JP3940620B2 - Method for producing non-spherical polymer fine particles - Google Patents

Method for producing non-spherical polymer fine particles Download PDF

Info

Publication number
JP3940620B2
JP3940620B2 JP2002080600A JP2002080600A JP3940620B2 JP 3940620 B2 JP3940620 B2 JP 3940620B2 JP 2002080600 A JP2002080600 A JP 2002080600A JP 2002080600 A JP2002080600 A JP 2002080600A JP 3940620 B2 JP3940620 B2 JP 3940620B2
Authority
JP
Japan
Prior art keywords
fine particles
parts
weight
polymer fine
spherical polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002080600A
Other languages
Japanese (ja)
Other versions
JP2003277417A (en
Inventor
尚史 小林
俊作 田中
Original Assignee
ガンツ化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ガンツ化成株式会社 filed Critical ガンツ化成株式会社
Priority to JP2002080600A priority Critical patent/JP3940620B2/en
Publication of JP2003277417A publication Critical patent/JP2003277417A/en
Application granted granted Critical
Publication of JP3940620B2 publication Critical patent/JP3940620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、非球塊状であるポリマー微粒子およびその製造に関するものである。このポリマー微粒子は、塗料や化粧品に添加して、それらに粘性特性、光散乱特性や独特の表面特性、皮膚に対してしっとり感を伴う感触を付与するのに効果的である。
【0002】
【従来の技術】
平均粒子径2〜300μmのポリマー微粒子は、通常液状の重合性ビニルモノマーを水性媒体中、分散安定剤の存在下、ホモミキサー等により強制分散させて液滴化したのち、懸濁重合させることにより製造される。この懸濁重合によるポリマー微粒子の製造においては、液状の重合性ビニルモノマーは、水性媒体中でその表面張力のため通常は球状となり、重合して得られるポリマー微粒子も表面が平滑な球状微粒子となる。椀状ポリマー粒子の製造法としては、重合性ビニルモノマーとして親水性ビニルモノマーを用い、架橋性モノマーを油溶性物質の存在下で懸濁重合させる方法(特開昭61-87734号,特開平2-255704号)が知られているが、不規則な凹凸を有する非球塊状ポリマー微粒子はまだ知られていない。
【0003】
【発明が解決しようとする課題】
本発明は非球塊状の新規なポリマー微粒子および懸濁重合により非球塊状ポリマー微粒子を製造する方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは、以前に、微粒子表面が規則的なシワ状構造を有する新規な球状ポリマー微粒子およびその製造法(特開平11−140139号)を特許出願しているが、今回は疎水性の重合性ビニルモノマーおよび架橋性モノマーの混合物に液状ゴムを溶解させ、水性媒体中で懸濁重合させると、前回の表面が規則的なシワ状構造のものとは異なり、表面に丸みを帯びた不規則な凹凸を有する非球塊状ポリマー微粒子が得られること、及びその非球塊状ポリマー微粒子が規則的なシワ状構造のものとは異なる粘性特性、光散乱特性、表面特性を有し、化粧品に混合した場合皮膚に対する独特の感触をあたえることを見出し、本発明を完成させるに至った。
すなわち、本発明は、
(1)疎水性の重合性ビニルモノマー40〜90重量部および架橋性モノマー1〜40重量部からなるモノマー混合物に、液状ゴム1〜30量部を溶解させ、(但し疎水性の重合性ビニルモノマー40〜90重量部および架橋性モノマー1〜40重量部の混合物にスチレン系エラストマー5〜30重量部を含有し、さらに液状ゴムをモノマー混合物100重量部に対し5〜20重量部含有させる場合を除く、)水性媒体中で懸濁重合させる粒子径が0.5〜300μm、平均粒子径が2〜100μm、アスペクト比が1.10〜5.00、真球度が65以下である非球塊状ポリマー微粒子の製造法、
(2)粒子の変形率20%における圧縮強度が、0.1〜3.0kgf/mmの範囲にある前記(1)記載の非球塊状ポリマーの微粒子、
(3)重合性ビニルモノマーが(メタ)アクリル酸アルキルエステルである前記(1)又は(2)記載の非球塊状ポリマー微粒子の製造法、
(4)架橋性モノマーがアルキレングリコールジ(メタ)アクリレートである前記(1)又は(2)記載の非球塊状ポリマー微粒子の製造法、
である。
【0005】
【発明の実施の形態】
本発明における非球塊状ポリマー微粒子における非球塊状とは、微粒子の形状が真球状のものを一定割合以上は含まず、表面に丸味を帯びた不規則な凹凸を有する塊状微粒子を一定割合以上含ものであることを意味する。すなわち、糸状、針状、棒状、椀状、極端な扁平状等ではなく、また角状突起や破砕粒のような鋭角稜線や突起がなく、表面に丸味を帯びた複数の凹凸を有する塊状、例えば米粒や馬鈴薯のような形状であり、その具体例としては図1に示されるような形状のものである。
【0006】
平均粒子径の範囲は2〜100μmであり、粒子径が0.5〜300μmの範囲にあることが望ましく、より好ましくは、平均粒子径の範囲は3〜50μmであり、粒子径が1〜100μmの範囲にあること、さらに好ましくは、平均粒子径の範囲は3〜30μmであり、粒子径が1〜70μmの範囲にあることである。この範囲よりも小さければギシギシとした感触になり好ましくなく、この範囲よりも大きければザラザラとした感触になり好ましくない。本発明の微粒子は、アスペクト比が1.10〜5.00の範囲にあることが好ましく、さらに好ましくは1.20〜4.00の範囲である。1.10よりも低い場合は転がり効果が大きすぎ、しっとりとした感触が得られず、5.00よりも高い場合はギシギシとした感触になることが多くあまり好ましくはない。
【0007】
アスペクト比の測定は、粒子の長径(円相当径)と厚みの割合を下記の式で算出する。
アスペクト比= 円相当径(長径)/ 厚み(短径)
本発明の微粒子は、真球度が65以下であることが好ましく、さらに好ましくは60以下である。これよりも真球度が高いと、転がり効果が大きすぎ、しっとりとした感触が得られない。
【0008】
真球度の測定は、走査型電子顕微鏡にて固体粒子の電子顕微鏡写真を撮り、粒子同士が重なっていないもの100個を無作為に選び出し、粒子の投影像が真円のもの、もしくは投影像の外接円を描かせ、外接円の半径の90%の半円を有する同心円と外接円との間に投影像の輪郭がすべて含まれる形状を有しているものの数をもって粒子の真球度とする。粒子の変形率20%における圧縮強度は、0.1〜3.0kgf/mmの範囲にあることが好ましく、さらに好ましくは0.3〜2.8kgf/mmである。これよりも圧縮強度が低ければ、ネットリとした感触になり好ましくなく、高ければ、十分なしっとり感が出ないため好ましくない。圧縮強度の測定方法は、25℃における粒子の変形率が20%の時の圧縮強度を、例えば、島津製作所社製MCTM-500のような微小圧縮強度測定機により測定することにより行う。
【0009】
本発明に用いられる疎水性の重合性ビニルモノマーとしては、例えばスチレン、α−メチルスチレン、ビニルトルエン等の芳香族ビニル単量体、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル等のアクリル酸アルキルエステル類、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等のメタクリル酸アルキルエステル類、酢酸ビニル、プロピオン酸ビニル等のビニルエステル系単量体、(メタ)アクリロニトリル等のビニルシアン系単量体、塩化ビニル、塩化ビニリデン等のハロゲン化ビニル単量体等分子中に、例えば水酸基、カルボキシル基、アミノ基、スルホン酸基等の親水性基を有しない疎水性ビニル単量体を使用することができる。
【0010】
本発明に用いられる架橋性モノマーとしては、例えばジビニルベンゼン、ジビニルトルエン等の芳香族ジビニル化合物、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等のトリ(メタ)アクリレート、テトラ(メタ)アクリレート等重合性不飽和結合を1分子中に2個以上有する化合物が挙げられる。
【0011】
本発明で使用される液状ゴムとしては、例えばポリイソプレン、ポリブテンやポリブタジエン等や、常温で液状である合成ゴム、例えば液状クロロプレンゴム、液状ニトリルゴム、液状フッ素ゴム、液状シリコーンゴム、液状イソプレンゴム等が挙げられる。これらのエラストマーやゴムは一種あるいは二種以上の組み合わせで用いることができる。前記疎水性の重合性ビニルモノマー、架橋性モノマーおよび低結晶性エラストマーもしくは液状ゴムの各使用量は、重量比で通常40〜90:1〜40:1〜30、好ましくは45〜80:3〜30:3〜20である。疎水性の重合性ビニルモノマ−、架橋性モノマ−および液状ゴムの使用量が上記の範囲を外れるとその粒子が非球状であるポリマー微粒子得られない。
【0012】
また、重合中に起こる液滴内の相分離を促進するため、必要に応じてモノマー混合物に相溶する油溶性溶剤が使用できる。
【0013】
前記油溶性溶剤としては、酢酸メチル、酢酸エチル、酪酸ブチル、酪酸イソアミル等のエステル類:ジエチルケトン、メチルエチルケトン等のケトン類:さらにはベンゼン、トルエン、キシレン等の芳香族炭化水素類:ブタン、ペンタン、ヘキサン等の脂肪族炭化水素類:オリーブ油、ラート油、ヤシ油、ヒマシ油等の長鎖アルキル誘導体等をあげることができる。これらの油溶性溶剤はモノマ−混合物100重量部に対し5〜20重量部程度用いられる。本発明に用いられる前記各モノマーと液状ゴムを溶解した溶液を水性媒体中に液滴化した分散液は次の工程で懸濁重合させるが、原料液滴及び生成重合体粒子の分散性向上のため、各種の界面活性剤や高分子保護コロイド等の分散安定剤の適量が用いられる。
【0014】
分散安定剤としては、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム等の界面活性剤、ゼラチン、メチルセルロース、ヒドロキシエチルセルロース、ポリビニルアルコール、ポリアクリル酸塩等の水溶性高分子、リン酸三カルシウム、炭酸マグネシウム等の難水溶性無機物が用いられる。これらの分散安定剤は単独でもまた二種以上の組み合わせでも用いられる。これらの分散安定剤は、通常の懸濁重合の際に用いられる使用量で安定に重合を行うことができる。
【0015】
本発明の懸濁重合に際しては重量開始剤の他、必要によりさらに連鎖移動剤、重合禁止剤等の適量を用いてもよい。重合開始剤としてはこの種の反応に通常用いられるもの、例えば過酸化ベンゾイル、過酸化ラウロイル等の過酸化物系開始剤、2,2′−アゾビスイソブチロニトリル、2,2′−イソバレロニトリル等のアゾ重合開始剤が挙げられる。これらの重合開始剤は重合性モノマーに溶解させて使用される。連鎖移動剤もこの種の反応に通常用いられるものでよく、例えばモノチオール、ポリチオール、キサントゲンジスルフィド、チウラムジスルフィド、メルカプト酢酸2−エチルヘキシルエステル、オクタン酸2−メルカプトエチルエステル、メルカプト酢酸メトキシブチルエステル、メルカプトプロピオン酸メトキシブチルエステル、α−メチルスチレンダイマー、ターピノーレン等が好ましく用いられる。また、重合禁止剤としては、例えば亜硝酸ナトリウム、亜硫酸ナトリウム、塩化第二銅等の通常用いられる重合禁止剤の適量が用いられる。
【0016】
ポリマー微粒子の平均粒径は疎水性の重合性ビニルモノマー、架橋性モノマー、液状ゴム等の混合溶液を分散して、分散安定化した液滴径とほぼ同径のものがその後の重合反応によって得られる。液滴径の大小は分散安定剤の種類と使用量の選択およびホモミキサー等の強制分散機の回転数等により、任意に制御できる。目的の粒径の液滴を調整し、続いて重合させることにより、任意に2〜300μmのポリマー微粒子を製造することができる。本発明の重合反応における重合温度は用いる重合開始剤、モノマーや必要に応じて添加される重合禁止剤、連鎖移動剤等の種類によって異なってくるが通常30〜100℃であり、好ましくは50〜90℃である。懸濁重合後、ポリマー微粒子を濾別し、水洗後乾燥することにより非球塊状ポリマー微粒子からなる乾燥粉末が得られる。
【0017】
【実施例】
以下に実施例を挙げ本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。なお実施例中「部」は重量部を表す。
実施例1
メチルメタクリレート75部およびエチレングリコールジメタクリレート5部の混合液に、ポリブテン(日本石油化学(株)製、日石ポリブテンHV300)20部とアゾビスイソバレロニトリル0.5部を溶解させたものにポリビニルアルコール(クラレ(株)製、PVA205)の10%水溶液25部、1%エチレンオキサイド−プロピレンオキサイド系ノニオン界面活性剤(日本油脂(株)製、プロノン208)1部およびイオン交換水275部を注入した。得られた混合液をホモミキサー(特殊機化工業(株)製)を用いて、7,000rpmで20分間撹拌し、原料分散液を調製した。この原料分散液を撹拌機及び還流冷却器を備えた重合反応容器内に仕込み、窒素気流下撹拌しながら80℃に昇温し、3時間重合させた。得られたポリマー微粒子分散液を脱水、洗浄、乾燥し、篩別することにより平均粒径9μm、真球度40、アスペクト比1.20であり20%変形時の圧縮強度が1.65kgf/mmの米状ポリマー微粒子〔図1〕85重量部を得た。この粒子を非球塊状ポリマー微粒子Aとする。
【0018】
比較例1
実施例1において液状ゴムの使用量を20部から0部に変更した他は同様の操作を行った。得られた粒子は平均粒径が11μm、真球度92、アスペクト比1.00であり20%変形時の圧縮強度が3.47kgf/mmの球状ポリマーになり、非球塊状ポリマー微粒子を得ることができなかった。〔図2〕
【0019】
比較例2
実施例1においてエチレングリコールジメタクリレート5部を添加しない他は同様の操作を行った。平均粒径が9μm、真球度81、アスペクト比1.02であり20%変形時の圧縮強度が3.21kgf/mm球状ポリマー微粒子〔図3〕86重量部を得た。この粒子は粒子表面は平滑であり、非球塊状ポリマー微粒子を得ることができなかった。〔図3〕
【0020】
次にこれら非球塊状ポリマー微粒子を使用した配合例を示す。
配合例1 油性コンパクトファンデーション 重量%
カルナバロウ 4.0
固形パラフィン 4.0
セタノール 4.0
ラノリン 7.0
流動パラフィン 5.0
ベヘニルアルコール 3.0
活性剤 2.0
顔料ペースト 25.0
非球塊状ポリマー微粒子A 35.0
セリサイト 10.0
香料 1.0
以上の配合により油性コンパクトファンデーションを製造した。
【0021】
【発明の効果】
本発明によれば、疎水性の重合性ビニルポリマーと架橋性モノマーの混合物に液状ゴムを溶解させ、これを水性媒体中で懸濁重合させることにより、非球塊状ポリマー微粒子を得ることができる。このようにして得られた特異な形状を有する非球塊状ポリマー微粒子は、例えば塗料や化粧料に配合すると層分離を起こさない均一な組成物を与え、その粘性特性、光散乱特性や表面特性を変化、調整するのに有利に用いることができる。特に、化粧料に配合した化粧品においては、ポリメチルメタクリレート微粒子、ポリスチレン微粒子等にはない、ソフトでシルキーな感触が得られる。
【0022】
【図面の簡単な説明】
【図1】実施例1で得られた微粒子の拡大写真。
【図2】比較例1で得られた微粒子の拡大写真。
【図3】比較例2で得られた微粒子の拡大写真。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to non-spherical polymer particles and production thereof. The polymer fine particles are effective in adding to paints and cosmetics to give them a viscous property, a light scattering property, a unique surface property, and a moist feeling to the skin.
[0002]
[Prior art]
Polymer fine particles having an average particle size of 2 to 300 μm are usually obtained by subjecting a liquid polymerizable vinyl monomer to droplet dispersion by forcibly dispersing a liquid polymerizable vinyl monomer in an aqueous medium using a homomixer or the like in the presence of a dispersion stabilizer. Manufactured. In the production of polymer fine particles by this suspension polymerization, the liquid polymerizable vinyl monomer is usually spherical due to its surface tension in an aqueous medium, and the polymer fine particles obtained by polymerization also become spherical fine particles with a smooth surface. . As a method for producing cage-like polymer particles, a hydrophilic vinyl monomer is used as a polymerizable vinyl monomer, and a crosslinkable monomer is subjected to suspension polymerization in the presence of an oil-soluble substance (Japanese Patent Laid-Open Nos. 61-87734 and 2). -255704) is known, but non-spherical polymer particles having irregular irregularities are not yet known.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide novel non-spherical polymer fine particles and a method for producing non-spherical polymer fine particles by suspension polymerization.
[0004]
[Means for Solving the Problems]
The present inventors have previously applied for a patent on a novel spherical polymer fine particle having a regular wrinkle-like structure on the fine particle surface and a method for producing the same (Japanese Patent Laid-Open No. 11-14139). When a liquid rubber is dissolved in a mixture of a polymerizable vinyl monomer and a crosslinkable monomer and subjected to suspension polymerization in an aqueous medium, the previous surface is different from a regular wrinkled structure, and the surface is rounded. Non-spherical polymer particles with regular irregularities can be obtained, and the non-spherical polymer particles have viscosity characteristics, light scattering characteristics, and surface characteristics that are different from those of regular wrinkle structures, and are mixed with cosmetics. As a result, it was found that the skin has a unique feel and the present invention was completed.
That is, the present invention
(1) 1 to 30 parts by weight of a liquid rubber is dissolved in a monomer mixture comprising 40 to 90 parts by weight of a hydrophobic polymerizable vinyl monomer and 1 to 40 parts by weight of a crosslinkable monomer. Except when the mixture of 40 to 90 parts by weight and the crosslinkable monomer 1 to 40 parts by weight contains 5 to 30 parts by weight of a styrenic elastomer and further contains 5 to 20 parts by weight of liquid rubber with respect to 100 parts by weight of the monomer mixture. )) Nonspherical block polymer having a particle size of 0.5 to 300 μm, an average particle size of 2 to 100 μm, an aspect ratio of 1.10 to 5.00, and a sphericity of 65 or less. Production method of fine particles,
(2) The non-spherical polymer fine particles according to (1), wherein the compressive strength at a deformation rate of 20% of the particles is in the range of 0.1 to 3.0 kgf / mm 2 ;
(3) The method for producing non-spherical polymer fine particles according to (1) or (2), wherein the polymerizable vinyl monomer is a (meth) acrylic acid alkyl ester,
(4) The method for producing non-spherical polymer fine particles according to (1) or (2), wherein the crosslinkable monomer is alkylene glycol di (meth) acrylate,
It is.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The non-spherical mass in the non-spherical polymer fine particles in the present invention does not include a certain percentage or more of particles having a true spherical shape, but includes a certain percentage or more of massive fine particles having irregular irregularities with rounded surfaces. It means to be a thing. In other words, it is not thread-like, needle-like, rod-like, rod-like, extremely flat, etc., and has no sharp ridges or protrusions such as square protrusions or crushed grains, and a lump having a plurality of rounded irregularities on the surface, For example, it has a shape such as rice grain or potato, and a specific example thereof is as shown in FIG.
[0006]
The range of the average particle size is 2 to 100 μm, the particle size is desirably in the range of 0.5 to 300 μm, and more preferably, the range of the average particle size is 3 to 50 μm, and the particle size is 1 to 100 μm. More preferably, the average particle diameter is 3 to 30 μm and the particle diameter is 1 to 70 μm. If it is smaller than this range, it will be unpleasant, and it will be unpreferable, and if it is larger than this range, it will be unpleasant. The fine particles of the present invention preferably have an aspect ratio in the range of 1.10 to 5.00, more preferably 1.20 to 4.00. If it is lower than 1.10, the rolling effect is too great, and a moist feel cannot be obtained, and if it is higher than 5.00, it is often harsh and is not preferred.
[0007]
For the measurement of the aspect ratio, the ratio of the major axis (equivalent circle diameter) and the thickness of the particle is calculated by the following formula.
Aspect ratio = equivalent circle diameter (major axis) / thickness (minor axis)
The fine particles of the present invention preferably have a sphericity of 65 or less, more preferably 60 or less. If the sphericity is higher than this, the rolling effect is too great, and a moist feel cannot be obtained.
[0008]
To measure the sphericity, take an electron micrograph of solid particles with a scanning electron microscope, randomly select 100 particles that do not overlap each other, and the projected image of the particles is a perfect circle or projected image The number of particles having a shape in which the contour of the projected image is entirely included between the concentric circle having a semicircle of 90% of the radius of the circumscribed circle and the circumscribed circle To do. The compressive strength at a deformation rate of 20% of the particles is preferably in the range of 0.1 to 3.0 kgf / mm 2 , more preferably 0.3 to 2.8 kgf / mm 2 . If the compressive strength is lower than this, it is not preferable because it feels like a net, and if it is high, it is not preferable because a sufficiently moist feeling does not appear. The compressive strength is measured by measuring the compressive strength when the deformation rate of the particles at 25 ° C. is 20% with a micro compressive strength measuring machine such as MCTM-500 manufactured by Shimadzu Corporation.
[0009]
Examples of the hydrophobic polymerizable vinyl monomer used in the present invention include aromatic vinyl monomers such as styrene, α-methylstyrene, and vinyl toluene, and alkyl acrylates such as methyl acrylate, ethyl acrylate, and butyl acrylate. Esters, alkyl methacrylates such as methyl methacrylate, ethyl methacrylate and butyl methacrylate, vinyl ester monomers such as vinyl acetate and vinyl propionate, vinylcyan monomers such as (meth) acrylonitrile, Hydrophobic vinyl monomers that do not have hydrophilic groups such as hydroxyl groups, carboxyl groups, amino groups, and sulfonic acid groups can be used in molecules such as vinyl halide monomers such as vinyl chloride and vinylidene chloride. .
[0010]
Examples of the crosslinkable monomer used in the present invention include aromatic divinyl compounds such as divinylbenzene and divinyltoluene, alkylene glycol di (meth) acrylates such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and the like. Examples thereof include compounds having two or more polymerizable unsaturated bonds in one molecule such as tri (meth) acrylate such as methylolpropane tri (meth) acrylate and pentaerythritol tetra (meth) acrylate, and tetra (meth) acrylate.
[0011]
Examples of the liquid rubber used in the present invention include polyisoprene, polybutene, polybutadiene, and the like, and synthetic rubber that is liquid at room temperature, such as liquid chloroprene rubber, liquid nitrile rubber, liquid fluororubber, liquid silicone rubber, and liquid isoprene rubber. Is mentioned. These elastomers and rubbers can be used alone or in combination of two or more. The amount of each of the hydrophobic polymerizable vinyl monomer, the crosslinkable monomer, and the low crystalline elastomer or liquid rubber used is usually 40 to 90: 1 to 40: 1 to 30, preferably 45 to 80: 3 by weight. 30: 3-20. If the use amount of the hydrophobic polymerizable vinyl monomer, the crosslinkable monomer and the liquid rubber is out of the above range, polymer fine particles having non-spherical particles cannot be obtained.
[0012]
Moreover, in order to accelerate | stimulate the phase separation in the droplet which occurs during superposition | polymerization, the oil-soluble solvent which is compatible with a monomer mixture can be used as needed.
[0013]
Examples of the oil-soluble solvent include esters such as methyl acetate, ethyl acetate, butyl butyrate and isoamyl butyrate: ketones such as diethyl ketone and methyl ethyl ketone: and further aromatic hydrocarbons such as benzene, toluene and xylene: butane and pentane. And aliphatic hydrocarbons such as hexane: long-chain alkyl derivatives such as olive oil, lath oil, coconut oil, and castor oil. These oil-soluble solvents are used in an amount of about 5 to 20 parts by weight per 100 parts by weight of the monomer mixture. The dispersion solution obtained by dissolving the above-mentioned monomers and liquid rubber used in the present invention into droplets in an aqueous medium is subjected to suspension polymerization in the next step, which improves the dispersibility of the raw material droplets and the generated polymer particles. Therefore, an appropriate amount of a dispersion stabilizer such as various surfactants and polymer protective colloids is used.
[0014]
Examples of the dispersion stabilizer include surfactants such as sodium dodecylbenzenesulfonate and sodium lauryl sulfate, water-soluble polymers such as gelatin, methylcellulose, hydroxyethylcellulose, polyvinyl alcohol, and polyacrylate, tricalcium phosphate, magnesium carbonate, and the like. The slightly water-soluble inorganic substance is used. These dispersion stabilizers may be used alone or in combination of two or more. These dispersion stabilizers can be stably polymerized in the amount used in the usual suspension polymerization.
[0015]
In the suspension polymerization of the present invention, an appropriate amount of a chain transfer agent, a polymerization inhibitor or the like may be used as necessary in addition to the weight initiator. As the polymerization initiator, those usually used for this kind of reaction, for example, peroxide initiators such as benzoyl peroxide and lauroyl peroxide, 2,2'-azobisisobutyronitrile, 2,2'-iso Examples include azo polymerization initiators such as valeronitrile. These polymerization initiators are used by dissolving in a polymerizable monomer. Chain transfer agents may also be those commonly used for this type of reaction, such as monothiol, polythiol, xanthogen disulfide, thiuram disulfide, mercaptoacetic acid 2-ethylhexyl ester, octanoic acid 2-mercaptoethyl ester, mercaptoacetic acid methoxybutyl ester, mercapto. Propionic acid methoxybutyl ester, α-methylstyrene dimer, terpinolene and the like are preferably used. As the polymerization inhibitor, for example, an appropriate amount of a commonly used polymerization inhibitor such as sodium nitrite, sodium sulfite, cupric chloride and the like is used.
[0016]
The average particle size of the polymer fine particles is obtained by dispersing a mixed solution of hydrophobic polymerizable vinyl monomer, crosslinkable monomer, liquid rubber, etc., and having the same diameter as the dispersion-stabilized droplet size is obtained by the subsequent polymerization reaction. It is done. The size of the droplet diameter can be arbitrarily controlled by selecting the type and amount of the dispersion stabilizer and the rotational speed of a forced dispersing machine such as a homomixer. By adjusting a droplet having a target particle size and then polymerizing, a polymer fine particle of 2 to 300 μm can be optionally produced. The polymerization temperature in the polymerization reaction of the present invention varies depending on the type of polymerization initiator used, monomer, polymerization inhibitor added as necessary, chain transfer agent, etc., but is usually 30 to 100 ° C., preferably 50 to 90 ° C. After suspension polymerization, polymer fine particles are filtered off, washed with water and dried to obtain a dry powder composed of non-spherical polymer fine particles.
[0017]
【Example】
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples. In the examples, “parts” represents parts by weight.
Example 1
A mixture of 75 parts of methyl methacrylate and 5 parts of ethylene glycol dimethacrylate dissolved in 20 parts of polybutene (Nippon Petrochemical Co., Ltd., Nisseki Polybutene HV300) and 0.5 part of azobisisovaleronitrile 25 parts of a 10% aqueous solution of alcohol (Kuraray Co., Ltd., PVA205), 1 part of a 1% ethylene oxide-propylene oxide nonionic surfactant (Nippon Yushi Co., Ltd., Pronon 208) and 275 parts of ion-exchanged water were injected. did. The obtained mixed liquid was stirred at 7,000 rpm for 20 minutes using a homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) to prepare a raw material dispersion. This raw material dispersion was charged into a polymerization reaction vessel equipped with a stirrer and a reflux condenser, heated to 80 ° C. with stirring under a nitrogen stream, and polymerized for 3 hours. The obtained polymer fine particle dispersion was dehydrated, washed, dried, and sieved to obtain an average particle size of 9 μm, a sphericity of 40, an aspect ratio of 1.20, and a compressive strength at 20% deformation of 1.65 kgf / mm. 2 rice-like polymer fine particles [FIG. 1] 85 parts by weight were obtained. These particles are referred to as non-spherical polymer fine particles A.
[0018]
Comparative Example 1
The same operation was performed except that the amount of liquid rubber used in Example 1 was changed from 20 parts to 0 parts. The obtained particles become a spherical polymer having an average particle diameter of 11 μm, a sphericity of 92, an aspect ratio of 1.00, and a compressive strength at 20% deformation of 3.47 kgf / mm 2 , thereby obtaining non-spherical polymer fine particles. I couldn't. [Figure 2]
[0019]
Comparative Example 2
The same operation as in Example 1 was performed except that 5 parts of ethylene glycol dimethacrylate was not added. An average particle diameter of 9 μm, a sphericity of 81, an aspect ratio of 1.02, and a compressive strength at 20% deformation of 3.21 kgf / mm 2 spherical polymer fine particles (FIG. 3) 86 parts by weight were obtained. The particles had a smooth particle surface, and it was not possible to obtain nonspherical polymer particles. [Figure 3]
[0020]
Next, formulation examples using these non-spherical polymer fine particles are shown.
Formulation Example 1 Oily Compact Foundation Weight%
Carnavalo 4.0
Solid paraffin 4.0
Cetanol 4.0
Lanolin 7.0
Liquid paraffin 5.0
Behenyl alcohol 3.0
Activator 2.0
Pigment paste 25.0
Non-spherical polymer fine particle A 35.0
Sericite 10.0
Fragrance 1.0
An oily compact foundation was produced by the above formulation.
[0021]
【The invention's effect】
According to the present invention, non-spherical polymer fine particles can be obtained by dissolving a liquid rubber in a mixture of a hydrophobic polymerizable vinyl polymer and a crosslinkable monomer and subjecting it to suspension polymerization in an aqueous medium. The non-spherical polymer fine particles having a peculiar shape obtained in this way give a uniform composition that does not cause layer separation when blended with, for example, paints and cosmetics, and have the viscosity characteristics, light scattering characteristics and surface characteristics. It can be advantageously used to change and adjust. In particular, in cosmetics blended in cosmetics, a soft and silky feel that is not found in polymethyl methacrylate fine particles, polystyrene fine particles, etc. can be obtained.
[0022]
[Brief description of the drawings]
FIG. 1 is an enlarged photograph of fine particles obtained in Example 1. FIG.
2 is an enlarged photograph of the fine particles obtained in Comparative Example 1. FIG.
3 is an enlarged photograph of the fine particles obtained in Comparative Example 2. FIG.

Claims (4)

疎水性の重合性ビニルモノマー40〜90重量部および架橋性モノマー1〜40重量部からなるモノマー混合物に、液状ゴム1〜30量部を溶解させ、(但し疎水性の重合性ビニルモノマー40〜90重量部および架橋性モノマー1〜40重量部の混合物にスチレン系エラストマー5〜30重量部を含有し、さらに液状ゴムをモノマー混合物100重量部に対し5〜20重量部含有させる場合を除く、)水性媒体中で懸濁重合させる粒子径が0.5〜300μm、平均粒子径が2〜100μm、アスペクト比が1.10〜5.00、真球度が65以下である非球塊状ポリマー微粒子の製造法。1 to 30 parts by weight of a liquid rubber is dissolved in a monomer mixture composed of 40 to 90 parts by weight of a hydrophobic polymerizable vinyl monomer and 1 to 40 parts by weight of a crosslinkable monomer. A mixture of 1 part by weight and 1 to 40 parts by weight of the crosslinkable monomer contains 5 to 30 parts by weight of a styrenic elastomer, and further includes a case where 5 to 20 parts by weight of liquid rubber is added to 100 parts by weight of the monomer mixture) Production of non-spherical polymer fine particles having a particle diameter of 0.5 to 300 μm, an average particle diameter of 2 to 100 μm, an aspect ratio of 1.10 to 5.00, and a sphericity of 65 or less. Law. 粒子の変形率20%における圧縮強度が、0.1〜3.0kgf/mmの範囲にある請求項1記載の非球塊状ポリマー微粒子の製造法。The method for producing non-spherical polymer fine particles according to claim 1, wherein the compressive strength at a deformation rate of 20% of the particles is in the range of 0.1 to 3.0 kgf / mm 2 . 重合性ビニルモノマーが(メタ)アクリル酸アルキルエステルである請求項1または2記載の非球塊状ポリマー微粒子の製造法。The method for producing non-spherical polymer fine particles according to claim 1 or 2, wherein the polymerizable vinyl monomer is an alkyl (meth) acrylate. 架橋性モノマーがアルキレングリコールジ(メタ)アクリレートである請求項1または2記載の非球塊状ポリマー微粒子の製造法。The method for producing non-spherical polymer fine particles according to claim 1 or 2, wherein the crosslinkable monomer is alkylene glycol di (meth) acrylate.
JP2002080600A 2002-03-22 2002-03-22 Method for producing non-spherical polymer fine particles Expired - Lifetime JP3940620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002080600A JP3940620B2 (en) 2002-03-22 2002-03-22 Method for producing non-spherical polymer fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002080600A JP3940620B2 (en) 2002-03-22 2002-03-22 Method for producing non-spherical polymer fine particles

Publications (2)

Publication Number Publication Date
JP2003277417A JP2003277417A (en) 2003-10-02
JP3940620B2 true JP3940620B2 (en) 2007-07-04

Family

ID=29229571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002080600A Expired - Lifetime JP3940620B2 (en) 2002-03-22 2002-03-22 Method for producing non-spherical polymer fine particles

Country Status (1)

Country Link
JP (1) JP3940620B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004003784B4 (en) 2004-01-23 2011-01-13 Ormecon Gmbh Dispersion of intrinsically conductive polyaniline and their use
JP4657755B2 (en) * 2005-02-18 2011-03-23 花王株式会社 Powder spray cosmetics
AU2005202290B2 (en) 2004-05-28 2010-07-01 Kao Corporation Cosmetic preparation
JP4657752B2 (en) * 2005-02-17 2011-03-23 花王株式会社 Gel cosmetic
JP4657753B2 (en) * 2005-02-18 2011-03-23 花王株式会社 Two-layer separated cosmetic
JP4657754B2 (en) * 2005-02-18 2011-03-23 花王株式会社 Emulsified cosmetic
DE102005010162B4 (en) * 2005-03-02 2007-06-14 Ormecon Gmbh Conductive polymers of particles with anisotropic morphology
DE102005039608A1 (en) 2005-08-19 2007-03-01 Ormecon Gmbh Composition with intrinsically conductive polymer
JP5154015B2 (en) 2005-12-20 2013-02-27 花王株式会社 Process for producing fatty acid alkyl ester and glycerin
WO2008031492A1 (en) 2006-09-13 2008-03-20 Ormecon Gmbh Article with a coating of electrically conductive polymer and precious/semiprecious metal and process for production thereof
JP4916014B2 (en) * 2007-04-26 2012-04-11 ガンツ化成株式会社 Skin cosmetics
JP5020861B2 (en) * 2008-02-29 2012-09-05 ガンツ化成株式会社 Method for producing spherical polymer fine particles having a regular wrinkle structure on the surface, and a scrub agent comprising the fine particles
WO2009128441A1 (en) * 2008-04-14 2009-10-22 綜研化学株式会社 Composite resin particles and use of the same
WO2010140500A1 (en) * 2009-06-05 2010-12-09 住友精化株式会社 Cosmetic

Also Published As

Publication number Publication date
JP2003277417A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
JP3940620B2 (en) Method for producing non-spherical polymer fine particles
Yamagami et al. Preparation of stimuli-responsive “mushroom-like” Janus polymer particles as particulate surfactant by site-selective surface-initiated AGET ATRP in aqueous dispersed systems
US7736691B2 (en) Method for preparing functional organic particle
WO2007072769A1 (en) Heat-expandable microspheres, process for production of the same and uses thereof
JP3229011B2 (en) Bow-shaped fine particles and their manufacturing method
JP2733087B2 (en) Hollow polymer fine particles, method for producing the same and use thereof
JP2011105909A (en) Method for producing irregular-shaped resin particle, irregular-shaped resin particle, and light-diffusing material
EP3279284A1 (en) Heat-expandable microspheres
JP3580320B2 (en) Method for producing polymer particles
JPH0674285B2 (en) Method for producing polymer particles
JP4268639B2 (en) Spherical resin fine particles, method for producing spherical resin fine particles, and spacer for liquid crystal display element
JP4939925B2 (en) Wrinkled polymer fine particles and method for producing the same
JP3935074B2 (en) Crosslinked resin fine particles, crosslinked resin fine particle emulsion used for producing the crosslinked resin fine particles, and method for producing crosslinked resin fine particles
JP5020861B2 (en) Method for producing spherical polymer fine particles having a regular wrinkle structure on the surface, and a scrub agent comprising the fine particles
JP2581120B2 (en) Method for producing microencapsulated fine particles
JP2001151639A (en) Cosmetic
JPS63189413A (en) Production of crosslinked polymer particle
JP2003252913A (en) Method for manufacturing polymer particle
JP3566899B2 (en) Method for producing polymer fine particles
JPS6228178B2 (en)
JPH08169907A (en) Production of polymer particle uniform in size
JPH0692443B2 (en) Method for producing polymer particles
JP5075441B2 (en) Method for producing resin particles
JPH08259608A (en) Production of crosslinkable polymer particle
JP3521146B2 (en) Method for producing resin fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Ref document number: 3940620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250