JP3940226B2 - Pipe switching system using multi-function inlet valve - Google Patents

Pipe switching system using multi-function inlet valve Download PDF

Info

Publication number
JP3940226B2
JP3940226B2 JP22460398A JP22460398A JP3940226B2 JP 3940226 B2 JP3940226 B2 JP 3940226B2 JP 22460398 A JP22460398 A JP 22460398A JP 22460398 A JP22460398 A JP 22460398A JP 3940226 B2 JP3940226 B2 JP 3940226B2
Authority
JP
Japan
Prior art keywords
water
valve body
opening
turbine
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22460398A
Other languages
Japanese (ja)
Other versions
JP2000054352A (en
Inventor
正史 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP22460398A priority Critical patent/JP3940226B2/en
Publication of JP2000054352A publication Critical patent/JP2000054352A/en
Application granted granted Critical
Publication of JP3940226B2 publication Critical patent/JP3940226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Taps Or Cocks (AREA)
  • Multiple-Way Valves (AREA)
  • Control Of Water Turbines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流込式水力発電所の水車、ダム式水力発電所の維持放流水車等に付属して設置される多機能型入口弁を用いた管路切換方式に関する。
【0002】
【従来の技術】
発電用水車の上流側には、入口弁が付属して設置されており、入口弁は、水車の運転時には、水車への水の供給(通水)を行い、水車の停止時には、水車への水の供給を確実に停止(遮水)して、水車の空転を防止し、水車内部の作業の安全性を確保する等の機能を果たしている。
【0003】
流込式水力発電所では、使用水量の調節、水撃圧の緩和等のため導水路の末端に上水槽が設置されているが、更に、水車の停止時に、河川から引き続き流入する水を上水槽から下流へ安全に流すため、余水路、放流弁等の放流設備が入口弁とは別個に設置されているのが一般的である。また、ダム式水力発電所でも、維持放流水車の場合、水車の停止時に下流への放流を継続するため、入口弁と別個に放流設備が設置されている。
【0004】
【発明が解決しようとする課題】
上述のように、水車の停止時のために下流への放流設備を設置すると、設備の規模が大きくなり、また、信頼性も要求されることから、施工費用が嵩み、設備の簡素化が要望されていた。また、事故等で水車を停止する場合、水車自体に設けられたガイドベーンが閉鎖されるが、ガイドベーンを急激に閉鎖すると上流の通水管(水圧鉄管)に水撃圧が作用するため、従来は、ガイドベーンを徐々に閉鎖していたが、このため、無負荷状態の水車の回転数が非常に高くなり、苛酷な運転を強いる結果となっていた。
【0005】
本発明は、このような問題に鑑み、流込式水力発電所の水車、ダム式水力発電所の維持放流水車等の放流設備の機能を代替すると共に、水車の停止時の通水管の水撃圧を抑制する多機能型入口弁を用いた管路切換方式を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1に記載の発明においては、発電用水車に水を供給する通水管と前記発電用水車との間に設置され、前記発電用水車が運転時には前記発電用水車に水を供給し、前記発電用水車が停止時には前記発電用水車への水の供給を停止すると共に発電用水車を迂回して発電用水車の下流側に通水管から供給される水を放流する多機能型入口弁を用いた管路切換方式であって、多機能型入口弁は、弁体と前記弁体を回動軸を介して回動可能に収容した弁胴とを備え、この弁胴には、通水管から発電用水車に水を供給するための2つの通水用開口部と、通水管から分岐した上流側バイパス管と発電用水車を迂回して発電用水車の出口側に接続される下流側バイパス管を接続して通水管から供給される水を発電用水車の下流側に放流するための2つのバイパス用開口部と、発電用水車への水の供給および下流側への放流を停止するための2つの遮水用閉鎖部とが、それぞれ前記回動軸に対して対称に設けられ、弁体には、回動軸と垂直な直線状で両端に開口部を有する連通孔が、開口部を弁体の回動により選択的に、通水用開口部、バイパス用開口部又は遮水用閉鎖部と対向させるように設けられ、弁体は、開口部が通水用開口部と対向すると、通水用開口部を連通孔を介して連通させ、開口部がバイパス用開口部と対向すると、バイパス用開口部を連通孔を介して連通させ、開口部が遮水用閉鎖部と対向すると、通水用開口部及びバイパス用開口部を閉鎖する。
【0007】
請求項1に記載の発明によれば、弁体の連通孔の開口部を弁胴の通水用開口部と対向させると、通水用開口部に接続される通水管等が連通して水車への水の供給等が行われ、連通孔の開口部をバイパス用開口部と対向させると、バイパス用開口部に接続されるバイパス管等が連通して水の放流等が行われ、連通孔の開口部を遮蔽用閉鎖部と対向させると、通水管及びバイパス管等が遮断されて水車への水の供給及び水の放流等が停止される。従って、入口弁が通水、遮水機能等と共に放流機能等を有するため、別個に放流設備等を設置する必要がなく、設備の規模を縮小し、施工費用を低減することができる。
【0008】
また、弁胴の通水用開口部が弁体の回動軸に対して対称に配置され、弁体の連通孔が直線状に形成されているので、水車等への通水時の損失水頭を小さくし、弁体に作用する水圧を低減することができる。また、発電用水車に適用した場合、事故等により水車を停止させる際に、弁体を比較的遅く回動させて、弁体の連通孔の開口部を弁胴の通水用開口部からバイパス用開口部を経由して遮水用閉鎖部に対向させるようにして、バイパス放流しながら入口弁をゆっくり完全閉鎖することができ、従って、無負荷状態の水車の回転数の上昇を抑制するようにガイドベーンを比較的速く閉鎖しても、通水管等に水撃圧が作用することを防止することができる。
【0009】
また、請求項2に記載の発明においては、弁胴の通水用開口部又はバイパス用開口部及び弁体の連通孔の開口部は、弁体の回動軸の方向に縦長に形成されている。請求項2に記載の発明によれば、弁胴の通水用開口部又はバイパス用開口部及び弁体の連通孔の開口部の必要な面積を確保しつつ弁胴及び弁体を小型に形成することができる。
【0010】
また、請求項3に記載の発明においては、弁体の外周面及び弁胴の内周面は、弁体の回動軸の方向に傾斜したテーパー円筒状に形成され、弁体の外周面又は弁胴の内周面には、シール部材が装着され、弁体は、弁体の連通孔の開口部が弁胴の遮水用閉鎖部に対向した際に弁胴の内周面又は弁体の外周面がシール部材に密着するように、弁胴に対して回動しつつ軸方向へ移動する。請求項3に記載の発明によれば、弁体の連通孔の開口部を弁胴の遮水用閉鎖部に対向させて遮水する場合に、弁体と弁胴との隙間から水が漏れることを比較的簡易で小型な機構により防止し、確実に遮水することができる。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。図1は、本発明の実施の形態に係る多機能型入口弁を示す斜視図であり、図2は、その縦断面図、図3は、その機能を示す概略図であって、通水時(a)、放流時(b)、及び遮水時(c)の横断面図である。
【0012】
本発明の実施の形態に係る多機能型入口弁は、図1〜3に示すように、弁胴(外周円筒)10、弁胴10内に回動可能に収容された弁体(内周円筒)20等からなり、発電用水車(図示せず)の上流側に設置され、上流側通水管1(水圧鉄管)と下流側通水管2とを連通して水車へ水を供給する機能、上流側バイパス管5(分岐管)と下流側バイパス管6(放流管)とを連通して水車より下流側へ水を放流する機能、通水管1、2及びバイパス管5、6を遮断して水車への水の供給及び下流側への水の放流を停止する機能を、選択的に行うように構成されている。
【0013】
図2に示すように、弁胴10は、内周面が軸方向(後述の回転軸21の方向)に傾斜したテーパー円筒状に形成されており、図3に示すように、弁胴10の周壁には、2つの通水用開口部11、11と2つのバイパス用開口部12、12と2つの遮水用閉鎖部13、13とが、それぞれ中心軸(回動軸21)に対して対称に、周方向に60°間隔で設けられている。なお、弁胴10の開口部11、11、12、12は、軸方向に縦長で、必要な面積を確保しつつ周方向の幅が小さく形成されており、従って、弁胴10全体は比較的小径に形成されている。
【0014】
そして、弁胴10の通水用開口部11、11には、上流側通水管1、下流側通水管2が接続され、バイパス用開口部12、12には、上流側バイパス管5、下流側バイパス管6が接続されている。そして、下流側通水管2は水車の入口側に接続されており、上流側バイパス管5は、上流側通水管1から分岐しており、下流側バイパス管6は、水車を迂回して水車の出口側に接続されている。また、弁胴10の遮水用閉鎖部13、13は、閉鎖されている。
【0015】
また、弁胴10の内周面には、弁体20より軟質な材料(例えば青銅合金)からなるシール部材14、14…が、通水用開口部11、11、バイパス用開口部12、12、遮水用閉鎖部13、13の周囲をそれぞれ囲むような井桁状の配置で、内周面から突出して固着されている。
【0016】
そして、図2に示すように、弁体20は、外周面が弁胴10の内周面に対応した軸方向に傾斜したテーパー円筒状に形成されており、図3に示すように、弁体20の中央部には、連通孔25が、横向(回動軸21に垂直)に直線状に貫通して両端に開口部を形成するように設けられている。また、弁体20の連通孔25の両端の開口部は、弁胴10の開口部11、12に対応した大きさで、弁体20の軸方向(回動軸21の方向)に縦長で、必要な面積を確保しつつ周方向の幅が小さく形成されており、従って、弁体20全体は比較的小径に形成されている。また、連通孔25の下流側の開口部には、水車への異物の流入を阻止するスクリーン26が装着されている。
【0017】
そして、弁体20は、弁胴10内に収容され、縦向の回動軸21を介して支持されている。そして、弁体20は、サーボモーター等からなるアクチュエーター16、16により、レバー17、17、回動部材18、ボールネジ等からなるカム22、回動軸21を介して駆動されて、周方向へ回動しつつ軸方向へも移動し、弁体20の周方向への回動により、弁体20の連通孔25の両端の開口部が、弁胴10の通水用開口部11、11、バイパス用開口部12、12又は遮水用閉鎖部13、13と選択的に対向すると共に、弁体20の軸方向への移動により、連通孔25の両端の開口部が遮水用閉鎖部13、13と対向した際には、弁体20の外周面が弁胴10の内周面のシール部材14、14…に密着するように構成されている。
【0018】
このように構成される多機能型入口弁においては、図3(a)に示すように、弁体20の連通孔25の両端の開口部が弁胴10の通水用開口部11、11に対向した状態にすると、弁体20の連通孔25を介して弁胴10の通水用開口部11、11が連通し、上流側通水管1と下流側通水管2とが接続されて、下流側通水管2に接続された水車への水の供給(通水)が行われる。この際、弁体20の連通孔25が直線状であることによって、入口弁による損失水頭を小さくすることができ、また、弁体20に作用する水圧が低減されるため、入口弁を比較的小型に形成することができる。
【0019】
そして、図3(b)に示すように、上述の状態から弁体20を60°回動させて、弁体20の連通孔25の両端の開口部が弁胴10のバイパス用開口部12、12に対向した状態にすると、弁体20の外周面により弁胴10の通水用開口部11、11が閉鎖され、通水管1、2が遮断されて、水車への水の供給が停止されると共に、弁体20の連通孔25を介して弁胴のバイパス用開口部12、12が連通し、上流側バイパス管5と下流側バイパス管6とが接続されて、水車を迂回して水車の下流側への水の放流が行われる。従って、入口弁と別個に放流設備を設置する必要がなく、設備の規模を縮小し、施工費用を低減することができる。
【0020】
また、図3(c)に示すように、上述の状態から弁体20を更に60°回動させて、弁体20の連通孔25の両端の開口部が弁胴10の遮水用閉鎖部13、13に対向した状態にすると、弁体20の外周面により弁胴10の開口部11、11、12、12が閉鎖され、通水管1、2及びバイパス管5、6が遮断されて、水車への水の供給及び下流側への水の放流が停止される。この際、弁体20の外周面が弁胴10の内周面のシール部材14、14…に密着し、弁体20と弁胴10との隙間から水が漏れることが防止されるので、弁胴10の開口部11、11、12、12が弁体20により確実に閉鎖され、水車への水の供給及び下流側への水の放流を確実に停止することができる。
【0021】
また、事故等により水車を停止させる際には、水車自体のガイドベーンは比較的速く閉鎖すると共に、入口弁は、弁体20を比較的遅く回動させて、弁体20の連通孔25の開口部を弁胴10の通水用開口部11、11からバイパス用開口部12、12を経由して遮水用閉鎖部13、13に対向させるようにして、バイパス管5、6を介して水を下流側にバイパス放流しながら、ゆっくり完全閉鎖する。従って、無負荷状態の水車の回転数の上昇を抑制することができると共に、通水管1、2等に水撃圧が作用することを防止することができる。
【0022】
以上、本発明の実施の形態について述べたが、本発明は上述の実施の形態に限定されるものではない。例えば、上述の実施の形態では、アクチュエーター16、16により、レバー17、17、回動部材18、カム22、回動軸21を介して、弁体20を周方向へ回動しつつ軸方向へも移動させる場合について述べたが、弁体の駆動手段は、どのようなものでもよく、また、弁体は、周方向へのみ回動して軸方向へは移動しないように構成してもよい。また、上述の実施の形態では、発電用水車に適用した場合について述べたが、本発明は、発電用水車以外にも適用することができる。
【0023】
【発明の効果】
以上のように、請求項1に記載の発明によれば、弁体の連通孔の開口部を弁胴の通水用開口部と対向させると、通水用開口部に接続される通水管等が連通して水車への水の供給等が行われ、連通孔の開口部をバイパス用開口部と対向させると、バイパス用開口部に接続されるバイパス管等が連通して水の放流等が行われ、連通孔の開口部を遮蔽用閉鎖部と対向させると、通水管及びバイパス管等が遮断されて水車への水の供給及び水の放流等が停止される。従って、入口弁が通水、遮水機能等と共に放流機能等を有するため、別個に放流設備等を設置する必要がなく、設備の規模を縮小し、施工費用を低減くすることができる。
【0024】
また、弁胴の通水用開口部が弁体の回動軸に対して対称に配置され、弁体の連通孔が直線状に形成されているので、水車等への通水時の損失水頭を小さくし、弁体に作用する水圧を低減することができる。また、発電用水車に適用した場合、事故等により水車を停止させる際に、弁体を比較的遅く回動させて、弁体の連通孔の開口部を弁胴の通水用開口部からバイパス用開口部を経由して遮水用閉鎖部に対向させるようにして、バイパス放流しながら入口弁をゆっくり完全閉鎖することができ、従って、無負荷状態の水車の回転数の上昇を抑制するようにガイドベーンを比較的速く閉鎖しても、通水管等に水撃圧が作用することを防止することができる。
【0025】
また、請求項2に記載の発明によれば、弁胴の通水用開口部又はバイパス用開口部及び弁体の連通孔の開口部の必要な面積を確保しつつ弁胴及び弁体を小型に形成することができる。
【0026】
また、請求項3に記載の発明によれば、弁体の連通孔の開口部を弁胴の遮水用閉鎖部に対向させて遮水する場合に、弁体と弁胴との隙間から水が漏れることを比較的簡易で小型な機構により防止し、確実に遮水することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る多機能型入口弁を示す斜視図である。
【図2】図1の多機能型入口弁の縦断面図である。
【図3】図1の多機能型入口弁の機能を示す概略図であって、通水時(a)、放流時(b)、及び遮水時(c)の横断面図である。
【符号の説明】
1 上流側通水管(水圧鉄管)
2 下流側(水車側)通水管
5 上流側バイパス管
6 下流側バイパス管(放流管)
10 弁胴(入口弁)
11 通水用開口部
12 バイパス用開口部
13 遮水用閉鎖部
14 シール部材
16 アクチュエーター
17 レバー
18 回動部材
20 弁体(入口弁)
21 回動軸
22 カム
25 連通孔
26 スクリーン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pipeline switching system using a multi-function inlet valve that is attached to a turbine of an inflow type hydroelectric power plant, a maintenance discharge turbine of a dam type hydroelectric power plant, or the like.
[0002]
[Prior art]
An inlet valve is attached upstream of the water turbine for power generation. The inlet valve supplies water to the water turbine when the water turbine is in operation, and supplies water to the water turbine when the water turbine is stopped. The water supply is reliably stopped (water shielding) to prevent the water wheel from slipping and to ensure the safety of work inside the water wheel.
[0003]
In the inflow-type hydropower plant, a water tank is installed at the end of the waterway to adjust the amount of water used and to reduce the water hammer pressure. In order to flow safely downstream from the water tank, discharge facilities such as spillways and discharge valves are generally installed separately from the inlet valves. In addition, in the case of a dam type hydropower plant, in the case of a maintenance discharge turbine, a discharge facility is installed separately from the inlet valve in order to continue downstream discharge when the turbine is stopped.
[0004]
[Problems to be solved by the invention]
As described above, installing a discharge facility downstream when the turbine is stopped increases the scale of the facility and also requires reliability, which increases construction costs and simplifies the facility. It was requested. In addition, when the turbine is stopped due to an accident or the like, the guide vane provided in the turbine is closed, but if the guide vane is suddenly closed, water hammer pressure acts on the upstream water pipe (hydraulic iron pipe). Had closed the guide vanes gradually, which resulted in very high rotation speed of the unloaded water turbine, which forced severe operation.
[0005]
In view of such problems, the present invention replaces the functions of discharge facilities such as water turbines of inflow type hydroelectric power plants, maintenance discharge water turbines of dam type hydroelectric power plants, and water hammer of water pipes when the water turbine is stopped. An object of the present invention is to provide a pipeline switching system using a multifunctional inlet valve that suppresses pressure.
[0006]
[Means for Solving the Problems]
In the first aspect of the present invention, the power generation turbine is installed between a water pipe for supplying water to the power generation turbine and the power generation turbine, and when the power generation turbine is in operation, the water is supplied to the power generation turbine. When the power generation turbine is stopped, the water supply to the power generation turbine is stopped and a multi-function inlet valve that bypasses the power generation turbine and discharges the water supplied from the water pipe to the downstream side of the power generation turbine is used. a pipe switching system which had, multifunctional inlet valve, the valve body and the valve body and a valve body which is rotatably accommodated via a pivot shaft, in the valve body, from the water pipe Two water flow openings for supplying water to the power generation water turbine, an upstream bypass pipe branched from the water flow pipe, and a downstream bypass pipe that bypasses the power generation water turbine and is connected to the outlet side of the power generation water turbine connect the power water wheel of water supplied from the water pipe downstream two to discharge the An opening for ipass and two water-impervious closures for stopping the supply of water to the water turbine for power generation and the discharge to the downstream side are provided symmetrically with respect to the rotating shaft, respectively. The communication hole having an opening at both ends in a straight line perpendicular to the rotation axis selectively opens the water flow opening, bypass opening or water shielding closure by rotating the valve body. When the opening is opposed to the water passage opening, the valve body communicates the water passage opening through the communication hole, and when the opening faces the bypass opening, When the bypass opening is communicated via the communication hole and the opening is opposed to the water blocking closure, the water opening and the bypass opening are closed.
[0007]
According to the first aspect of the present invention, when the opening of the communication hole of the valve body is made to face the water opening of the valve body, the water pipe connected to the water opening is communicated with the water wheel. When water is supplied to the opening and the opening of the communication hole is opposed to the opening for bypassing, the bypass pipe connected to the opening for bypassing is communicated to discharge water and the like. When the opening portion is opposed to the shielding closing portion, the water pipe and the bypass pipe are shut off, and the supply of water to the water turbine and the discharge of water are stopped. Therefore, since the inlet valve has a discharge function and the like as well as a water flow and water shielding function, it is not necessary to separately install a discharge facility or the like, and the scale of the facility can be reduced and the construction cost can be reduced.
[0008]
Further, the water passage opening of the valve body is arranged symmetrically with respect to the rotation axis of the valve body, and the communication hole of the valve body is formed in a straight line. The water pressure acting on the valve body can be reduced. In addition, when applied to a water turbine for power generation, when the turbine is stopped due to an accident or the like, the valve body is rotated relatively slowly so that the opening of the communication hole of the valve body is bypassed from the opening for water communication of the valve body. The inlet valve can be slowly and completely closed while discharging the bypass so as to face the water-impervious closing portion via the opening for the water, and therefore, the increase in the rotational speed of the unloaded water turbine is suppressed. Even if the guide vanes are closed relatively quickly, it is possible to prevent water hammer pressure from acting on the water pipe and the like.
[0009]
In the invention according to claim 2, the water passage opening or bypass opening of the valve body and the opening of the communication hole of the valve body are formed vertically in the direction of the rotation axis of the valve body. Yes. According to the invention described in claim 2, the valve body and the valve body are formed in a small size while ensuring the necessary area of the water passage opening or bypass opening of the valve body and the opening of the communication hole of the valve body. can do.
[0010]
In the invention according to claim 3, the outer peripheral surface of the valve body and the inner peripheral surface of the valve body are formed in a tapered cylindrical shape inclined in the direction of the rotation axis of the valve body, and the outer peripheral surface of the valve body or A seal member is mounted on the inner peripheral surface of the valve body, and the valve body has an inner peripheral surface of the valve body or a valve body when the opening of the communication hole of the valve body faces the water-blocking closing portion of the valve body. It moves in the axial direction while rotating with respect to the valve body so that the outer peripheral surface of the shaft closely contacts the seal member. According to the invention described in claim 3, when the opening of the communication hole of the valve body is opposed to the water-blocking closing portion of the valve body and water is blocked, water leaks from the gap between the valve body and the valve body. This can be prevented by a relatively simple and small mechanism, and water can be reliably blocked.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a multi-function inlet valve according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view thereof, and FIG. 3 is a schematic view showing its function when water is passed. It is a cross-sectional view at the time of (a), at the time of discharge (b), and at the time of water shielding (c).
[0012]
As shown in FIGS. 1 to 3, the multifunctional inlet valve according to the embodiment of the present invention includes a valve body (outer cylinder) 10 and a valve body (an inner cylinder) that is rotatably accommodated in the valve body 10. ) 20 and the like, installed on the upstream side of the power generation water turbine (not shown) and connected to the upstream water pipe 1 (hydraulic iron pipe) and the downstream water pipe 2 to supply water to the turbine, upstream The function of discharging the water from the water turbine to the downstream side by connecting the side bypass pipe 5 (branch pipe) and the downstream side bypass pipe 6 (discharge pipe), shutting off the water pipes 1 and 2 and the bypass pipes 5 and 6 The function of stopping the water supply to the downstream side and the water discharge to the downstream side is selectively performed.
[0013]
As shown in FIG. 2, the valve body 10 is formed in a tapered cylindrical shape whose inner peripheral surface is inclined in the axial direction (the direction of a rotating shaft 21 described later). On the peripheral wall, there are two water-passing openings 11, 11 and two bypass openings 12, 12, and two water-blocking closing parts 13, 13, respectively, with respect to the central axis (rotating shaft 21). Symmetrically, they are provided at intervals of 60 ° in the circumferential direction. The openings 11, 11, 12, and 12 of the valve body 10 are vertically long in the axial direction and are formed with a small width in the circumferential direction while ensuring a necessary area. It has a small diameter.
[0014]
The upstream side water pipe 1 and the downstream side water pipe 2 are connected to the water passage openings 11 and 11 of the valve body 10, and the upstream side bypass pipe 5 and the downstream side are connected to the bypass openings 12 and 12. A bypass pipe 6 is connected. The downstream water pipe 2 is connected to the inlet side of the water turbine, the upstream bypass pipe 5 is branched from the upstream water pipe 1, and the downstream bypass pipe 6 bypasses the water turbine and Connected to the exit side. Further, the water-blocking closing portions 13 and 13 of the valve body 10 are closed.
[0015]
Further, on the inner peripheral surface of the valve body 10, seal members 14, 14... Made of a material softer than the valve body 20 (for example, bronze alloy) are provided with water-passing openings 11 and 11 and bypass openings 12 and 12. These are arranged in a cross-beam shape so as to surround each of the water-impervious closing portions 13 and 13 and are fixedly protruded from the inner peripheral surface.
[0016]
As shown in FIG. 2, the valve body 20 is formed in a tapered cylindrical shape whose outer peripheral surface is inclined in the axial direction corresponding to the inner peripheral surface of the valve body 10, and as shown in FIG. A communication hole 25 is provided in the central portion of 20 so as to pass through in a straight line in the lateral direction (perpendicular to the rotation shaft 21) and to form openings at both ends. Moreover, the opening part of the both ends of the communicating hole 25 of the valve body 20 is a magnitude | size corresponding to the opening parts 11 and 12 of the valve body 10, and is vertically long in the axial direction (direction of the rotating shaft 21) of the valve body 20, The width in the circumferential direction is formed small while ensuring the necessary area, and therefore the entire valve body 20 is formed in a relatively small diameter. In addition, a screen 26 that prevents foreign substances from flowing into the water turbine is mounted on the downstream opening of the communication hole 25.
[0017]
The valve body 20 is accommodated in the valve body 10 and is supported via a vertical rotation shaft 21. The valve body 20 is driven by actuators 16 and 16 such as servo motors via levers 17 and 17, a rotation member 18, a cam 22 including a ball screw and the rotation shaft 21, and rotates in the circumferential direction. While moving, it also moves in the axial direction, and by opening the valve body 20 in the circumferential direction, the openings at both ends of the communication hole 25 of the valve body 20 are opened to the water passage openings 11 and 11 of the valve body 10 and bypass. The openings 12 and 12 or the water-impervious closing parts 13 and 13 are selectively opposed to each other, and the openings in the both ends of the communication hole 25 are formed by the movement of the valve body 20 in the axial direction. When opposed to 13, the outer peripheral surface of the valve body 20 is configured to be in close contact with the seal members 14, 14... On the inner peripheral surface of the valve body 10.
[0018]
In the multi-function inlet valve configured as described above, as shown in FIG. 3A, the openings at both ends of the communication hole 25 of the valve body 20 are connected to the water openings 11 and 11 of the valve body 10. When facing each other, the water passage openings 11 and 11 of the valve body 10 communicate with each other through the communication hole 25 of the valve body 20, and the upstream side water pipe 1 and the downstream side water pipe 2 are connected to each other downstream. Water is supplied to the water turbine connected to the side water pipe 2 (water flow). At this time, since the communication hole 25 of the valve body 20 is linear, the head loss due to the inlet valve can be reduced, and the water pressure acting on the valve body 20 is reduced. It can be formed small.
[0019]
Then, as shown in FIG. 3B, the valve body 20 is rotated by 60 ° from the above-described state, and the openings at both ends of the communication hole 25 of the valve body 20 are the bypass opening 12 of the valve body 10, 12, the water passage openings 11, 11 of the valve body 10 are closed by the outer peripheral surface of the valve body 20, the water passage pipes 1, 2 are shut off, and the supply of water to the water turbine is stopped. In addition, the bypass openings 12 and 12 of the valve body communicate with each other through the communication hole 25 of the valve body 20, and the upstream bypass pipe 5 and the downstream bypass pipe 6 are connected to bypass the water turbine. The water is discharged to the downstream side. Therefore, it is not necessary to install a discharge facility separately from the inlet valve, and the scale of the facility can be reduced and the construction cost can be reduced.
[0020]
Further, as shown in FIG. 3C, the valve body 20 is further rotated by 60 ° from the above-described state, and the opening portions at both ends of the communication hole 25 of the valve body 20 are the water-blocking closing portions of the valve body 10. 13, 13, the opening 11, 11, 12, 12 of the valve body 10 is closed by the outer peripheral surface of the valve body 20, the water pipes 1, 2 and the bypass pipes 5, 6 are shut off, The supply of water to the water turbine and the discharge of water downstream are stopped. At this time, the outer peripheral surface of the valve body 20 is in close contact with the seal members 14, 14... On the inner peripheral surface of the valve body 10, and water is prevented from leaking from the gap between the valve body 20 and the valve body 10. The opening parts 11, 11, 12, and 12 of the trunk | drum 10 are reliably closed by the valve body 20, and the supply of the water to a water turbine and the discharge of the water to a downstream side can be stopped reliably.
[0021]
Further, when the water turbine is stopped due to an accident or the like, the guide vanes of the water turbine itself are closed relatively quickly, and the inlet valve rotates the valve body 20 relatively slowly so that the communication hole 25 of the valve body 20 is closed. Through the bypass pipes 5 and 6, the opening is made to face the water shielding closing parts 13 and 13 through the bypass openings 12 and 12 from the water passing openings 11 and 11 of the valve body 10. Close slowly slowly while discharging water downstream. Accordingly, it is possible to suppress an increase in the rotational speed of the unloaded water turbine and to prevent water hammer pressure from acting on the water pipes 1 and 2 and the like.
[0022]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments. For example, in the above-described embodiment, the valve body 20 is rotated in the circumferential direction by the actuators 16 and 16 via the levers 17 and 17, the rotating member 18, the cam 22, and the rotating shaft 21. However, the valve body drive means may be of any type, and the valve body may be configured to rotate only in the circumferential direction and not move in the axial direction. . Moreover, although the case where it applied to the water turbine for electric power generation was described in the above-mentioned embodiment, this invention can be applied other than the water turbine for electric power generation.
[0023]
【The invention's effect】
As described above, according to the first aspect of the present invention, when the opening portion of the communication hole of the valve body is opposed to the water passage opening portion of the valve body, the water flow pipe connected to the water passage opening portion or the like When water is supplied to the water turbine and the opening of the communication hole is opposed to the bypass opening, the bypass pipe connected to the bypass opening is connected to discharge water. When the opening of the communication hole is made to face the shielding closing portion, the water pipe and the bypass pipe are shut off, and the supply of water to the water turbine and the discharge of water are stopped. Therefore, since the inlet valve has a discharge function and the like in addition to the water flow and water shielding functions, it is not necessary to install a discharge facility or the like separately, and the scale of the facility can be reduced and the construction cost can be reduced.
[0024]
Further, the water passage opening of the valve body is arranged symmetrically with respect to the rotation axis of the valve body, and the communication hole of the valve body is formed in a straight line. The water pressure acting on the valve body can be reduced. In addition, when applied to a water turbine for power generation, when the turbine is stopped due to an accident or the like, the valve body is rotated relatively slowly so that the opening of the communication hole of the valve body is bypassed from the opening for water communication of the valve body. The inlet valve can be slowly and completely closed while discharging the bypass so as to face the water-impervious closing portion via the opening for the water, and therefore, the increase in the rotational speed of the unloaded water turbine is suppressed. Even if the guide vanes are closed relatively quickly, it is possible to prevent water hammer pressure from acting on the water pipe and the like.
[0025]
In addition, according to the invention described in claim 2, the valve body and the valve body are reduced in size while ensuring the necessary areas of the water passage opening or bypass opening of the valve body and the opening of the communication hole of the valve body. Can be formed.
[0026]
According to the third aspect of the present invention, when the opening of the communication hole of the valve body is opposed to the water-blocking closing portion of the valve body and water is blocked, water is discharged from the gap between the valve body and the valve body. Can be prevented by a relatively simple and small mechanism, and water can be reliably blocked.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a multifunctional inlet valve according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of the multifunctional inlet valve of FIG.
FIG. 3 is a schematic view showing the function of the multifunctional inlet valve of FIG. 1, and is a cross-sectional view at the time of water flow (a), at the time of discharge (b), and at the time of water blocking (c).
[Explanation of symbols]
1 Upstream water pipe (hydraulic iron pipe)
2 Downstream (water turbine side) water pipe 5 Upstream bypass pipe 6 Downstream bypass pipe (discharge pipe)
10 Valve body (inlet valve)
DESCRIPTION OF SYMBOLS 11 Water flow opening 12 Bypass opening 13 Water shielding closing part 14 Seal member 16 Actuator 17 Lever 18 Rotating member 20 Valve body (inlet valve)
21 Rotating shaft 22 Cam 25 Communication hole 26 Screen

Claims (3)

発電用水車に水を供給する通水管と前記発電用水車との間に設置され、前記発電用水車が運転時には前記発電用水車に水を供給し、前記発電用水車が停止時には前記発電用水車への水の供給を停止すると共に前記発電用水車を迂回して前記発電用水車の下流側に前記通水管から供給される水を放流する多機能型入口弁を用いた管路切換方式であって、
前記多機能型入口弁は、弁体と前記弁体を回動軸を介して回動可能に収容した弁胴とを備え、
前記弁胴には、
前記通水管から前記発電用水車に水を供給するための2つの通水用開口部と、
前記通水管から分岐した上流側バイパス管と前記発電用水車を迂回して前記発電用水車の出口側に接続される下流側バイパス管を接続して前記通水管から供給される水を前記発電用水車の下流側に放流するための2つのバイパス用開口部と、
前記発電用水車への水の供給および前記下流側への放流を停止するための2つの遮水用閉鎖部とが、
それぞれ前記回動軸に対して対称に設けられ、
前記弁体には、前記回動軸と垂直な直線状で両端に開口部を有する連通孔が、前記開口部を前記弁体の回動により選択的に、前記通水用開口部、前記バイパス用開口部又は前記遮水用閉鎖部と対向させるように設けられ、前記弁体は、前記開口部が前記通水用開口部と対向すると、前記通水用開口部を前記連通孔を介して連通させ、前記開口部が前記バイパス用開口部と対向すると、前記バイパス用開口部を前記連通孔を介して連通させ、前記開口部が前記遮水用閉鎖部と対向すると、前記通水用開口部及び前記バイパス用開口部を閉鎖することを特徴とする多機能型入口弁を用いた管路切換方式
The water turbine is installed between a water pipe for supplying water to the power generation turbine and the power generation turbine, and supplies water to the power generation turbine when the power generation turbine is in operation, and the power generation turbine when the power generation turbine is stopped. This is a pipeline switching system using a multi-function inlet valve that stops the supply of water to the water and bypasses the power generation water turbine and discharges water supplied from the water pipe to the downstream side of the power generation water turbine. And
The multi-function inlet valve includes a valve body and a valve body that rotatably accommodates the valve body via a rotation shaft;
In the valve body,
Two water passage openings for supplying water from the water pipe to the water turbine for power generation;
The upstream bypass pipe branched from the water pipe and the downstream bypass pipe that bypasses the power generation water turbine and is connected to the outlet side of the power generation water turbine are connected to supply water supplied from the water pipe to the power generation water. Two bypass openings for discharge downstream of the car;
Two water-blocking closures for stopping the supply of water to the water turbine for power generation and the discharge to the downstream side,
Each provided symmetrically with respect to the pivot axis;
The valve body has a communication hole that has a straight line perpendicular to the rotation shaft and has openings at both ends, and the opening is selectively turned by the rotation of the valve body. The valve body is provided so as to face the opening for water or the closing part for water shielding, and when the opening faces the opening for water passage, the opening for water passage is made through the communication hole. When the opening is opposed to the bypass opening, the bypass opening is communicated via the communication hole, and when the opening is opposed to the water blocking closure, the water opening And a bypass switching portion using a multi-function inlet valve.
弁胴の通水用開口部又はバイパス用開口部及び弁体の連通孔の開口部は、前記弁体の回動軸の方向に縦長に形成された請求項1に記載の多機能型入口弁を用いた管路切換方式2. The multifunctional inlet valve according to claim 1, wherein the water passage opening or bypass opening of the valve body and the opening of the communication hole of the valve body are formed vertically in the direction of the rotation axis of the valve body. Pipe line switching system using 弁体の外周面及び弁胴の内周面は、前記弁体の回動軸の方向に傾斜したテーパー円筒状に形成され、前記弁体の外周面又は前記弁胴の内周面には、シール部材が装着され、前記弁体は、前記弁体の連通孔の開口部が前記弁胴の遮水用閉鎖部に対向した際に前記弁胴の内周面又は前記弁体の外周面が前記シール部材に密着するように、前記弁胴に対して回動しつつ軸方向へ移動することを特徴とする請求項1又は2に記載の多機能型入口弁を用いた管路切換方式The outer peripheral surface of the valve body and the inner peripheral surface of the valve body are formed in a tapered cylindrical shape inclined in the direction of the rotation axis of the valve body, and the outer peripheral surface of the valve body or the inner peripheral surface of the valve body is A seal member is mounted, and the valve body has an inner peripheral surface of the valve body or an outer peripheral surface of the valve body when the opening of the communication hole of the valve body faces the water shielding closing portion of the valve body. The pipe switching method using a multifunctional inlet valve according to claim 1 or 2, wherein the pipe body moves in the axial direction while rotating with respect to the valve body so as to be in close contact with the seal member.
JP22460398A 1998-08-07 1998-08-07 Pipe switching system using multi-function inlet valve Expired - Lifetime JP3940226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22460398A JP3940226B2 (en) 1998-08-07 1998-08-07 Pipe switching system using multi-function inlet valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22460398A JP3940226B2 (en) 1998-08-07 1998-08-07 Pipe switching system using multi-function inlet valve

Publications (2)

Publication Number Publication Date
JP2000054352A JP2000054352A (en) 2000-02-22
JP3940226B2 true JP3940226B2 (en) 2007-07-04

Family

ID=16816323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22460398A Expired - Lifetime JP3940226B2 (en) 1998-08-07 1998-08-07 Pipe switching system using multi-function inlet valve

Country Status (1)

Country Link
JP (1) JP3940226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2718102C2 (en) * 2016-01-18 2020-03-30 Евгений Игоревич Казанцев Plug valve

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1787049B1 (en) 2004-08-30 2009-10-28 Behr GmbH & Co. KG Rotary piston valve and exhaust gas return system comprising such a valve
JP2016023704A (en) * 2014-07-18 2016-02-08 株式会社不二工機 Flow channel switching valve
GB2586837B (en) * 2019-09-05 2023-09-06 Aalberts Integrated Piping Systems Ltd Plumbing Fitting with Movable Cavity Containing a Mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2718102C2 (en) * 2016-01-18 2020-03-30 Евгений Игоревич Казанцев Plug valve

Also Published As

Publication number Publication date
JP2000054352A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
US4022423A (en) Control valve
KR100684347B1 (en) An adjuster for water pressure of litter water -power generating equipment
US4352989A (en) Hydromotive set
JP3940226B2 (en) Pipe switching system using multi-function inlet valve
CA1058056A (en) Hydraulic turbo machine wicket gate seals
JP4758797B2 (en) Francis turbine for hydropower
JP2607014Y2 (en) Pelton turbine
JP3688348B2 (en) Hydraulic machine and operation method thereof
KR102556785B1 (en) Cut off system of small hydroelectric power plant
US20240175419A1 (en) Energy-recovery turbine with pressure-release valve
JPH0828427A (en) Pressure regulating device for hydroelectric power station
JP3767918B2 (en) Inlet valve control device for pump turbine
JPS6397875A (en) Crossflow turbine
RU2070677C1 (en) Valving device
JP2954250B2 (en) Guide vane bearing sealing device
JPH04347376A (en) Cross flow water turbine
JP2007255316A (en) Francis turbine for hydraulic power generation
JP2555682Y2 (en) Cross flow turbine
JP2780075B2 (en) Iron pipe valve with built-in water filling valve
JPH0721901Y2 (en) Cross flow turbine
JPS6131671A (en) Pelton wheel
JPH0640372U (en) Water leak discharge structure of water turbine
JPH102428A (en) Water sealing device for inlet valve
JPH086678B2 (en) How to start the turbine
JPH051660Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term