JP3939992B2 - Method for manufacturing piezoelectric resonator - Google Patents

Method for manufacturing piezoelectric resonator Download PDF

Info

Publication number
JP3939992B2
JP3939992B2 JP2002020159A JP2002020159A JP3939992B2 JP 3939992 B2 JP3939992 B2 JP 3939992B2 JP 2002020159 A JP2002020159 A JP 2002020159A JP 2002020159 A JP2002020159 A JP 2002020159A JP 3939992 B2 JP3939992 B2 JP 3939992B2
Authority
JP
Japan
Prior art keywords
wedge
piezoelectric resonator
tip
thickness
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002020159A
Other languages
Japanese (ja)
Other versions
JP2003224449A (en
Inventor
文生 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002020159A priority Critical patent/JP3939992B2/en
Priority to US10/209,526 priority patent/US6859116B2/en
Publication of JP2003224449A publication Critical patent/JP2003224449A/en
Application granted granted Critical
Publication of JP3939992B2 publication Critical patent/JP3939992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は圧電共振子の製造方法に関するものである。
【0002】
【従来技術】
従来の圧電共振子を用いた圧電共振装置として、例えば図6に示すような水晶からなる圧電共振子53を用いた発振子が知られている。この圧電共振子53は、圧電基板530、駆動電極531、533、引き出し電極532、534を具備して構成されている。圧電基板530は矩形板状の基部530aと、この基部530aの両側に形成され、長さ方向先端部に向けて次第に厚みが薄くなる楔部530bとから構成されており、駆動電極531、533は均一厚みを有する基部530aの両主面に対向するように形成されている。
【0003】
また、駆動電極531、533には、引き出し電極532、534がそれぞれ接続され、一方の楔部530bに引き出されている。
【0004】
圧電共振子53は、図示しないが、収納容器であるセラミックパッケージなどに、導電性樹脂ペーストを用いて、圧電基板530下面に形成された引き出し電極532、534をセラミックパッケージのキャビティ底面に形成される電極パッドに接続、固定され、発振子が構成されていた。
【0005】
このような圧電共振子53は、前述のようにセラミックパッケージなどの収納容器に接続、固定された後、図7に示すように、一方の主面の駆動電極531にAgなどを蒸着させたり、Arイオンを照射し表面のAu層を薄くするなどの方法で発振周波数の調整を行っていた。
【0006】
【発明が解決しようとする課題】
しかし、このような圧延共振子では主に振動モードとして厚み滑り振動を用いており、発振周波数は駆動電極531、533が形成された圧電基板530の基部530aの厚みにより決定されるが、水晶からなる圧電共振子53では薄くなると取り扱いが困難であることに起因して、圧電基板530の基部530aの厚みは20μm程度(即ち、基本波で80MHzでの発振可能な厚み)までしか薄くすることができなかった。即ち、80MHz以下でしか発振させられず、基本波を用いて100MHz以上の高周波にて発振させることは困難であった。
【0007】
一方、従来、振動子を3倍波を用いて発振させる方法もあった。即ち、水晶からなる圧電共振子53をインバータやトランジスタなどと組み合わせてコルピッツ回路などの発振回路を作製した場合、帰還抵抗Rfとして数KΩ〜数十KΩといった値のものを用いれば、3倍波にて発振可能な発振子の作製は可能ではあったが、帰還抵抗Rfなどのように発振回路に用いる帰還抵抗Rfの数値決めを行う必要があった。
【0008】
ところが、そのように帰還抵抗Rfの数値決めを行った場合でも、電圧や温度などの条件が変わると基本波やさらに3倍波よりも高次での発振といった所望ではない次数において発振が起こってしまう場合があり、確実に動作させることが困難であった。
【0009】
また、発振周波数は基部530aの厚みにより決定されるため、エッチング等により厚みを厳密に制御する必要があり、作製が困難であり、製造コストの増大につながるという問題があった。
【0010】
さらに、発振周波数の微調整を、一方の主面の駆動電極531にAgなどを蒸着させたり、Arイオンを照射し駆動電極531の表面のAu層を薄くするなどの方法で行っていたが、このような方法は、駆動電極531の重さを変化させて周波数調整を行うため、駆動電極531の重量変化による周波数変化は小さく、発振周波数の調整は困難であった。
【0011】
本発明は、基本波を用いて高周波にて共振可能であり、共振周波数の調整が容易でかつ安価な圧電共振子及び圧電共振装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明の圧電共振子の製法は、厚みが先端に向けて次第に薄くなる楔部を有する圧電基板の前記楔部先端部の対向する両主面に、前記楔部先端を介して連続する駆動電極連続体を形成し、前記楔部先端とともに前記駆動電極連続体の楔部先端部分を同時に研磨し、前記楔部先端部の両主面にそれぞれ駆動電極を形成したことを特徴とする。
【0017】
このような製法によれば、先ず、楔部先端部に楔部先端を介して連続する駆動電極連続体を形成し、その後、楔部先端とともに、駆動電極連続体の楔部先端部分(駆動電極のブリッジ部)を回転砥石等により研磨して除去することで楔部先端部の両主面に駆動電極を形成することができる。特に楔部先端部の厚みを発振周波数より若干高めの周波数になる厚みに設定することにより、楔部先端の研磨除去量を最小限に抑えることができ、研磨中の破損事故や研磨時間を最小限とすることができる。周波数の追い込みは発振周波数をモニターしながら楔部先端部を研磨するとき、駆動電極を楔部の厚みが厚くなる方に研磨するため、共振周波数を低周波側に移動させて所望周波数を得ることができる。
【0018】
このように、楔部先端部に駆動電極連続体を形成し、その後、楔部先端とともに駆動電極連続体の楔部先端側を同時に研磨し、駆動電極を小さく加工し最適なサイズに合わせ込むことにより、安定して良好な電気特性の圧電共振子を得ることができるようになるとともに、周波数調整を行うことが可能であるだけでなく、共振周波数が低くなる方向に調整することも可能となり、その結果、歩留まりを向上し、生産効率を向上し、それにより、100MHz以上、特に100殻00MHzといった高周波にて発振可能な振動子を安定して供給できるようになり、設計の効率及び生産の効率を飛躍的に向上できる。
【0021】
【発明の実施の形態】
以下、本発明の製法により作製された圧電共振子を図面に基づいて詳説する。図1は、水晶からなる圧電基板を用いた圧電共振子の斜視図、図2は圧電共振子の側断面図を示すもので、圧電共振子3は、水晶からなる圧電基板30、駆動電極31、32、引き出し電極33、34を具備して構成されている。尚、圧電基板30とは、圧電性を有する水晶、セラミックス、単結晶からなる基板を含む概念である。
【0022】
圧電基板30は、所定結晶方位角に従ってカット(ATカット)されたものが用いられており、矩形板状の基部30aの長さ方向両側に側面形状が台形状の楔部30bを設けて構成され、楔部30bの両主面の傾斜面は、ベベル加工またはコンベックス加工により形成されている。圧電基板30は、厚みが厚い基部30aを有するため、高周波で用いられる共振子であっても強度を高くできる。
【0023】
尚、圧電基板30は、楔部30bの片面に傾斜面を形成した場合であっても良い。この場合、基部30aの下面と楔部30bの下面は同一平面となり、楔部30bの上面は傾斜面となる。また、傾斜面は、ベベル加工またはコンベックス加工で形成したが、エッチング等の加工でも良いことは勿論である。製造が容易という点では、ベベル加工またはコンベックス加工が望ましい。
【0024】
圧電基板30は、図2に示したように、長辺に沿った方向の両端に最も厚みが薄い最薄肉部300a(楔部30bの先端)が形成され、長辺方向の中心部には最も厚みが厚い基部30aが形成されている。最薄肉部300aの厚みは、基部30aの厚みの0.2倍以上とされている。最薄肉部300aと基部30aの間に形成される傾斜面のテーパーは2/100以下とされている。
【0025】
即ち、圧電基板30の楔部30bの長さをL、最薄肉部300aの厚みをt1、基部30aの厚みをt2とすると、t2>t1≧0.2t2で表され、各傾斜面のテーパーは(t2−t1)/2Lで表わされ、トータルテーパーは(t2−t1)/Lでとなり、このトータルテーパーは(t2−t1)/L≦2/100とされている。
【0026】
最薄肉部300aの厚みをt1、基部30aの厚みをt2としたとき、t1≧0.2t2としたのは、最薄肉部300aが数ミクロンの厚みの圧電基板30を作製する場合でも、ベベリング加工などによる圧電基板30の加工バラツキを20%以下に抑制できるため、この範囲内のバラツキでは最薄肉部300aと基部30aの間の所望位置に駆動電極31、32を形成することで所望共振周波数を再現性よく得ることができるからである。特に、駆動電極31、32を圧電基板30の楔部30bの先端部に置くという点から、先端部の厚み加工バラツキは5%以下に抑制することが望ましい。
【0027】
また、トータルテーパー(t2−t1)/Lを2/100以下としたのは、駆動電極31、32によるエネルギー閉じ込めを大きく壊すことなく、また駆動電極31、32の厚み分布を工夫すること、例えば駆動電極31、32の厚みを最薄肉部300aに向けて次第に厚くすることによって元々平板で実現できる基本振動に近い振動モードを実現することができるからである。特に蒸着などで形成される駆動電極31、32の厚みは1μm以下であるから、駆動電極31、32の厚み分布に工夫を加えることによって模擬的に平板に近い振動条件を実現するためには、駆動電極31、32の最薄肉部300a側端での基板厚みと、基部30a側端での基板厚みの差が駆動電極31、32の厚みあるいはそれ以下であることが望ましいためである。
【0028】
圧電基板30の長さは、ベベル加工、コンベックス加工で加工でき、傾斜面のトータルテーパ(t2−t1)/Lが2/100以下であるという点から、0.5〜5.0mmであることが望ましい。最薄肉部300aの厚みt1と基部30bの厚みt2の平均厚み、即ち圧電基板の平均厚みは、所望の発振周波数に合うように設定される。
【0029】
尚、上記例では、楔部30bの両側に傾斜面を形成し、この場合の傾斜面のトータルテーパー(t2−t1)/Lを2/100以下としたが、一方の主面にのみ傾斜面を形成し、他方の主面が平坦面である場合についても、テーパについては薄肉部と厚肉部という見方でよいので、同様に(t2−t1)/Lが2/100以下であることが望ましい。
【0030】
また、図1、図2の右側に形成された楔部30bの両主面には駆動電極31、32が形成されており、駆動電極31、32は、図1、図2の左側の楔部30bに形成された引き出し電極33、34に、引き出し線312、322を介して接続されている。引き出し電極33、34は、楔部30bの先端部の両主面に対向するように、かつ連続して形成されている。
【0031】
引き出し電極33、34を左側の楔部30bに形成することにより、収納容器に圧電共振子を片持ち梁として支持固定できるため、駆動電極31、32の振動を妨げることがなく、圧電共振子を導電性接着剤で収納容器に固定する際に、導電性接着剤の硬化時の応力による破損や、該応力による周波数の温度特性の悪化が生じることがない。即ち、圧電共振子を両端支持で固定した場合には、特に圧電基板が薄くなればなるほど振動を阻害しやすく、導電性接着剤の硬化時の応力の影響を受けやすいが、本願発明では一端支持で固定できるため、上記不具合を防止できる。
【0032】
尚、楔部30bを基部30aの一方側にのみ設けても良い。この場合には、圧電共振子を小型できるとともに、基部30aに引き出し電極を設け、厚みが厚い基部30aを収納容器に固定することになるため、収納容器への固定を確実に行うことができる。
【0033】
そして、本発明の圧電共振子では、図3に示すように、楔部30b先端及び駆動電極31、32先端が回転砥石7等で同時に研磨され、圧電基板30の先端面に楔部30bの先端と駆動電極31、32先端が同一平面上に露出している。言い換えると、研磨面に楔部30bの先端と駆動電極31、32の先端が存在している。
【0034】
このような圧電共振子3は、先ず、矩形状の水晶からなる基板を準備し、この矩形状の両端部に、ベベル加工またはコンベックス加工により傾斜面を作製し、基部30aの両側に楔部30bを形成した圧電基板30を作製する。
【0035】
この後、この圧電基板30の上面及び下面に、所定形状のマスクを配置して、蒸着やスパッタ等の手段を用いてAu、Ag、Crなどを蒸着等して、駆動電極連続体37(後述する研磨により駆動電極31、32となる)、引き出し電極33、34、引き出し線312、322を形成する。駆動電極連続体37は、駆動電極31、32を、楔部30bの先端面に形成されたブリッジ部310により接続して形成されている。尚、駆動電極連続体37を形成することなく、駆動電極31、32をそれぞれ形成しても良いが、研磨前から図2に示すように、駆動電極31、32の先端が楔部30bの先端面に存在することが、共振周波数制御幅が大きくなるため望ましい。
【0036】
そして、共振周波数の制御は、図3に示したように、圧電基板30の先端、即ち楔部30bの先端から、駆動電極連続体37のブリッジ部310を回転砥石7等で研磨し、駆動電極連続体37を駆動電極31、32に分離する。これにより、共振周波数が低くなる方向に周波数調整することができるようになる。結果として、周波数調整により良品に作り込む余地が増えるため、歩留まりを上げることができ、高い生産効率を実現することができる。
【0037】
尚、研磨による周波数調整の後、図4に示すように、駆動電極31、33の基部30a側の部分を、上方からレーザ光を照射して除去し、高周波側への周波数調整を行っても良い。
【0038】
また、前述の本発明の研磨による周波数調整は周波数粗調整工程として行い、その後、周波数微調整工程としてArイオン照射などのイオンガンを用いる手法を併用しても構わない。
【0039】
本発明の圧電共振子3では、厚みバラツキを補うための周波数調整を行うことができる。即ち、圧電基板30の厚みが基部30aから最薄肉部300aに向けて次第に薄くなっているため、駆動電極31、32が形成される楔部30bに厚みバラツキがあっても、適切な駆動電極31、32の形成位置を選択すればほぼ所望の共振周波数を得ることができ、さらに、圧電基板30の先端から、楔部30b先端とともに駆動電極31、32の先端も同時に研磨することにより、共振周波数の微調整を行うことができる。
【0040】
このような圧電共振子は収納容器内に収容されて圧電共振装置が作製される。図5は圧電共振装置を示すもので、図1及び図2に示すような圧電共振子3が、セラミックパッケージからなる収納容器41内に収容され、圧電共振子3の引き出し端子33、34が導電性接着剤43により収納容器41の内部底面に接合されて固定されており、収納容器41の開口部には環状のシールリング44を介して金属製蓋体45が接合されている。
【0041】
即ち、圧電共振子3の引き出し端子33、34は、導電性接着剤43を介して収納容器41の内部底面の電極パッド47に接続され、この電極パッド47は、収納容器41の下面に形成された外部電極49に電気的に接続されている。
【0042】
尚、上記した研磨、レーザ光照射による周波数調整は、収納容器41内に圧電共振子3を接合固定した後に行うことが、確実な周波数調整を行うという点から望ましい。
【0043】
【発明の効果】
本発明の圧電共振子では、厚みが先端に向けて次第に薄くなる楔部に駆動電極を設けることにより、100MHz以上の共振周波数とすることができるとともに、圧電基板は厚みが厚い部分を有するため強度的に高い。また、駆動電極は傾斜面を有する楔部に形成されており、駆動電極の形成位置を制御することにより、ある程度所望の共振周波数を得ることができる。さらに、楔部先端及び駆動電極先端を研磨することにより、共振周波数の微調整を行うことができる。
【0044】
また、ベベル加工やコンベックス加工により作製された水晶からなる圧電基板を用いた場合でも、基本波を用いた100MHz以上の高周波で共振可能な水晶からなる圧電共振子を安価に提供することができる。
【図面の簡単な説明】
【図1】本発明の圧電共振子の斜視図である。
【図2】図1の側断面図である。
【図3】圧電共振子の周波数調整を説明するための要部拡大図である。
【図4】レーザ光照射による周波数調整を説明するための要部断面図である。
【図5】本発明の圧電共振装置を示す断面図である。
【図6】従来の圧電共振子の斜視図である。
【図7】図6の圧電共振子の周波数調整を説明するための斜視図である。
【符号の説明】
3・・・圧電共振子
30・・・圧電基板
30b・・・楔部
31、32・・・駆動電極
37・・・駆動電極連続体
41・・・収納容器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a piezoelectric resonator.
[0002]
[Prior art]
As a conventional piezoelectric resonator using a piezoelectric resonator, for example, an oscillator using a piezoelectric resonator 53 made of quartz as shown in FIG. 6 is known. The piezoelectric resonator 53 includes a piezoelectric substrate 530, drive electrodes 531 and 533, and extraction electrodes 532 and 534. The piezoelectric substrate 530 is composed of a rectangular plate-like base portion 530a and wedge portions 530b formed on both sides of the base portion 530a and gradually decreasing in thickness toward the distal end portion in the length direction. The drive electrodes 531 and 533 are formed as follows. The base portion 530a having a uniform thickness is formed so as to face both main surfaces.
[0003]
The drive electrodes 531 and 533 are connected to lead electrodes 532 and 534, respectively, and are drawn out to one wedge portion 530b.
[0004]
Although not shown, the piezoelectric resonator 53 is formed on the bottom surface of the cavity of the ceramic package by using a conductive resin paste on a ceramic package or the like that is a storage container, on the bottom surface of the cavity of the ceramic package. It was connected and fixed to the electrode pad to constitute an oscillator.
[0005]
Such a piezoelectric resonator 53 is connected and fixed to a storage container such as a ceramic package as described above, and then, as shown in FIG. 7, Ag or the like is vapor-deposited on the drive electrode 531 on one main surface, The oscillation frequency has been adjusted by irradiating Ar ions and thinning the Au layer on the surface.
[0006]
[Problems to be solved by the invention]
However, in such a rolling resonator, thickness shear vibration is mainly used as a vibration mode, and the oscillation frequency is determined by the thickness of the base portion 530a of the piezoelectric substrate 530 on which the drive electrodes 531 and 533 are formed. The thickness of the base portion 530a of the piezoelectric substrate 530 can be reduced only to about 20 μm (that is, a thickness capable of oscillation at 80 MHz with a fundamental wave) because the piezoelectric resonator 53 is difficult to handle when it is thin. could not. That is, it can only oscillate at 80 MHz or less, and it has been difficult to oscillate at a high frequency of 100 MHz or more using the fundamental wave.
[0007]
On the other hand, there has conventionally been a method of oscillating a vibrator using a third harmonic. That is, when an oscillation circuit such as a Colpitts circuit is manufactured by combining the piezoelectric resonator 53 made of quartz with an inverter, a transistor, or the like, if a feedback resistor Rf having a value of several KΩ to several tens KΩ is used, the third harmonic is obtained. Although it was possible to fabricate an oscillator capable of oscillating, it was necessary to determine the numerical value of the feedback resistor Rf used in the oscillation circuit, such as the feedback resistor Rf.
[0008]
However, even when the numerical value of the feedback resistor Rf is determined in this way, if conditions such as voltage and temperature change, oscillation occurs in an undesired order such as oscillation at a higher order than the fundamental wave or even a third harmonic wave. It may be difficult to operate reliably.
[0009]
In addition, since the oscillation frequency is determined by the thickness of the base portion 530a, it is necessary to strictly control the thickness by etching or the like, making it difficult to manufacture and increasing the manufacturing cost.
[0010]
Furthermore, fine adjustment of the oscillation frequency was performed by a method such as vapor-depositing Ag or the like on the drive electrode 531 on one main surface, or thinning the Au layer on the surface of the drive electrode 531 by irradiating Ar ions. In such a method, since the frequency adjustment is performed by changing the weight of the drive electrode 531, the frequency change due to the weight change of the drive electrode 531 is small, and it is difficult to adjust the oscillation frequency.
[0011]
An object of the present invention is to provide a piezoelectric resonator and a piezoelectric resonance device that can resonate at a high frequency using a fundamental wave, can easily adjust the resonance frequency, and are inexpensive.
[0016]
[Means for Solving the Problems]
The method for manufacturing a piezoelectric resonator according to the present invention is such that a drive electrode is formed on both opposing main surfaces of the front end portion of the wedge portion of the piezoelectric substrate having a wedge portion whose thickness gradually decreases toward the front end via the front end of the wedge portion. A continuous body is formed, and a wedge electrode tip portion of the drive electrode continuum is simultaneously polished together with the wedge tip end, and drive electrodes are formed on both main surfaces of the wedge tip end portion, respectively.
[0017]
According to such a manufacturing method, first, a continuous drive electrode continuous body is formed at the front end of the wedge portion via the front end of the wedge portion, and then, along with the front end of the wedge portion, the front end portion of the drive electrode continuous body (drive electrode) The driving electrode can be formed on both main surfaces of the front end portion of the wedge portion by polishing and removing the bridge portion) with a rotating grindstone or the like. In particular, by setting the thickness of the wedge tip to a frequency that is slightly higher than the oscillation frequency, the amount of polishing removal at the wedge tip can be minimized, and damage during polishing and polishing time are minimized. Limit. In order to drive the frequency, when polishing the tip of the wedge while monitoring the oscillation frequency, the drive electrode is polished so that the thickness of the wedge increases, so the resonance frequency is moved to the low frequency side to obtain the desired frequency. Can do.
[0018]
In this way, the drive electrode continuum is formed at the wedge tip, and then the wedge electrode tip side of the drive electrode continuum is simultaneously polished together with the wedge tip, and the drive electrode is made small to fit the optimum size. As a result, it becomes possible to obtain a piezoelectric resonator having stable and good electrical characteristics, and it is possible not only to adjust the frequency but also to adjust the resonance frequency in a lower direction, As a result, the yield is improved and the production efficiency is improved. As a result, it becomes possible to stably supply a vibrator capable of oscillating at a high frequency of 100 MHz or more, particularly 100 shells 00 MHz, and the design efficiency and production efficiency. Can be improved dramatically.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a piezoelectric resonator manufactured by the manufacturing method of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view of a piezoelectric resonator using a piezoelectric substrate made of quartz, and FIG. 2 is a side sectional view of the piezoelectric resonator. The piezoelectric resonator 3 includes a piezoelectric substrate 30 made of quartz, and a drive electrode 31. , 32 and lead electrodes 33, 34. The piezoelectric substrate 30 is a concept including a substrate made of quartz, ceramics, or single crystal having piezoelectricity.
[0022]
The piezoelectric substrate 30 is cut according to a predetermined crystal orientation angle (AT cut), and is configured by providing a wedge portion 30b having a trapezoidal side surface on both sides in the length direction of a rectangular plate-shaped base portion 30a. The inclined surfaces of both main surfaces of the wedge portion 30b are formed by bevel processing or convex processing. Since the piezoelectric substrate 30 has the base portion 30a having a large thickness, even a resonator used at a high frequency can increase the strength.
[0023]
The piezoelectric substrate 30 may be a case where an inclined surface is formed on one surface of the wedge portion 30b. In this case, the lower surface of the base portion 30a and the lower surface of the wedge portion 30b are the same plane, and the upper surface of the wedge portion 30b is an inclined surface. The inclined surface is formed by bevel processing or convex processing, but it is needless to say that processing such as etching may be used. In terms of ease of manufacture, bevel processing or convex processing is desirable.
[0024]
As shown in FIG. 2, the piezoelectric substrate 30 has the thinnest wall portion 300a (the tip of the wedge portion 30b) having the thinnest thickness at both ends in the direction along the long side, and is most at the center in the long side direction. A thick base 30a is formed. The thickness of the thinnest wall portion 300a is 0.2 times or more the thickness of the base portion 30a. The taper of the inclined surface formed between the thinnest wall portion 300a and the base portion 30a is 2/100 or less.
[0025]
That is, when the length of the wedge portion 30b of the piezoelectric substrate 30 is L, the thickness of the thinnest portion 300a is t1, and the thickness of the base portion 30a is t2, t2> t1 ≧ 0.2t2, and the taper of each inclined surface is The total taper is represented by (t2-t1) / 2L, and the total taper is (t2-t1) / L ≦ 2/100.
[0026]
When the thickness of the thinnest portion 300a is t1 and the thickness of the base portion 30a is t2, t1 ≧ 0.2t2 is the reason that the thinnest portion 300a is beveled even when the piezoelectric substrate 30 having a thickness of several microns is manufactured. Since the processing variation of the piezoelectric substrate 30 due to the above can be suppressed to 20% or less, the desired resonance frequency can be obtained by forming the drive electrodes 31 and 32 at a desired position between the thinnest portion 300a and the base portion 30a. This is because it can be obtained with good reproducibility. In particular, from the viewpoint of placing the drive electrodes 31 and 32 on the front end portion of the wedge portion 30b of the piezoelectric substrate 30, it is desirable to suppress the thickness processing variation of the front end portion to 5% or less.
[0027]
The total taper (t2−t1) / L is set to 2/100 or less because the energy confinement by the drive electrodes 31 and 32 is not greatly broken, and the thickness distribution of the drive electrodes 31 and 32 is devised. This is because, by gradually increasing the thickness of the drive electrodes 31 and 32 toward the thinnest portion 300a, a vibration mode close to the fundamental vibration that can be originally realized by a flat plate can be realized. In particular, since the thickness of the drive electrodes 31 and 32 formed by vapor deposition or the like is 1 μm or less, in order to realize a vibration condition near a flat plate by simulating the thickness distribution of the drive electrodes 31 and 32, This is because the difference between the substrate thickness at the thinnest portion 300a side end of the drive electrodes 31 and 32 and the substrate thickness at the base 30a side end is preferably equal to or less than the thickness of the drive electrodes 31 and 32.
[0028]
The length of the piezoelectric substrate 30 is 0.5 to 5.0 mm because it can be processed by bevel processing and convex processing, and the total taper (t2-t1) / L of the inclined surface is 2/100 or less. Is desirable. The average thickness of the thinnest thickness portion 300a and the thickness t2 of the base portion 30b, that is, the average thickness of the piezoelectric substrate is set to match a desired oscillation frequency.
[0029]
In the above example, inclined surfaces are formed on both sides of the wedge portion 30b, and the total taper (t2-t1) / L of the inclined surface in this case is set to 2/100 or less, but the inclined surface is formed only on one main surface. In the case where the other main surface is a flat surface, the taper may be viewed as a thin portion and a thick portion, and similarly, (t2-t1) / L may be 2/100 or less. desirable.
[0030]
Further, drive electrodes 31 and 32 are formed on both main surfaces of the wedge portion 30b formed on the right side in FIGS. 1 and 2, and the drive electrodes 31 and 32 are provided on the left wedge portion in FIGS. The lead electrodes 33 and 34 formed on 30 b are connected via lead lines 312 and 322. The extraction electrodes 33 and 34 are continuously formed so as to face both main surfaces of the tip of the wedge portion 30b.
[0031]
By forming the extraction electrodes 33 and 34 on the left wedge 30b, the piezoelectric resonator can be supported and fixed as a cantilever in the storage container, so that the vibration of the drive electrodes 31 and 32 is not hindered. When the conductive adhesive is fixed to the storage container, the conductive adhesive is not damaged due to stress during curing, and the frequency temperature characteristics are not deteriorated due to the stress. In other words, when the piezoelectric resonator is fixed by supporting both ends, the thinner the piezoelectric substrate is, the more likely it is to inhibit vibration and the influence of stress during curing of the conductive adhesive. The above-mentioned problem can be prevented because it can be fixed with
[0032]
Note that the wedge portion 30b may be provided only on one side of the base portion 30a. In this case, the piezoelectric resonator can be reduced in size, and an extraction electrode is provided on the base 30a, and the thick base 30a is fixed to the storage container. Therefore, the piezoelectric resonator can be securely fixed to the storage container.
[0033]
In the piezoelectric resonator of the present invention, as shown in FIG. 3, the tip of the wedge portion 30 b and the tip of the drive electrodes 31, 32 are simultaneously polished by the rotating grindstone 7 or the like, and the tip of the wedge portion 30 b is formed on the tip surface of the piezoelectric substrate 30. The tips of the drive electrodes 31 and 32 are exposed on the same plane. In other words, the tip of the wedge 30b and the tips of the drive electrodes 31 and 32 exist on the polished surface.
[0034]
For such a piezoelectric resonator 3, first, a substrate made of a rectangular crystal is prepared, inclined surfaces are formed on both ends of the rectangular shape by bevel processing or convex processing, and wedge portions 30 b are formed on both sides of the base portion 30 a. The piezoelectric substrate 30 on which is formed is manufactured.
[0035]
Thereafter, a mask having a predetermined shape is disposed on the upper and lower surfaces of the piezoelectric substrate 30, and Au, Ag, Cr, etc. are vapor-deposited using means such as vapor deposition and sputtering, and the drive electrode continuum 37 (described later). By this polishing, the drive electrodes 31 and 32 are formed), lead electrodes 33 and 34, and lead lines 312 and 322 are formed. The drive electrode continuum 37 is formed by connecting the drive electrodes 31 and 32 with a bridge portion 310 formed on the distal end surface of the wedge portion 30b. The drive electrodes 31 and 32 may be formed without forming the drive electrode continuum 37, but as shown in FIG. 2 before polishing, the tips of the drive electrodes 31 and 32 are the tips of the wedge portions 30b. Being present on the surface is desirable because the resonance frequency control width is increased.
[0036]
Then, as shown in FIG. 3, the resonance frequency is controlled by polishing the bridge portion 310 of the drive electrode continuous body 37 with the rotating grindstone 7 or the like from the tip of the piezoelectric substrate 30, that is, the tip of the wedge portion 30b. The continuum 37 is separated into drive electrodes 31 and 32. As a result, the frequency can be adjusted in the direction of decreasing the resonance frequency. As a result, the room for making good products by frequency adjustment increases, so that the yield can be increased and high production efficiency can be realized.
[0037]
After the frequency adjustment by polishing, as shown in FIG. 4, the base electrode 30a side portion of the drive electrodes 31, 33 may be removed by irradiating the laser beam from above to adjust the frequency to the high frequency side. good.
[0038]
Further, the frequency adjustment by the polishing of the present invention described above may be performed as a frequency coarse adjustment step, and then a method using an ion gun such as Ar ion irradiation may be used in combination as the frequency fine adjustment step.
[0039]
In the piezoelectric resonator 3 of the present invention, frequency adjustment for compensating for thickness variation can be performed. That is, since the thickness of the piezoelectric substrate 30 is gradually reduced from the base portion 30a toward the thinnest portion 300a, even if the wedge portion 30b on which the drive electrodes 31 and 32 are formed varies in thickness, an appropriate drive electrode 31 is provided. , 32 can be selected to obtain a substantially desired resonance frequency, and further, the tip of the drive electrode 31, 32 is simultaneously polished from the tip of the piezoelectric substrate 30 together with the tip of the wedge portion 30b. Can be fine-tuned.
[0040]
Such a piezoelectric resonator is accommodated in a storage container to produce a piezoelectric resonance device. FIG. 5 shows a piezoelectric resonator. A piezoelectric resonator 3 as shown in FIGS. 1 and 2 is accommodated in a storage container 41 made of a ceramic package, and lead terminals 33 and 34 of the piezoelectric resonator 3 are electrically conductive. The adhesive lid 43 is bonded and fixed to the inner bottom surface of the storage container 41, and a metal lid 45 is bonded to the opening of the storage container 41 via an annular seal ring 44.
[0041]
That is, the lead terminals 33 and 34 of the piezoelectric resonator 3 are connected to the electrode pad 47 on the inner bottom surface of the storage container 41 via the conductive adhesive 43, and this electrode pad 47 is formed on the lower surface of the storage container 41. The external electrode 49 is electrically connected.
[0042]
Note that the above-described frequency adjustment by polishing and laser beam irradiation is preferably performed after the piezoelectric resonator 3 is bonded and fixed in the storage container 41 from the viewpoint of reliable frequency adjustment.
[0043]
【The invention's effect】
In the piezoelectric resonator of the present invention, by providing the drive electrode on the wedge portion whose thickness gradually decreases toward the tip, the resonance frequency can be set to 100 MHz or more, and the piezoelectric substrate has a thick portion, so that the strength is high. Expensive. Further, the drive electrode is formed on a wedge portion having an inclined surface, and a desired resonance frequency can be obtained to some extent by controlling the formation position of the drive electrode. Furthermore, the resonance frequency can be finely adjusted by polishing the tip of the wedge portion and the tip of the drive electrode.
[0044]
Further, even when a piezoelectric substrate made of quartz manufactured by bevel processing or convex processing is used, a piezoelectric resonator made of quartz that can resonate at a high frequency of 100 MHz or more using a fundamental wave can be provided at low cost.
[Brief description of the drawings]
FIG. 1 is a perspective view of a piezoelectric resonator according to the present invention.
FIG. 2 is a side sectional view of FIG.
FIG. 3 is an enlarged view of a main part for explaining frequency adjustment of the piezoelectric resonator.
FIG. 4 is a cross-sectional view of an essential part for explaining frequency adjustment by laser light irradiation.
FIG. 5 is a cross-sectional view showing a piezoelectric resonance device of the present invention.
FIG. 6 is a perspective view of a conventional piezoelectric resonator.
7 is a perspective view for explaining frequency adjustment of the piezoelectric resonator of FIG. 6; FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 3 ... Piezoelectric resonator 30 ... Piezoelectric substrate 30b ... Wedge part 31, 32 ... Drive electrode 37 ... Drive electrode continuous body 41 ... Storage container

Claims (1)

厚みが先端に向けて次第に薄くなる楔部を有する圧電基板の前記楔部先端部の対向する両主面に、前記楔部先端を介して連続する駆動電極連続体を形成し、前記楔部先端とともに前記駆動電極連続体の楔部先端部分を同時に研磨し、前記楔部先端部の両主面にそれぞれ駆動電極を形成したことを特徴とする圧電共振子の製法。A drive electrode continuum continuous through the wedge portion tip is formed on both opposing main surfaces of the wedge portion tip portion of the piezoelectric substrate having a wedge portion whose thickness gradually decreases toward the tip, and the wedge tip In addition, a method for manufacturing a piezoelectric resonator is characterized in that a front end portion of a wedge portion of the drive electrode continuous body is simultaneously polished to form drive electrodes on both main surfaces of the front end portion of the wedge portion.
JP2002020159A 2001-07-30 2002-01-29 Method for manufacturing piezoelectric resonator Expired - Fee Related JP3939992B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002020159A JP3939992B2 (en) 2002-01-29 2002-01-29 Method for manufacturing piezoelectric resonator
US10/209,526 US6859116B2 (en) 2001-07-30 2002-07-30 Piezoelectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002020159A JP3939992B2 (en) 2002-01-29 2002-01-29 Method for manufacturing piezoelectric resonator

Publications (2)

Publication Number Publication Date
JP2003224449A JP2003224449A (en) 2003-08-08
JP3939992B2 true JP3939992B2 (en) 2007-07-04

Family

ID=27743733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002020159A Expired - Fee Related JP3939992B2 (en) 2001-07-30 2002-01-29 Method for manufacturing piezoelectric resonator

Country Status (1)

Country Link
JP (1) JP3939992B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3698711B1 (en) * 2004-05-07 2005-09-21 株式会社ソニー・コンピュータエンタテインメント Network identifier setting method, communication method, and wireless communication terminal device
JP3761091B2 (en) * 2004-05-07 2006-03-29 株式会社ソニー・コンピュータエンタテインメント Application execution method, file data download method, file data upload method, communication method, and wireless communication terminal device

Also Published As

Publication number Publication date
JP2003224449A (en) 2003-08-08

Similar Documents

Publication Publication Date Title
KR100802865B1 (en) Piezoelectric resonator element and piezoelectric device
EP1724919B1 (en) Piezoelectric vibrating reed and piezoelectric device
JP4008258B2 (en) Method for manufacturing piezoelectric vibrator
CN106169917B (en) Method for manufacturing piezoelectric vibrating reed, and piezoelectric vibrator
JP2011160391A (en) Piezoelectric vibration piece, method of manufacturing the same, piezoelectric vibrator and oscillator
JP2001230651A (en) Electrode structure for piezoelectric vibrator
JP2003133879A (en) Piezoelectric oscillator and method for manufacturing piezoelectric device
JP2002271167A (en) Piezoelectric device element and its fabricating method
US6859116B2 (en) Piezoelectric resonator
TWI724249B (en) Frequency adjustment method of piezoelectric vibrating element
JP5929244B2 (en) Thickness-slip vibration type crystal piece, thickness-shear vibration type crystal piece with electrode, crystal diaphragm, crystal resonator and crystal oscillator
JPH0435108A (en) Ultra thin plate multiple mode crystal filter element
CN109891745B (en) Tuning fork vibrator and method for manufacturing tuning fork vibrator
JP3939992B2 (en) Method for manufacturing piezoelectric resonator
TWI729260B (en) Tuning fork vibrator
JP3909249B2 (en) Piezoelectric resonator and method for manufacturing piezoelectric resonator device
JP5671821B2 (en) Vibrating piece and device
JP2003087088A (en) Piezoelectric device and manufacturing method therefor
JP3277501B2 (en) Structure of piezoelectric resonator and method of manufacturing the same
JP3939991B2 (en) Piezoelectric resonator and piezoelectric resonator
JP5495080B2 (en) Frequency adjusting method for vibration device, vibration device, and electronic device
JP2001257560A (en) Electrode structure for ultra-thin board piezoelectric vibration element
JP2009232376A (en) Method of manufacturing piezoelectric oscillator
WO2018116651A1 (en) Tuning fork-type vibrating reed, tuning fork-type vibrator and manufacturing method tehrefor
JP2003060481A (en) Piezoelectric oscillation element and manufacturing method therefor, and piezoelectric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees