酸素量70ppmの比較例2の接合強度及び密着力が他の例に比べて低いことから分かるように、鉄結晶粒の成長が抑制するためには、酸素量が100ppm以上であることが好ましく、一方、酸素量が多くなると、酸化により強度が低下するから、酸素量は1000ppm以下が好ましく、さらに、酸素量を200〜700ppmとすることが、緻密化と強度の面から一層好ましい。
【0047】
また、焼結体である試験片11の平均粒径については、平均粒径52μmの比較例1、平均粒径64μmの比較例2、平均粒径45μmの比較例3、平均粒径44μmの比較例4及び平均粒径47μmの比較例5の接合強度及び密着力が他の例に比べて低いことと、平均粒径36μmの実験例5で、比較的良好な接合強度と接着力が得られたことから、平均結晶粒径は40μm以下とすることが好ましい。尚、40μmは36μmと44μmの平均である。さらに、表面処理層との密着性を考慮すれば、平均結晶粒径を25μm以下することが一層好ましい。これらは表1及び表1以外の実験に基く。
【0048】
尚、表1に示したものでは、表面処理として、TiNコーティングを行ったが、これ以外にも、ろう付け後、Zn、Cr、Ni、Agメッキや、CrN、TiC、TiCN、DLC(ダイヤモンドライクカーボン)などのコーティングを行ってもよく、これらの表面処理により気密性が向上する。
【0049】
このように本実施形態では、請求項1に対応して、料粉末を成形すると共に窒素雰囲気ガス中で焼結してなるろう付け用焼結体2において、前記原料粉末が、鉄粉とFe 3 Pの組合せからなり、かつ還元鉄粉を40質量%以上含み、開放気孔率が2%以下で、前記窒素雰囲気ガスを用いることにより窒素量が60〜300ppmであるから、焼結時に窒素が核となって鉄結晶粒の成長が抑制されるため、強度とじん性が向上すると共に、ろう材との密着性が高まる。そして、原料粉末には還元鉄粉以外にアドマイズ鉄粉(噴霧鉄粉)等を用いることができるが、還元鉄粉が40質量%未満になると、条件により焼結体の開放気孔率がろ付けに好ましい範囲を外れる場合があるため、還元鉄粉を40質量%以上とし、開放気孔率が2%以下であるから、ろう付けに適したものになる。
【0050】
に、焼結時における鉄粉結晶の成長を抑制するには、窒素量を60ppm以上とすることが好ましく、一方、窒素量が300ppmを超えると焼結の進行が窒化により妨げられ、急激に強度が低下するため、上記の窒素量とすることが好ましい。
【0051】
また、焼結体2の窒素量が60〜300ppmであるから、焼結時における鉄結晶粒の成長を抑制し、開放気孔率の低い焼結体2を得ることができる。
【0052】
また、このように本実施形態では、請求項に対応して、原料粉末が0.2〜1.0質量%のリンを含むから、緻密な焼結体2を得ることができる。
【0053】
また、実施例上の効果として、焼結体2の酸素量が100〜1000ppmであるから、焼結時における鉄結晶粒の成長を抑制し、開放気孔率の低い焼結体2を得ることができる。
【0054】
また、このように本実施形態では、請求項に対応して、焼結体2の平均結晶粒径が40μm以下であるから、ろう付けに適したものとなる。
【0055】
このように本実施形態では、請求項に対応して、料粉末を加圧して圧粉体を形成した後、この圧粉体を窒素雰囲気ガス中で焼結することにより窒素量を60〜300ppmとするろう付け用焼結体の製造方法において、前記原料粉末が、鉄粉とFe 3 Pの組合せからなり、かつ還元鉄粉を40質量%以上含み、前記窒素雰囲気ガスが90容積%以上の窒素を含むから、強度とじん性が向上すると共に、ろう材との密着性に優れた焼結体2が得られ、この焼結体2は、開放気孔率が低く、ろう付けに適したものになる。
【0056】
また、このように本実施形態では、請求項に対応して、前記原料粉末が0.2〜1.0質量%のリンを含むから、緻密な焼結体2を得ることができる。
【0057】
なお、本発明は、前記実施形態に限定されるものではなく、種々の変形実施が可能である。
【0058】
【発明の効果】
請求項1のろう付け用焼結体は、料粉末を成形すると共に窒素雰囲気ガス中で焼結してなるろう付け用焼結体において、前記原料粉末が、鉄粉とFe 3 Pの組合せからなり、かつ還元鉄粉を40質量%以上含み、開放気孔率が2%以下で、前記窒素雰囲気ガスを用いることにより窒素量が60〜300ppmであるものであり、焼結時に窒素が核となって鉄結晶粒の成長が抑制されるため、強度とじん性が向上すると共に、ろう材との密着性が向上し、ろう付けに適したろう付け用焼結体を提供することができる。
【0059】
また、焼結時における鉄粉結晶の成長を抑制することができ、開放気孔率の低い焼結体が得られる。
【0060】
また、請求項の発明は、請求項1の効果に加えて、前記原料粉末が0.2〜1.0質量%のリンを含むものであるから、一層、緻密な焼結体を得えることができる。
【0061】
また、請求項の発明は、請求項1又は2の効果に加えて、前記焼結体の平均結晶粒径が40μm以下であるから、ろう付けに適したものとなる。
【0062】
請求項の焼結体の製造方法は、前記目的を達成するために、料粉末を加圧して圧粉体を形成した後、この圧粉体を窒素雰囲気ガス中で焼結することにより窒素量を60〜300ppmとするろう付け用焼結体の製造方法において、前記原料粉末が、鉄粉とFe 3 Pの組合せからなり、かつ還元鉄粉を40質量%以上含み、前記窒素雰囲気ガスが90容積%以上の窒素を含む方法であるから、強度とじん性が向上すると共に、ろう材との密着性に優れた焼結体が得られ、この焼結体は、開放気孔率が低く、ろう付けに適したものになる。
【0063】
また、請求項の発明は、請求項の発明の効果に加えて、前記原料粉末がリンを含む方法であるから、一層、緻密な焼結体を得ることができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態を示す製造方法を説明するフローチャート図である。
【図2】 同上、実験例及び比較例の開放気孔率を示すグラフである。
【図3】 同上、焼結体の要部の断面説明図であり、一部を拡大している。
【図4】 同上、試験片の斜視図である。
【図5】 同上、試験片のろう付けを説明する断面図である。
【図6】 ろう付けを説明する断面図である。
【符号の説明】
2 焼結体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sintered body for brazing suitable for brazing and a method for producing the same.
[0002]
[Problems to be solved by the invention]
In powder metallurgy, it is known that a raw material powder containing metal as a main raw material is compressed to form a green compact, and then this green compact is heated and sintered to form a sintered body of a predetermined shape. It is.
[0003]
Thus, after the raw material powder is compression-molded, the sintered body to be sintered has a large number of pores. For example, as shown in FIG. 6, even if an attempt is made to braze the steel member 1 and the sintered body 2 with the brazing filler metal 3, the molten brazing filler metal 3 remains in the sintered body. There is a problem that a poor bonding occurs due to intrusion into the pores 2.
[0004]
Therefore, conventionally, in order to enable brazing, it has been necessary to perform hot forging or the like to seal the pores.
[0005]
In consideration of such problems, Japanese Patent Application Laid-Open No. 55-122803 contains reduced iron powder and iron phosphide powder so that the amount of phosphorus is 0.5 to 2.0% by mass, and this powder is compression molded. A sintered member having airtightness obtained by sintering later has been proposed, and it is described that the sintered member preferably has a sintered density of 6.8 g / cm 3 or more when used for brazing.
[0006]
However, atomized powder is widely used as the raw material powder in addition to the reduced powder, and the above sintered member has a restriction that reduced iron powder must be mainly used.
[0007]
In addition, based on the prior art, the inventor conducted various experiments in order to obtain a sintered body suitable for brazing and a method for producing the same, but simply increasing the sintered density of the sintered member resulted in pores. It has been found that the occurrence of the above cannot be effectively suppressed.
[0008]
Then, an object of this invention is to provide the sintered compact for brazing suitable for brazing, and its manufacturing method.
[0009]
[Means for Solving the Problems]
Brazing sintered body according to claim 1, in order to achieve the above object, the brazing sintered body obtained by sintering in a nitrogen atmosphere gas with forming the raw material powder, the raw powder, It consists of a combination of iron powder and Fe 3 P, contains reduced iron powder in an amount of 40% by mass or more, has an open porosity of 2% or less, and has a nitrogen content of 60 to 300 ppm by using the nitrogen atmosphere gas. .
[0010]
Since nitrogen grows as a nucleus during sintering and the growth of iron crystal grains is suppressed, strength and toughness are improved, and adhesion to the brazing material is enhanced.
[0011]
And, although the raw material powder can be used reduced iron powder addition to Adomaizu iron powder (atomized iron powder), etc., the reduced iron powder is less than 40 wt%, intends open pores Ritsugaro of the sintered body according to conditions Since it may be out of the preferable range for brazing, the reduced iron powder is 40% by mass or more and the open porosity is 2% or less, which is suitable for brazing.
[0012]
Further , since nitrogen grows as a nucleus during sintering and the growth of iron crystal grains is suppressed, strength and toughness are improved and adhesion to the brazing material is enhanced. In particular, in order to suppress the growth of iron powder crystals during sintering, the amount of nitrogen is preferably 60 ppm or more. On the other hand, if the amount of nitrogen exceeds 300 ppm, the progress of the sintering is hindered by nitriding, and the strength rapidly increases. Therefore, the above nitrogen amount is preferable.
[0013]
Further, reduced iron powder, ized iron powder (sprayed iron powder), carbonyl iron powder, etc. can be used as the raw material powder, and since the open porosity is 2% or less, it is suitable for brazing.
[0014]
The invention of claim 2 is the sintered body of claim 1, wherein the raw material powder is intended to include phosphorus 0.2-1.0 mass%.
[0015]
By containing phosphorus, a denser sintered body can be obtained. And if phosphorus is less than 0.2% by mass, the effect of densification cannot be obtained. On the other hand, if phosphorus exceeds 1.0% by mass, the strength and toughness of the sintered body will decrease. The phosphorus content was 0.2 to 1.0% by mass.
[0016]
According to a third aspect of the present invention, in the sintered body of the first or second aspect , the average crystal grain size of the sintered body is 40 μm or less.
[0017]
The sintered body has a dense structure with an average crystal grain size of 40 μm or less, and becomes a sintered body suitable for brazing.
[0018]
Method for producing a sintered body according to claim 4, in order to achieve the object, after forming the green compact raw material powder is pressurized, by sintering the green compact in a nitrogen atmosphere gas In the method for producing a sintered body for brazing in which the amount of nitrogen is 60 to 300 ppm, the raw material powder is a combination of iron powder and Fe 3 P and contains 40% by mass or more of reduced iron powder , and the nitrogen atmosphere gas Is a method containing 90% or more by volume of nitrogen.
[0019]
By using this method, a sintered body having improved strength and toughness and excellent adhesion to the brazing material is obtained. This sintered body has a low open porosity and is suitable for brazing. become.
[0020]
The invention according to claim 5 is the method for producing a sintered body according to claim 4 , wherein the raw material powder contains 0.2 to 1.0% by mass of phosphorus.
[0021]
By containing phosphorus, a denser sintered body can be obtained.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 to 5 show an embodiment of the present invention, and the sintered body 2 will be described using the same one as shown in FIG.
[0023]
First, in the manufacturing method of the present invention, as shown in the flow chart of FIG. 1, raw material powder mainly composed of iron which is a metal is mixed (S1), and this raw material powder is compressed to form a green compact (S2). The sintered compact 2 is obtained by sintering (S) the green compact in a sintering furnace. In the present invention, it is preferable to use a predetermined amount or more of reduced iron powder as the raw material powder. The reduced iron powder can be reduced by various methods.
[0024]
The inventor conducted various experiments to obtain a sintered body suitable for brazing and its manufacturing method. As a result, when the sintered density of the sintered body was increased, the open porosity generally decreased, but the same degree Even if it has the sintered density of, it has been found that the open porosity may be greatly different, has led to the present invention.
[0025]
Below, an example of the experimental example which proves it is demonstrated.
[0026]
Experimental Example Experimental examples (1), (2), and (3) are the open pores of the iron-based sintered body 2 manufactured under the same conditions except that the ratio of the reduced iron powder in the raw material powder (Fe-0.6% P) is different. In Experimental Example (1) and Experimental Example (2) , 40% by mass and 70% by mass of reduced iron powder are mixed with the raw material powder, and the remainder is atomized iron powder and 0.6% by mass of phosphorus (P ). Moreover, in Experimental example (3) , the raw material powder uses reduced iron powder, contains 0.6% by mass of phosphorus, and does not contain customized iron powder. On the other hand, the comparative example uses atomized iron powder as a raw material powder, and does not contain reduced iron powder .
[0027]
Then, the green compacts of the experimental examples (1), (2), (3) and the comparative example were respectively sintered (S3) in a nitrogen atmosphere gas (N 2 base gas: N 2 -3 vol% H 2 ), The open porosity of the ligation was measured and is shown in the graph of FIG. In addition, as for the numerical value attached to each example, the numerical value in parentheses is the molding density of the green compact after molding (S2) by compression, and each example also describes the sintered density, and the unit of these densities Are both “g / cm 3 ”. In addition, although phosphorus contributes to densification of the sintered compact 2, the effect is acquired notably in the range of 0.2-1 mass%.
[0028]
From the graph of FIG. 2, if the reduced iron powder is 40% by mass, by using the above manufacturing method, the open porosity becomes 1% or less, and the sintered body 2 suitable for brazing can be obtained. Moreover, it is confirmed by the expanded structure | tissue photograph of the sintered compact by Experimental example (1) (2) (3) that the growth of an iron crystal grain is suppressed, This is atmosphere gas at the time of sintering (S2) This is because the use of a nitrogen atmosphere gas suppresses the expansion of iron crystal grains with nitrogen as a nucleus.
[0029]
In addition, the open porosity in this invention is calculated by the sintered metal material-density, oil content, and open porosity test method of JIS Z 2501 (2000). The outline of this test method will be described. The apparatus has a sufficient measuring capacity, an analytical balance with an accuracy of 0.01% or less, a Soxhlet extractor (illustrated in FIG. 1 of JIS Z 2501), and the mass of the test piece. Large enough to accommodate a jig (illustrated in Attached Figures 2 to 4 of JIS Z 2501) for air and liquid (liquid is generally water), and a test piece and a jig for the jig. In a container containing distilled water containing 0.05 to 0.10 vol% surfactant or possibly degassed water, a vacuum oil impregnation device, impregnating oil with a known density, and accuracy of ± 0.5 ° C. Use a thermometer. The test specimen is usually tested as a whole specimen. If this is not possible, the specimen may be cut or broken into small pieces for ease of operation. It can also be applied to testing only representative parts of parts. When the mass of the test piece is less than 5 g, an average value is obtained by collecting and measuring several test pieces. The surface of the specimen shall be free from dirt, oil and other foreign matter. Excess surface oil must not adhere to the surface of the specimen. When removing excess oil with an oil absorbent, care must be taken not to remove the oil in the pores. The test method (7-1) Weighs the mass of the test piece as received as the first mass measurement of the test piece, and obtains m 1 (initial mass of the test piece: unit g). In addition, when it was known that the test piece did not contain oil, it was described in “(7-2) Oil removal of test piece with solvent” and “(7-3) Mass measurement of dry test piece” described later. The method can be omitted.
[0030]
(7-2) To remove the oil from a thin test piece at a normal density by immersing it in a solvent for about 3 hours for removing oil from the test piece with a solvent, approximately 10 solvent changes are required. Thick and dense specimens may be immersed for up to 24 hours. Extraction is continued until the mass after evaporation of the pore solvent is constant. Dry until the specimen is of a constant mass (the mass reduction in the last extraction should not exceed 0.01%). Set the drying temperature 20 ° C higher than the boiling point of the solvent, and then cool it in a desiccator before measuring the mass. Select a solvent that completely dissolves the oil. It needs to be tested separately. In the test report, specify the name of the solvent used. In practice, other methods of removing the oil may be performed (eg, heating in a protective atmosphere). In case of debate, the Soxhlet extraction method should be consulted. (7-3) As a measurement of the mass of the dried test piece, the test piece is deoiled and weighed after drying to obtain m 2 (mass of the test piece after degreasing and drying: unit g).
[0031]
For complete impregnation (for measuring open porosity), immerse the specimen in oil in a suitable container that can withstand vacuum conditions. Reduce oil surface pressure up to 70 kPa. Continue vacuuming until the oil surface is free of bubbles. Return the vacuum to ambient pressure. The specimen may be kept immersed in the oil for 10 minutes. The oil must never mix with water or wet the porous metal. Remove specimen from oil, drain and remove excess surface oil. In this case, excess surface oil should not adhere to the surface of the test piece. When removing excess oil with an oil absorbent, care must be taken not to remove the oil in the pores. As a mass measurement of the completely impregnated test piece, the test piece after complete impregnation is weighed to obtain m 3 (mass of the test piece after complete impregnation: unit g). As a measure of the volume of the specimen, in order to determine the volume V of the test piece, and weighing in the air, m a (the impregnated specimen support jig (e.g., air mass and hanging wire): Unit g) the After that, it is immersed in water or liquid having a known density ρ W to obtain m W (mass in water of impregnated test piece and supporting jig (for example, suspension wire): unit g). The volume Vcm 3 is calculated by the following formula.
[0032]
V = (m a −m W ) / ρ W
For porous metals, it is important that the liquid used is not absorbed by the pores. For this, the pores are impregnated with oil. In general, it is desirable to make the mass and volume of the jig as small as possible. In measuring the volume, the test piece is hung with a thin wire, and the total mass of the test piece and the wire is weighed in the air and in water. Although tolerance is caused by the accumulation of the wire in the water, there is no problem because it is smaller than the volume of the test piece. This permissible error can be grasped by weighing the underwater mass and then weighing the water accurately. Another method is to measure the length of the underwater portion if the volume of the unit length of the wire is known. It is confirmed that no bubbles are generated from the surface of the test piece and the holding jig. It is possible to add 0.05 to 0.10 vol% of a surfactant in water. The test piece and water are at the same temperature. The normal test temperature is 18-22 ° C., and the density ρ W of pure water in this range is 0.0998 g / cm 3 .
[0033]
Based on the numerical value obtained by the above measurement, the dry density is obtained by the following equation.
[0034]
Dry density (g / cm 3 ) = m 2 / V
Moreover, an open porosity is calculated | required by the following formula.
[0035]
Open porosity (vol%) = (m 3 −m 2 ) / (ρ 2 V) × 100
Note that ρ 2 is the density of the oil used for impregnation.
[0036]
In the present invention, since the open porosity indicating not only the sintered density but also the ratio of the pores into which the brazing material actually penetrates is set to be as low as 2% or less, the enlargement of the iron crystal grains by nitrogen during sintering Combined with the suppression effect, a sintered body 2 excellent in brazing property can be obtained.
[0037]
The point that the brazing property is improved by the effect of suppressing the expansion of iron crystal grains by nitrogen during sintering will be described with reference to the drawings. FIG. 3 is a cross-sectional explanatory view of the main part of the sintered body 2. The brazing material 3 is provided on the surface of the sintered body 2, and in the crystal grains 4 formed by sintering the raw material powder, the brazing material 3 enters the boundary, that is, the crystal grain boundary 5, and enters the crystal grain boundary 5. The material 3 is shaped like a wedge, and the brazing material 3 is in close contact with the surface of the sintered body 2. When the crystal grain size is increased, the number of wedges due to the entry of the brazing material per unit area into the crystal grain boundary is reduced, resulting in poor adhesion. On the other hand, in the present invention, the number of wedges per unit area is increased due to the effect of suppressing the expansion of the crystal grains 4, and the brazing property is excellent.
[0038]
Examples will be described below.
[0039]
Examples 1-7 and Comparative Examples 1-6
Table 1 shows reduced iron powder with an average particle size of 87 μm (micron), atomized iron powder with an average particle size of 82 μm, carbonyl iron powder with an average particle size of 5 μm, and Fe 3 P (P content 15 mass%) with an average particle size of 5 μm. Further, 0.8 mass% of zinc stearate powder having an average particle diameter of 20 μm was added as a mold compacting lubricant, and then mixed and molded at a molding pressure of 700 MPa, as shown in FIG. It was compacted into a ring shape of 44 mm, inner diameter 36 mm, and height 10 mm. The obtained green compact was sintered at 1140 ° C. for 20 minutes in the sintering atmosphere shown in Table 1 to obtain a ring-shaped test piece 11. Table 1 shows the results of measuring the open porosity, density (dry density), nitrogen content, oxygen content, and average crystal grain size using the obtained test piece 11. The open porosity and density were measured based on JIS Z 2501 (2000). In addition, in the raw material powder, the reduced iron powder has the advantages of reduced open porosity and low cost, while the strength and compressibility are low compared to other iron powders, the atomized iron powder has high strength, Although it has the advantages of high compressibility and low cost, the effect of reducing open porosity is low, and carbonyl iron powder has the advantages of high strength and low open porosity, but has the disadvantage of low compressibility and high cost. .
[0040]
Further, as shown in FIG. 5, a stainless steel disk 12 having a diameter of 35 mm and a height of 10 mm is disposed inside the ring-shaped test piece 11, and a Cu alloy brazing material 13 is provided at the boundary between the test piece 11 and the disk 12. Then, brazing was performed at 1130 ° C. for 20 minutes in an N 2 -90 vol% H 2 atmosphere. Table 1 shows the results of measuring the bonding strength of the obtained brazed body.
[0041]
Further, a sintered body having an outer diameter of 40 mm, an inner diameter of 10 mm, and a height of 5 mm was produced under the same conditions as the test piece 11. Ti was used as an evaporation source, and a TiN coating layer was formed on the sintered body by a vacuum arc discharge deposition method under conditions of an arc current of 100 A, a bias voltage of 150 V, and a pressure of 1 Pa in a nitrogen atmosphere. The film surface was scratched while increasing the load with a conical diamond indenter with a radius of curvature of 200μm at the tip, and the adhesive force between the sintered body and the TiN coating layer was measured by measuring the load when the film peeled. Table 1 shows. In addition, Experimental Examples 1 to 3 in Table 1 are examples different from the above Experimental Examples (1) to (3) .
[0042]
[Table 1]
Figure 0003941105
As shown in Table 1 above, 40% by mass of reduced iron powder was used in Example 5 and when the open porosity was 1%, a desired performance of a bonding strength of 450 MPa and an adhesion strength of 62 N was obtained. At 30% by mass, the open porosity is 2.1%, “not brazed”, and the reduced iron powder reduces the open porosity, so 40% by mass of reduced iron powder is used as in Experimental Example 5 and the like. It is preferable.
[0043]
Further, as in Comparative Examples 3, 4 and 6, when the open porosity exceeds 2%, “not brazed”, it is necessary to make the open porosity 2% or less for brazing.
[0044]
Further, the nitrogen amount is preferably 60 ppm or more because nitrogen becomes a nucleus during sintering to suppress the growth of iron crystal grains. On the other hand, if the nitrogen amount exceeds 300 ppm, the progress of sintering is caused by nitriding. It is hindered and the strength decreases rapidly. As shown in Table 1, in Experiment 5, the performance necessary for predetermined brazing can be obtained at a nitrogen amount of 70 ppm, and in Experiment 6, the performance necessary for predetermined brazing can be obtained at a nitrogen amount of 230 ppm. Furthermore, it is more preferable that the amount of nitrogen is 70 to 200 ppm in terms of densification and strength.
[0045]
Next, as for the amount of phosphorus, since Comparative Example 5 contains 8% by mass of Fe 3 P (P content 15% by mass), it contains 1.2% by mass of phosphorus, and has other bonding strength and adhesion strength. It can be seen that it is lower than the example. Further, Comparative Example 6 contains 0.15% by mass of phosphorus and becomes “not brazed”, and the raw material powder preferably contains 0.2 to 1.0% by mass of phosphorus.
[0046]
As for the amount of oxygen, as can be seen from the fact that the bonding strength and adhesion of Comparative Example 1 with an oxygen amount of 90 ppm and Comparative Example 2 with an oxygen amount of 70 ppm are lower than other examples, the growth of iron crystal grains is suppressed. The oxygen content is preferably 100 ppm or more. On the other hand, when the oxygen content increases, the strength decreases due to oxidation. Therefore, the oxygen content is preferably 1000 ppm or less, and the oxygen content is preferably 200 to 700 ppm. More preferable from the viewpoints of densification and strength.
[0047]
The average particle size of the test piece 11 as a sintered body is as follows: Comparative Example 1 with an average particle size of 52 μm, Comparative Example 2 with an average particle size of 64 μm, Comparative Example 3 with an average particle size of 45 μm, and Comparison with an average particle size of 44 μm. The bonding strength and adhesion of Example 4 and Comparative Example 5 with an average particle size of 47 μm are lower than those of the other examples, and Experimental Example 5 with an average particle size of 36 μm provides relatively good bonding strength and adhesion. Therefore, the average crystal grain size is preferably 40 μm or less. 40 μm is the average of 36 μm and 44 μm. Furthermore, considering the adhesion with the surface treatment layer, the average crystal grain size is more preferably 25 μm or less. These are based on experiments other than Table 1 and Table 1.
[0048]
In Table 1, TiN coating was applied as the surface treatment. Besides this, after brazing, Zn, Cr, Ni, Ag plating, CrN, TiC, TiCN, DLC (diamond-like) were used. Carbon) or the like may be applied, and the airtightness is improved by these surface treatments.
[0049]
As described above, in this embodiment, corresponding to claim 1, in brazing sintered body 2 formed by sintering in a nitrogen atmosphere gas with forming the raw material powder, the raw material powder, and iron powder Since it is composed of a combination of Fe 3 P and contains 40% by mass or more of reduced iron powder, the open porosity is 2% or less, and the nitrogen amount is 60 to 300 ppm by using the nitrogen atmosphere gas. As a result, the growth of iron crystal grains is suppressed, so that the strength and toughness are improved and the adhesion to the brazing material is increased. And, although the raw material powder can be used reduced iron powder addition to Adomaizu iron powder (atomized iron powder), etc., the reduced iron powder is less than 40 wt%, intends open pores Ritsugaro of the sintered body according to conditions Since it may be out of the preferable range for brazing, the reduced iron powder is 40% by mass or more and the open porosity is 2% or less, which is suitable for brazing.
[0050]
In particular, to suppress the growth of iron powder crystals during sintering, it is preferable that the amount of nitrogen and 60ppm or more, whereas the progress of sintering and nitrogen content exceeds 300ppm is prevented by nitriding, rapidly Since intensity | strength falls, it is preferable to set it as said nitrogen amount.
[0051]
Furthermore, since the nitrogen content of sintered body 2 is 60~300Ppm, it is possible to suppress the growth of iron crystal grains during sintering, to obtain a low open porosity sintered body 2.
[0052]
In this way, in this embodiment, since the raw material powder contains 0.2 to 1.0% by mass of phosphorus corresponding to claim 2 , a dense sintered body 2 can be obtained.
[0053]
Further, as an effect on the embodiment , since the amount of oxygen of the sintered body 2 is 100 to 1000 ppm, it is possible to suppress the growth of iron crystal grains during sintering and obtain the sintered body 2 having a low open porosity. it can.
[0054]
In this way, in this embodiment, the average crystal grain size of the sintered body 2 is 40 μm or less, corresponding to claim 3 , so that it is suitable for brazing.
[0055]
As described above, in this embodiment, corresponding to claim 4, after forming a green compact raw material powder under pressure, the amount of nitrogen by sintering the green compact in a nitrogen atmosphere gas 60 In the method for producing a sintered body for brazing to ˜300 ppm, the raw material powder is composed of a combination of iron powder and Fe 3 P and contains 40% by mass or more of reduced iron powder , and the nitrogen atmosphere gas is 90% by volume. Since it contains the above nitrogen, strength and toughness are improved, and a sintered body 2 with excellent adhesion to the brazing material is obtained. This sintered body 2 has a low open porosity and is suitable for brazing. It becomes a thing.
[0056]
In this way, in this embodiment, in correspondence with claim 5 , since the raw material powder contains 0.2 to 1.0% by mass of phosphorus, a dense sintered body 2 can be obtained.
[0057]
In addition, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible.
[0058]
【The invention's effect】
Brazing sintered body according to claim 1, in brazing sintered body obtained by sintering in a nitrogen atmosphere gas with forming the raw material powder, the raw material powder, a combination of iron powder and Fe 3 P And containing reduced iron powder in an amount of 40% by mass or more, an open porosity of 2% or less, and a nitrogen amount of 60 to 300 ppm by using the nitrogen atmosphere gas. Since the growth of iron crystal grains is suppressed, the strength and toughness are improved, and the adhesion to the brazing material is improved, so that a sintered body for brazing suitable for brazing can be provided.
[0059]
Moreover , the growth of iron powder crystals during sintering can be suppressed, and a sintered body having a low open porosity can be obtained.
[0060]
Moreover, in addition to the effect of Claim 1, the invention of Claim 2 can obtain a denser sintered body because the raw material powder contains 0.2 to 1.0% by mass of phosphorus. it can.
[0061]
In addition to the effect of the first or second aspect , the invention of the third aspect is suitable for brazing because the sintered body has an average crystal grain size of 40 μm or less.
[0062]
Method for producing a sintered body according to claim 4, in order to achieve the object, after forming the green compact raw material powder is pressurized, by sintering the green compact in a nitrogen atmosphere gas In the method for producing a sintered body for brazing in which the amount of nitrogen is 60 to 300 ppm, the raw material powder is a combination of iron powder and Fe 3 P and contains 40% by mass or more of reduced iron powder , and the nitrogen atmosphere gas Is a method containing 90% by volume or more of nitrogen, so that a sintered body with improved strength and toughness and excellent adhesion to the brazing material is obtained, and this sintered body has a low open porosity. It will be suitable for brazing.
[0063]
In addition to the effect of the invention of claim 4 , the invention of claim 5 is a method in which the raw material powder contains phosphorus, so that a denser sintered body can be obtained.
[Brief description of the drawings]
FIG. 1 is a flowchart for explaining a manufacturing method according to an embodiment of the present invention.
FIG. 2 is a graph showing the open porosity of the experimental example and the comparative example.
FIG. 3 is a cross-sectional explanatory view of the main part of the sintered body, partially enlarged.
FIG. 4 is a perspective view of the test piece.
FIG. 5 is a cross-sectional view for explaining brazing of a test piece.
FIG. 6 is a cross-sectional view illustrating brazing.
[Explanation of symbols]
2 Sintered body

Claims (5)

料粉末を成形すると共に窒素雰囲気ガス中で焼結してなるろう付け用焼結体において、前記原料粉末が、鉄粉とFe 3 Pの組合せからなり、かつ還元鉄粉を40質量%以上含み、開放気孔率が2%以下で、前記窒素雰囲気ガスを用いることにより窒素量が60〜300ppmであることを特徴とするろう付け用焼結体。In brazing sintered body obtained by sintering in a nitrogen atmosphere gas with forming the raw material powder, the raw material powder, a combination of iron powder and Fe 3 P, and the reduced iron powder 40 wt% or more The sintered body for brazing is characterized by including an open porosity of 2% or less and a nitrogen content of 60 to 300 ppm by using the nitrogen atmosphere gas . 前記原料粉末が0.2〜1.0質量%のリンを含むことを特徴とする請求項1項記載のろう付け用焼結体。Brazing sintered body according to claim 1 Kouki placing said raw material powder is characterized in that it comprises a phosphorus 0.2-1.0 mass%. 前記焼結体の平均結晶粒径が40μm以下であることを特徴とする請求項1又は2記載のろう付け用焼結体。The sintered body for brazing according to claim 1 or 2, wherein the sintered body has an average crystal grain size of 40 µm or less. 料粉末を加圧して圧粉体を形成した後、この圧粉体を窒素雰囲気ガス中で焼結することにより窒素量を60〜300ppmとするろう付け用焼結体の製造方法において、前記原料粉末が、鉄粉とFe 3 Pの組合せからなり、かつ還元鉄粉を40質量%以上含み、前記窒素雰囲気ガスが90容積%以上の窒素を含むことを特徴とするろう付け用焼結体の製造方法。After forming the green compact raw materials powder pressurized, in the manufacturing method of brazing sintered body the amount of nitrogen and 60~300ppm by sintering the green compact in a nitrogen atmosphere gas, the The raw material powder is a combination of iron powder and Fe 3 P, contains reduced iron powder in an amount of 40% by mass or more, and the nitrogen atmosphere gas contains 90% by volume or more of nitrogen. Manufacturing method. 前記原料粉末が0.2〜1.0質量%のリンを含むことを特徴とする請求項記載のろう付け用焼結体の製造方法。The method for producing a sintered body for brazing according to claim 4, wherein the raw material powder contains 0.2 to 1.0 mass% of phosphorus.
JP2002195199A 2001-12-27 2002-07-03 Sintered body for brazing and manufacturing method thereof Expired - Fee Related JP3941105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195199A JP3941105B2 (en) 2001-12-27 2002-07-03 Sintered body for brazing and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-396877 2001-12-27
JP2001396877 2001-12-27
JP2002195199A JP3941105B2 (en) 2001-12-27 2002-07-03 Sintered body for brazing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003253407A JP2003253407A (en) 2003-09-10
JP3941105B2 true JP3941105B2 (en) 2007-07-04

Family

ID=28677269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195199A Expired - Fee Related JP3941105B2 (en) 2001-12-27 2002-07-03 Sintered body for brazing and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3941105B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103736549B (en) * 2014-01-02 2015-07-01 洛阳鹏飞耐磨材料股份有限公司 Preparation method for metal-based ceramic composite material grinding roller of vertical grinding machine

Also Published As

Publication number Publication date
JP2003253407A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
Zhong et al. Development of lead-free Sn–0.7 Cu/Al2O3 nanocomposite solders with superior strength
KR100865431B1 (en) Open porous metallic foam body and method for manufacturing
KR100613942B1 (en) Iron powder
JP2008106937A (en) Sliding member and fluid machine using it
JP3941105B2 (en) Sintered body for brazing and manufacturing method thereof
EP3769867B1 (en) Porous titanium-based sintered body, method for producing the same, and electrode
KR20050081149A (en) Fabrication method of bulk amorphous alloy and bulk amorphous composite by spark plasma sintering
AU735492B2 (en) Ambient temperature method for increasing the green strength of parts and articles made by consolidating powder, particulate, sheet or foil materials
US20080118355A1 (en) Turbine Vane for Turbo-Machines and Method for Fabricating
JP4668620B2 (en) Powder composition and method for producing high-density green compact
JP2003277895A (en) Sintered compact having air-tightness and production method thereof
JP2005015901A (en) Sintered compact having airtightness, and its production method
CN108754204B (en) Silicon carbide reinforced aluminum-based composite ceramic material and preparation method and application thereof
EP3424622B1 (en) Method for producing machine component
JPH0729859B2 (en) Ceramics-Metal bonding material
JP2004035955A (en) Sintered compact with airtightness and its manufacturing method
TW201127521A (en) Method of preparing iron-based components
JP2005015902A (en) Sintered compact with airtightness, and manufacturing method
US11554415B2 (en) Porous titanium-based sintered body, method for producing the same, and electrode
Zhu et al. Corrosion behavior of SiC foam ceramic reinforced Al–23Si composites in NaCl solution
Chama Elimination of porosity from aluminum-silicon castings by hot isostatic pressing
JP4693399B2 (en) Method for producing ceramic-metal composite
JP3511740B2 (en) Method for producing high toughness cemented carbide and composite cemented carbide roll
JPH0313329A (en) Sintered metal composite material excellent in corrosion resistance, dimensional accuracy and economical efficiency and preparation thereof
JP6559925B1 (en) Porous titanium-based sintered body, method for producing the same, and electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070325

R150 Certificate of patent or registration of utility model

Ref document number: 3941105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees