JP3939782B2 - Light scatterer measurement device - Google Patents

Light scatterer measurement device Download PDF

Info

Publication number
JP3939782B2
JP3939782B2 JP17652596A JP17652596A JP3939782B2 JP 3939782 B2 JP3939782 B2 JP 3939782B2 JP 17652596 A JP17652596 A JP 17652596A JP 17652596 A JP17652596 A JP 17652596A JP 3939782 B2 JP3939782 B2 JP 3939782B2
Authority
JP
Japan
Prior art keywords
light
measurement probe
measurement
subject
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17652596A
Other languages
Japanese (ja)
Other versions
JPH1019766A (en
Inventor
貞夫 竹内
慎一 岩本
召一 常石
英雄 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP17652596A priority Critical patent/JP3939782B2/en
Publication of JPH1019766A publication Critical patent/JPH1019766A/en
Application granted granted Critical
Publication of JP3939782B2 publication Critical patent/JP3939782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、被検体に光を照射し、被検体によって散乱し反射した光を受光して被検体の診断や組成を光学的に測定する光散乱体の測定装置に関し、生体酸素モニタ等に適用することができるものである。
【0002】
【従来の技術】
生体等に可視光から近赤外の光を照射し、生体内部で散乱し反射してくる光を受光し、その散乱光の吸収スペクトルを測定することによって生体の組成を調べたり、診断を行う生体モニタが知られている。この生体モニタは被検体に光を照射するための光ファイバ等からなる測定用プローブを備え、被検体内部で散乱した光を光検出器で検出して測定を行っている。このような生体モニタとしては、例えば酸素化ヘモグロビンや脱酸素化ヘモグロビンの濃度変化を検出する酸素モニタが知られている。
【0003】
図9は、従来の光散乱体の測定装置の概略構成図である。図9(a)において、光散乱体の測定装置は、測定器本体10と測定用プローブ20とを含み、測定用プローブ20には測定器本体10から光ファイバ31を介してレーザー光を発光する光発光部21と、被検体等によって散乱して反射してきた光を受光する光受光部22,23を備える。光受光部22,23は検出光を電気信号に変換し、信号線32を介して測定器本体10に送る。測定器本体10では、検出信号を用いて例えば酸素化ヘモグロビンや脱酸素化ヘモグロビンの濃度変化を求める信号処理を行っている。
【0004】
【発明が解決しようとする課題】
光散乱体の測定装置は、例えば生体モニタでは、通常被検体である生体に測定用プローブを接触させて取付け、測定を行っている。そのため、測定中に測定用プローブがはずれると、レーザー光などの光が人や生体の眼に直接入って、眼に障害を起こすおそれがあるという問題がある。また、被検体の移動や光ファイバの変位等によって、取り付けた測定用プローブが被検体から一時的に浮いた状態となったり、離れてしまう場合がある。このような場合には、測定用プローブの光受光部に測定光以外の外乱光が入射してノイズとなり、正確な測定が困難となるという問題がある。
【0005】
図9(b),(c)は、測定用プローブの使用状態を説明するための図である。図9(b)において、光発光部21と光受光部22,23を散乱体である被検体41に接触させて取付け、光発光部21から放射された光は散乱体で散乱されて散乱光52となり、光受光部22,23をこの散乱光52をそれぞれ検出する。測定用プローブ20が被検体から一時的に浮いたり離れた状態となると、放射光51は被検体41に入射されず、表面で反射されたり、被検体41以外の方向に放射される。そのため、光受光部22,23は、被検体41からの反射光53やあるいは周囲から入り込む外乱光54を受光することになり、被検体内部の情報を有する散乱光52を検出することができなくなる。
【0006】
また、測定用プローブがはずれたことをセンサ等の検出信号の監視により、測定を自動的に停止させることは容易に考えられるものの、別個のセンサや他の光源を必要とし、また、測定用プローブが元の位置に復帰した場合に、測定を再開することができない。
【0007】
そこで、本発明は前記した従来の問題点を解決し、測定用プローブが浮いたりはずれた場合のレーザー光による障害を低減して安全性を向上させた光散乱体の測定装置を提供することを目的とし、また、測定用プローブの一時的な浮きやはずれに対して、測定を自動的に再開することができる光散乱体の測定装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の光散乱体の測定装置は、光を被検体に照射する光発光部と、光を検出する受光部とを一体化した測定用プローブと、前記光の照射を制御する光制御手段と、前記受光部によって得られる検出信号を信号処理する信号処理手段を備え、前記信号処理手段は外乱光の入射状態を検出し、前記光制御手段は該外乱光の入射に応じて前記測定用プローブの浮きあるいは外れの有無を判定し、前記浮きあるいは外れが生じたと判定した場合、光の発光間隔を長く、又は光の発光強度を小さくするように光の照射状態を変更し、前記浮きあるいは外れが解消したと判定した場合、光の照射状態を変更前に復帰させるものであり、これによって、測定用プローブが浮いたりはずれた場合のレーザー光による障害を低減して安全性を向上させることができ、測定用プローブの一時的な浮きやはずれに対して、測定を自動的に再開することができる光散乱体の測定装置を提供することができる。
【0009】
本発明の第1の実施態様において、信号処理手段は非照射時における受光部の出力を所定値と比較を行うものであり、これによって、別個のセンサや他の光源を新たに設けることなく、測定用プローブの被検体からの浮きやはずれを検出することができる。受光部が光−電流変換を行う場合には、信号処理手段は暗電流と所定値との比較を行うことになる。
【0010】
本発明の第2の実施態様において、光制御手段は測定用プローブの被検体からの浮きやはずれを検出した場合に、光の発光間隔が長くなるように光発光部からの照射状態を変更するものであり、これによって光による障害を低減して安全性を向上させることができる。また、本発明の第3の実施態様では、光制御手段は測定用プローブの被検体からの浮きやはずれを検出した場合に、光の発光強度が小さくなるように光発光部からの照射状態を変更するものであり、これによって光による障害を低減して安全性を向上させることができる。
【0011】
本発明の第4の実施態様において、測定用プローブの被検体からの浮きやはずれを検出して光発光部からの照射状態を変更した後、信号処理手段は受光部の非照射時における出力(受光部が光−電流変換を行う場合には暗電流)を所定値と比較して、測定用プローブの正常状態への復帰を検出し、光制御部は光発光部からの照射状態を元の状態に変更するものであり、これによって、測定を自動的に再開することができる。
【0012】
従って、本発明の光散乱体の測定装置において、光発光部は被検体に対して光を断続的に照射する。測定用プローブが被検体に良好に取り付けられている場合には、受光部は照射時には主に被検体の内部で散乱して反射された光を入射し、非照射時には暗電流を検出する。また、測定用プローブが被検体から浮いた状態や離れた状態にある場合には、受光部は主に外乱光を入射する。
【0013】
信号処理手段は、非照射時の出力(暗電流)を所定値と比較して、所定値よりも明るい場合には測定用プローブが被検体からの浮いたりあるいははずれていると判断する。測定用プローブの異常を検出した場合には、光制御部は断続光の発光間隔を長くしたり発光強度を小さくする制御によって、光発光部からの照射状態を変更し、外部に照射する実質的な光量を下げて生体への影響を低減する。 信号処理手段は、非照射時における出力(暗電流)と所定値の比較を続行して測定用プローブの正常状態への復帰を検出し、光制御部は光発光部からの照射状態を元の状態に変更する。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図を参照しながら詳細に説明する。
本発明の光散乱体の測定装置の一実施の形態について、図1に示す概略ブロック図を用いて説明する。図1において、光散乱体の測定装置は、測定器本体10と測定用プローブ20を備える。測定用プローブ20は、少なくとも一つの光発光部21と該光発光部21から距離をおいて配置される少なくとも一つの受光部22,23を備え、光発光部21と受光部22,23はその配置間隔および配置角度が変化しないよう一体化して形成している。
【0015】
測定器本体10は、バス15を介してCPU11と接続されるメモリ12,ハードディスク13,フロッピーディスク14等の記憶手段と、A/D変換回路17とレーザー電源18を備え、さらに、A/D変換回路17には積分回路16が接続され、信号線32をを介して測定用プローブ20の受光部22,23からの検出信号が入力される。また、レーザー電源18はレーザー光源19に電力を供給し、各種の波長(図中のλ1〜λ4)のレーザー光を、光ファイバ31を通して測定用プローブ20の光発光部21に送光する。
【0016】
メモリ12には、測定装置全体を制御するためのシステムプログラムや、受光部22,23で測定した測定信号に基づいて例えば酸素化ヘモグロビンや脱酸素化ヘモグロビンの濃度変化を求める演算を行うための各種の演算プログラムや、レーザー光源19の発光間隔や発光強度を制御する制御プログラムを格納するROMや、演算結果を一時記憶しておくためのRAM等を備えている。また、ハードディスク13,フロッピーディスク14は、データを格納するために任意に設置することができる。
なお、積分回路16は、受光部からの微小な検出信号を積分してS/N比を高めるための回路であって設置は任意とすることができ、また、A/D変換回路17は測定器本体内でのデジタル信号処理のために設ける回路である。
【0017】
図1に示した構成において、レーザー電源18,レーザー光源19,およびCPU11,メモリ12の制御機能に関する部分によって光制御手段を構成し、CPU11,メモリ12の信号処理機能に関する部分によって信号処理手段を構成する。
前記した光散乱体の測定装置によって、例えば酸素化ヘモグロビンや脱酸素化ヘモグロビンの濃度変化を求めるには、測定用プローブ20を被検体に取付けてレーザー光源19から各種波長のレーザー光を送り、被検体内で散乱して反射した光を受光部22,23で検出し、該検出信号を信号処理することによって求める。なお、該信号処理の詳細については省略する
次に、本発明の光散乱体の測定装置による測定用プローブの異常を検出する手順について、図2〜図8を用いて説明する。なお、以下の手順で検出する測定用プローブの異常は、主に測定用プローブの被検体からの浮きやはずれであり、その他レーザー光の点灯状態を検出することができる。
以下、図2〜図4を用いて測定用プローブでのチェックの手順を示し、図5〜図8を用いて前記チェック結果に基づいて行う制御手段の行う制御手順を示す。
【0018】
この実施の形態で示す測定用プローブのチェックは、二つの受光部のそれぞれの検出信号を所定値と比較することによって行う。そして、両受光部で同一の判断処理を行い、両チェックの組み合わせによって測定用プローブの異常状態の判定を行う。
【0019】
そこで、以下では、検出信号と所定値との比較について、一方の受光部についてのみ説明し、他の受光部についての比較は同様であるため省略する。はじめに、受光部からの検出信号との比較に使用する定数p,q,およびrを設定する。ここで、定数pは、発光部が照射を行っていないときに、受光部に外乱光が入射しているか否かを判定するための所定値であり、測定用プローブを被検体に良好に取り付けたときの暗電流より小さな値に設定する。定数rは、同じく発光部が照射を行っていないときに、受光部に入射する外乱光が許容範囲内か否かを判定するための所定値であり、前記した定数pより大きな値で、測定に影響を及ぼさないことが判定できる程度の所定値に設定する。また、定数qは、測定用プローブの発光部が測定に充分な光量を発光しているか否かを判定するための所定値であり、測定対象の被検体や受光器特性等に応じて設定する(ステップS1)。
【0020】
測定用プローブを被検体に取り付けた状態で、受光部から検出信号Iと暗電流Dを求める。暗電流Dは、発光部からの照射を行わないときの受光部の検出信号であり、また、検出信号Iは発光部から照射を行い、被検体中を散乱して反射して得られる受光部の検出信号である。検出信号Iと暗電流Dの検出は、発光部での照射を断続的に行い、照射時のタイミングでの受光部の出力を検出信号Iとし、非照射時のタイミングでの受光部の出力を暗電流Dとすることにより得ることができる(ステップS2)。
【0021】
次に、暗電流Dと定数pとを比較して、受光部に外乱光が入射しているか否かの判定を行う(ステップS3)。この判定において、暗電流Dが定数pより大きい場合には、外乱光の多い旨の表示を行い(ステップS4)、さらに、定数rとの比較を行って、受光部に入射している光が許容範囲内か否かの判定を行う(ステップS5)。ステップS5の判定において、受光部に入射している光が許容範囲を越えている場合には、測定用プローブが被検体からはずれている可能性があると判定する。この判定をcとする(ステップS6)。この判定結果は、図3において、同じくcで示される領域により表される。なお、図3において、Iの符号を付した斜線部分は検出信号Iの範囲を示し、Dの符号を付した斜線部分は暗電流Dの範囲を示している。
【0022】
前記ステップS3の判定で暗電流Dが定数pよりも小さく、外乱光が認められない場合、あるいは、暗電流Dが定数rよりも小さく、外乱光は認められるものの許容範囲内である場合には、測定用プローブのはずれの可能性はないと判断し、以下ステップS7〜ステップS11によって、レーザー光が良好であるか否かの判定を行う。ステップS7では検出信号Iと定数qとを比較し、検出信号Iが定数qより大きい場合には、充分な光量が得られていると判断して、レーザー光は正常であると判定する。この判定をbとする。この判定結果は、図3において、同じくbで示される領域により表される。また、検出信号Iが定数qより小さい場合には、充分な光量が得られていないと判断し、さらに検出信号Iと暗電流Dとの大きさの比較を行う(ステップS9)。
【0023】
このステップS9の判定において、検出信号Iと暗電流Dの大きさがほぼ等しい場合には、受光部には暗電流Dのみが入射していて、レーザー光源は未点灯と判定する。この判定をaとする。この判定結果は、図3において、同じくaで示される領域により表される。また、検出信号Iが暗電流Dよりも大きい場合には、受光部には暗電流D以上の光が入射しているものの、充分な光量でないため、レーザー光源になんらかの異常があると判定して、レーザーチェックの表示等を行う(ステップS11)。この判定をdとする。この判定結果は、図3において、同じくdで示される領域により表される。
【0024】
前記した判定は、一つの受光部の判定であり、図1に示すように測定用プローブが二つの受光部を備えている場合には、両受光部について同様の判定を行って後、図4に示すようなチェック結果の組み合わせに従って、測定用プローブの異常状態の判定を行う。図4において、例えば、第1受光部と第2受光部のチェック結果が共に正常である(図中b)の場合には、測定用プローブは正常に点灯しているは判定することができる。また、第1受光部と第2受光部のチェック結果が共にプローブはずれの可能性がある(図中c)の場合には、測定用プローブはプローブはずれであると判定する。
【0025】
次に、図5〜図7を用いて、上記のような手順で測定用プローブのプローブはずれの検出を利用した発光部の発光状態を変更する手順について説明する。
前記した手順により両受光部のチェックを行って、測定用プローブのチェックを行う。なお、図6では、レーザー光源から波長の異なる4つのレーザー光(λ1〜λ4)を順次発光タイミングをずらして発光させて、各レーザー光による4つの検出信号を求め、さらに、レーザー光を発光しないときの検出信号から暗電流信号を求めている。この複数の検出信号と暗電流信号によって、測定値の絶対値を求めることができる。なお、この測定値の絶対値を求める手法については、本発明には特に関連がないため説明を省略する。
【0026】
従って、図6において、測定用プローブは4つのレーザー光による測定と暗電流の測定の計5つの測定で1サイクルを構成し、この1サイクル内で前記およびステップS21で示す測定用プローブの判定を行う。
各サイクルで測定用プローブの異常が判定され(図6中のA)、この異常判定が連続して例えばT秒継続したか否かの判定を行う。このT秒継続の判定(図6中のB)によって、一時的なプローブの浮きやはずれを排除することができる。なお、このT秒継続の判定に代えて、対応するサイクル数の判定を行うこともできる(ステップS22)。
【0027】
前記ステップS22の判定で、測定用プローブがはずれていると判定すると、光制御手段は検出モードを変更して、レーザー光の発光状態を変更する(ステップS23)。このレーザー光の発光状態の変更は、例えば、レーザー光の発光間隔を長くしたり、あるいはレーザー光の各発光強度を低くすることよって行うことができる。図7は、レーザー光の発光間隔を長くする場合の例を示しており、前記図6の信号Bによってプローブはずれを検出した後の状態を示している。図7において、プローブはずれの信号の後、レーザー光を発光する間隔を長くする(図7中のC)。これによって、レーザー光の発光光量は実質的に低下し、生体への影響を低減することができる。
【0028】
また、図8はレーザー光の各発光強度を低くする場合の例を示しており、同じく、前記図6の信号Bによってプローブはずれを検出した後の状態を示している。図8において、プローブはずれの信号の後、レーザー光の発光強度を下げる(図7中のE)。これによって、レーザー光の発光光量は実質的に低下し、生体への影響を低減することができる。
前記ステップS23のレーザー光の発光光量を実質的に低下させる検出モードを行う間においても、測定用プローブのチェックを行い、プローブはずれの状態が解消したか否かの判定を行う(ステップS24)。そして、測定用プローブが正常と判定された場合には、ステップS25で元の検出モードに復帰する(図7および図8中のF)。これによって、測定を自動的に再開することができる。
【0029】
【発明の効果】
以上説明したように、光散乱体の測定装置によれば、測定用プローブが浮いたりはずれた場合のレーザー光による障害を低減して安全性を向上させることができる。また、測定用プローブの一時的な浮きやはずれに対して、測定を自動的に再開することができる。
【図面の簡単な説明】
【図1】本発明の光散乱体の測定装置の一実施の形態を説明するための概略ブロック図である。
【図2】本発明の光散乱体の測定装置による測定用プローブの異常を検出する手順についてのフローチャートである。
【図3】本発明の光散乱体の測定装置による測定用プローブの異常を検出する、検出値と定数との関係を示す図である。
【図4】本発明の光散乱体の測定装置による測定用プローブの異常を検出する、チェック結果の組み合わせを示す図である。
【図5】本発明のプローブはずれの検出を利用した発光部の発光状態を変更する手順を説明するフローチャートである。
【図6】本発明の発光部の発光状態を変更する手順を説明するタイムチャートである。
【図7】本発明の発光部の発光状態を変更する手順を説明するタイムチャートである。
【図8】本発明の発光部の発光状態を変更する手順を説明するタイムチャートである。
【図9】従来の光散乱体の測定装置の概略構成図である。
【符号の説明】
1…光散乱体の測定装置、10…測定器本体、11…CPU、12…メモリ、13…HD、14…FD、15…バス、16…積分回路、17…A/D回路、18…レーザー電源、18…レーザー電源、19…レーザー光源、20…測定用プローブ20、21…発光部、22,23…受光部、31…光ファイバ、32…信号線、41…被検体、51…放射光、52…散乱光、53…反射光、54…外乱光。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light scatterer measuring apparatus that irradiates a subject with light, receives light scattered and reflected by the subject, and optically measures the diagnosis and composition of the subject, and is applied to a biological oxygen monitor or the like Is something that can be done.
[0002]
[Prior art]
The living body is irradiated with visible to near-infrared light, the light scattered and reflected inside the living body is received, and the composition of the living body is examined or diagnosed by measuring the absorption spectrum of the scattered light. Biological monitors are known. This living body monitor includes a measurement probe made of an optical fiber or the like for irradiating a subject with light, and measures light by detecting light scattered inside the subject with a photodetector. As such a biological monitor, for example, an oxygen monitor that detects a change in the concentration of oxygenated hemoglobin or deoxygenated hemoglobin is known.
[0003]
FIG. 9 is a schematic configuration diagram of a conventional light scatterer measuring apparatus. In FIG. 9A, the light scatterer measuring device includes a measuring instrument main body 10 and a measuring probe 20, and the measuring probe 20 emits laser light from the measuring instrument main body 10 via an optical fiber 31. A light emitting unit 21 and light receiving units 22 and 23 that receive light scattered and reflected by a subject or the like are provided. The light receiving units 22 and 23 convert the detection light into an electric signal and send it to the measuring instrument main body 10 via the signal line 32. In the measuring instrument main body 10, signal processing for obtaining a change in the concentration of oxygenated hemoglobin or deoxygenated hemoglobin, for example, is performed using the detection signal.
[0004]
[Problems to be solved by the invention]
For example, in a living body monitor, a measuring device for a light scatterer is attached to a living body, which is a normal subject, in contact with a measuring probe to perform measurement. For this reason, if the measurement probe is detached during measurement, there is a problem that light such as laser light may directly enter the eyes of a person or a living body and cause damage to the eyes. In addition, the attached measurement probe may be temporarily lifted or separated from the subject due to movement of the subject, displacement of the optical fiber, or the like. In such a case, disturbance light other than the measurement light is incident on the light receiving portion of the measurement probe and becomes noise, which makes it difficult to perform accurate measurement.
[0005]
FIGS. 9B and 9C are diagrams for explaining the usage state of the measurement probe. In FIG. 9B, the light emitting unit 21 and the light receiving units 22 and 23 are attached in contact with a subject 41 which is a scatterer, and the light emitted from the light emitting unit 21 is scattered by the scatterer and scattered light. 52, and the light receiving units 22 and 23 detect the scattered light 52, respectively. When the measurement probe 20 temporarily floats or separates from the subject, the emitted light 51 is not incident on the subject 41 and is reflected by the surface or emitted in a direction other than the subject 41. Therefore, the light receiving units 22 and 23 receive the reflected light 53 from the subject 41 or disturbance light 54 entering from the surroundings, and cannot detect the scattered light 52 having information inside the subject. .
[0006]
Although it is easy to automatically stop measurement by monitoring the detection signal of a sensor or the like when the measurement probe is disconnected, a separate sensor or other light source is required, and the measurement probe Measurement cannot be resumed when returns to its original position.
[0007]
Accordingly, the present invention provides a light scatterer measurement device that solves the above-described conventional problems and reduces the obstacles caused by laser light when the measurement probe is lifted or deviated to improve safety. It is another object of the present invention to provide a light scatterer measuring device capable of automatically restarting measurement in response to temporary floating or disconnection of a measurement probe.
[0008]
[Means for Solving the Problems]
The light scatterer measurement apparatus of the present invention includes a measurement probe in which a light emitting unit that irradiates a subject with light and a light receiving unit that detects light, and a light control unit that controls irradiation of the light. , a signal processing means for signal processing the detection signals obtained by the light receiving unit, the signal processing means detects the incident state of the disturbance light, the light control means is a probe for the measurement in accordance with the incidence of disturbance light If it is determined that the float or detachment has occurred, the light emission state is changed so that the light emission interval is increased or the light emission intensity is decreased , and the float or detachment is performed. If There it is determined that the eliminated, which is returned before changing the irradiation conditions of light, thereby, improving the safety by reducing the failure by laser beam when the measuring probe out or floated Can for temporary lifting or off of the measuring probe, automatically it is possible to provide a measuring device of the light scatterer can be resumed measurements.
[0009]
In the first embodiment of the present invention, the signal processing means compares the output of the light receiving unit at the time of non-irradiation with a predetermined value, so that a separate sensor or other light source is not newly provided. It is possible to detect the floating or detachment of the measurement probe from the subject. When the light receiving unit performs light-current conversion, the signal processing unit compares the dark current with a predetermined value.
[0010]
In the second embodiment of the present invention, the light control means changes the irradiation state from the light emitting unit so that the light emission interval becomes longer when the measurement probe detects the floating or deviation from the subject. Therefore, it is possible to improve safety by reducing damage caused by light. Further, in the third embodiment of the present invention, when the light control unit detects the floating or disengagement of the measurement probe from the subject, the light control unit changes the irradiation state from the light emitting unit so that the light emission intensity is reduced. It is a change, and this can reduce the failure caused by light and improve the safety.
[0011]
In the fourth embodiment of the present invention, after detecting the floating or deviation of the measurement probe from the subject and changing the irradiation state from the light emitting unit, the signal processing means outputs the output when the light receiving unit is not irradiated ( When the light receiving unit performs light-current conversion, the dark current is compared with a predetermined value to detect the return of the measurement probe to the normal state, and the light control unit detects the irradiation state from the light emitting unit as the original. The state is changed, and the measurement can be automatically restarted.
[0012]
Therefore, in the light scatterer measurement device of the present invention, the light emitting unit intermittently irradiates the subject with light. When the measurement probe is well attached to the subject, the light receiving unit mainly receives light scattered and reflected inside the subject during irradiation, and detects dark current when not irradiated. Further, when the measurement probe is in a floating state or away from the subject, the light receiving unit mainly receives disturbance light.
[0013]
The signal processing means compares the non-irradiation output (dark current) with a predetermined value, and determines that the measurement probe floats or deviates from the subject when it is brighter than the predetermined value. When an abnormality is detected in the measurement probe, the light control unit changes the irradiation state from the light emitting unit by controlling to increase the interval of intermittent light emission or decrease the light emission intensity, and substantially irradiates the outside. Reduce the amount of light on the living body. The signal processing means continues the comparison between the output (dark current) at the time of non-irradiation and a predetermined value to detect the return of the measurement probe to the normal state, and the light control unit detects the irradiation state from the light emitting unit based on the original state. Change to state.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
An embodiment of the light scatterer measurement device of the present invention will be described with reference to the schematic block diagram shown in FIG. In FIG. 1, the light scatterer measuring apparatus includes a measuring instrument body 10 and a measuring probe 20. The measurement probe 20 includes at least one light emitting unit 21 and at least one light receiving unit 22, 23 arranged at a distance from the light emitting unit 21, and the light emitting unit 21 and the light receiving units 22, 23 have the same. It is formed integrally so that the arrangement interval and the arrangement angle do not change.
[0015]
The measuring instrument main body 10 includes storage means such as a memory 12, a hard disk 13 and a floppy disk 14 connected to the CPU 11 via a bus 15, an A / D conversion circuit 17 and a laser power source 18, and further A / D conversion. The integration circuit 16 is connected to the circuit 17, and detection signals from the light receiving units 22 and 23 of the measurement probe 20 are input via the signal line 32. The laser power source 18 supplies power to the laser light source 19 and transmits laser beams having various wavelengths (λ1 to λ4 in the drawing) to the light emitting unit 21 of the measurement probe 20 through the optical fiber 31.
[0016]
The memory 12 has various system programs for controlling the whole measuring apparatus and various calculations for calculating concentration changes of oxygenated hemoglobin and deoxygenated hemoglobin based on measurement signals measured by the light receiving units 22 and 23, for example. And a ROM for storing a control program for controlling the light emission interval and light emission intensity of the laser light source 19, a RAM for temporarily storing calculation results, and the like. Further, the hard disk 13 and the floppy disk 14 can be arbitrarily installed to store data.
The integration circuit 16 is a circuit for integrating a minute detection signal from the light receiving unit to increase the S / N ratio, and can be arbitrarily installed. The A / D conversion circuit 17 is used for measurement. This circuit is provided for digital signal processing in the main body.
[0017]
In the configuration shown in FIG. 1, the light control means is configured by the laser power supply 18, the laser light source 19, and the CPU 11 and the memory 12 related to the control function, and the CPU 11 and the memory 12 related to the signal processing function. To do.
For example, in order to obtain a change in the concentration of oxygenated hemoglobin or deoxygenated hemoglobin by using the light scatterer measurement device described above, the measurement probe 20 is attached to the subject, laser beams of various wavelengths are sent from the laser light source 19, The light scattered and reflected in the specimen is detected by the light receiving units 22 and 23, and the detected signals are obtained by signal processing. The details of the signal processing are omitted. Next, a procedure for detecting an abnormality of the measurement probe by the light scatterer measurement apparatus of the present invention will be described with reference to FIGS. Note that the abnormality of the measurement probe detected by the following procedure is mainly the floating or disengagement of the measurement probe from the subject, and other lighting states of the laser light can be detected.
Hereinafter, the check procedure using the measurement probe will be described with reference to FIGS. 2 to 4, and the control procedure performed by the control means based on the check results will be described with reference to FIGS. 5 to 8.
[0018]
The measurement probe shown in this embodiment is checked by comparing the detection signals of the two light receiving sections with a predetermined value. Then, the same determination processing is performed in both light receiving units, and the abnormal state of the measurement probe is determined by a combination of both checks.
[0019]
Therefore, in the following, the comparison between the detection signal and the predetermined value will be described only for one light receiving unit, and the comparison for the other light receiving unit is the same and will be omitted. First, constants p, q, and r used for comparison with the detection signal from the light receiving unit are set. Here, the constant p is a predetermined value for determining whether disturbance light is incident on the light receiving unit when the light emitting unit is not irradiating, and the measurement probe is attached to the subject satisfactorily. Set to a value smaller than the dark current at the time. The constant r is a predetermined value for determining whether the disturbance light incident on the light receiving unit is within the allowable range when the light emitting unit is not irradiating, and is a value larger than the constant p described above. Is set to a predetermined value such that it can be determined that it does not affect. The constant q is a predetermined value for determining whether or not the light emitting portion of the measurement probe emits a sufficient amount of light for measurement, and is set according to the subject to be measured, the characteristics of the light receiver, and the like. (Step S1).
[0020]
With the measurement probe attached to the subject, the detection signal I and the dark current D are obtained from the light receiving unit. The dark current D is a detection signal of the light receiving unit when irradiation from the light emitting unit is not performed, and the detection signal I is irradiated from the light emitting unit and is scattered and reflected in the subject. This is a detection signal. The detection signal I and the dark current D are detected by intermittently irradiating the light emitting unit, and the output of the light receiving unit at the timing of irradiation is the detection signal I, and the output of the light receiving unit at the non-irradiation timing is It can be obtained by setting the dark current D (step S2).
[0021]
Next, the dark current D is compared with the constant p to determine whether ambient light is incident on the light receiving unit (step S3). In this determination, if the dark current D is larger than the constant p, a display indicating that there is a lot of disturbance light is displayed (step S4), and further, a comparison with the constant r is performed, and the light incident on the light receiving unit is detected. It is determined whether or not it is within an allowable range (step S5). If it is determined in step S5 that the light incident on the light receiving unit exceeds the allowable range, it is determined that there is a possibility that the measurement probe is off the subject. This determination is set as c (step S6). This determination result is represented by a region indicated by c in FIG. In FIG. 3, the hatched portion with the symbol I indicates the range of the detection signal I, and the hatched portion with the symbol D indicates the range of the dark current D.
[0022]
When the dark current D is smaller than the constant p and no disturbing light is recognized in the determination of the step S3, or when the dark current D is smaller than the constant r and the disturbing light is recognized but within the allowable range. Then, it is determined that there is no possibility of the measurement probe coming off, and it is determined whether or not the laser beam is good in steps S7 to S11. In step S7, the detection signal I and the constant q are compared. If the detection signal I is larger than the constant q, it is determined that a sufficient amount of light is obtained, and it is determined that the laser light is normal. Let this determination be b. This determination result is represented by an area indicated by b in FIG. If the detection signal I is smaller than the constant q, it is determined that a sufficient amount of light has not been obtained, and the detection signal I and the dark current D are compared in magnitude (step S9).
[0023]
If the magnitude of the detection signal I and the dark current D is substantially equal in the determination in step S9, it is determined that only the dark current D is incident on the light receiving unit and the laser light source is not lit. This determination is a. This determination result is also represented by the area indicated by a in FIG. When the detection signal I is larger than the dark current D, it is determined that there is some abnormality in the laser light source because the light receiving portion is incident with light of the dark current D or more but is not sufficient. Then, a laser check is displayed (step S11). Let this determination be d. This determination result is represented by a region indicated by d in FIG.
[0024]
The above-described determination is a determination of one light receiving unit. When the measurement probe includes two light receiving units as shown in FIG. 1, the same determination is made for both light receiving units, and then FIG. According to the combination of the check results as shown in FIG. In FIG. 4, for example, when the check results of the first light receiving unit and the second light receiving unit are both normal (b in the figure), it can be determined that the measurement probe is normally lit. Further, when the check results of the first light receiving unit and the second light receiving unit are both likely to be misaligned (c in the figure), it is determined that the measurement probe is misaligned.
[0025]
Next, using FIG. 5 to FIG. 7, a procedure for changing the light emission state of the light emitting unit using the detection of the probe displacement of the measurement probe in the above procedure will be described.
The light receiving unit is checked by the above procedure, and the measurement probe is checked. In FIG. 6, four laser beams (λ1 to λ4) having different wavelengths are emitted from the laser light source sequentially at different emission timings to obtain four detection signals by each laser beam, and no laser beam is emitted. The dark current signal is obtained from the detected signal. The absolute value of the measured value can be obtained from the plurality of detection signals and the dark current signal. Note that the method for obtaining the absolute value of the measurement value is not particularly relevant to the present invention, and thus the description thereof is omitted.
[0026]
Therefore, in FIG. 6, the measurement probe constitutes one cycle with a total of five measurements including measurement with four laser beams and measurement of dark current, and the determination of the measurement probe as described above and in step S21 is performed within this one cycle. Do.
In each cycle, an abnormality of the measurement probe is determined (A in FIG. 6), and it is determined whether or not the abnormality determination has continued for, for example, T seconds. This determination of T second continuation (B in FIG. 6) makes it possible to eliminate temporary probe floating or disengagement. Note that instead of this determination of T second continuation, it is also possible to determine the corresponding number of cycles (step S22).
[0027]
If it is determined in step S22 that the measurement probe is disconnected, the light control unit changes the detection mode to change the emission state of the laser light (step S23). This change in the light emission state of the laser light can be performed, for example, by increasing the light emission interval of the laser light or lowering the light emission intensity of the laser light. FIG. 7 shows an example in which the light emission interval of the laser light is lengthened, and shows a state after the probe deviation is detected by the signal B in FIG. In FIG. 7, after the signal of the probe displacement, the interval for emitting the laser light is lengthened (C in FIG. 7). Thereby, the emitted light quantity of the laser beam is substantially reduced, and the influence on the living body can be reduced.
[0028]
FIG. 8 shows an example in which each light emission intensity of the laser light is lowered, and similarly shows a state after the probe deviation is detected by the signal B in FIG. In FIG. 8, after the probe deviation signal, the emission intensity of the laser light is lowered (E in FIG. 7). Thereby, the emitted light quantity of the laser beam is substantially reduced, and the influence on the living body can be reduced.
Even during the detection mode in which the amount of emitted laser light in step S23 is substantially reduced, the measurement probe is checked to determine whether or not the probe deviation state has been resolved (step S24). When it is determined that the measurement probe is normal, the original detection mode is restored in step S25 (F in FIGS. 7 and 8). As a result, the measurement can be automatically restarted.
[0029]
【The invention's effect】
As described above, according to the light scatterer measuring apparatus, it is possible to improve the safety by reducing the trouble caused by the laser beam when the measuring probe is lifted or detached. Further, the measurement can be automatically restarted with respect to temporary floating or disconnection of the measurement probe.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram for explaining an embodiment of a light scatterer measuring apparatus according to the present invention.
FIG. 2 is a flowchart of a procedure for detecting an abnormality of a measurement probe by the light scatterer measurement apparatus of the present invention.
FIG. 3 is a diagram showing a relationship between a detected value and a constant for detecting an abnormality of a measuring probe by the light scatterer measuring apparatus of the present invention.
FIG. 4 is a diagram showing a combination of check results for detecting an abnormality of a measurement probe by the light scatterer measurement apparatus of the present invention.
FIG. 5 is a flowchart illustrating a procedure for changing a light emission state of a light emitting unit using detection of a probe deviation according to the present invention.
FIG. 6 is a time chart illustrating a procedure for changing the light emission state of the light emitting unit of the present invention.
FIG. 7 is a time chart illustrating a procedure for changing the light emission state of the light emitting unit of the present invention.
FIG. 8 is a time chart illustrating a procedure for changing the light emission state of the light emitting unit of the present invention.
FIG. 9 is a schematic configuration diagram of a conventional light scatterer measuring apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Light scattering body measuring apparatus, 10 ... Measuring device main body, 11 ... CPU, 12 ... Memory, 13 ... HD, 14 ... FD, 15 ... Bus, 16 ... Integration circuit, 17 ... A / D circuit, 18 ... Laser Power source, 18 ... Laser power source, 19 ... Laser light source, 20 ... Measurement probe 20, 21 ... Light emitting portion, 22,23 ... Light receiving portion, 31 ... Optical fiber, 32 ... Signal line, 41 ... Subject, 51 ... Radiated light , 52 ... scattered light, 53 ... reflected light, 54 ... disturbance light.

Claims (1)

光を被検体に照射する光発光部と、光を検出する受光部とを一体化した測定用プローブと、前記光の照射を制御する光制御手段と、前記受光部によって得られる検出信号を信号処理する信号処理手段を備え、前記信号処理手段は外乱光の入射状態を検出し、前記光制御手段は該外乱光の入射に応じて前記測定用プローブの浮きあるいは外れの有無を判定し、前記浮きあるいは外れが生じたと判定した場合、光の発光間隔を長く、又は光の発光強度を小さくするように光の照射状態を変更し、前記浮きあるいは外れが解消したと判定した場合、光の照射状態を変更前に復帰させることを特徴とする光散乱体の測定装置。A measurement probe that integrates a light emitting unit that irradiates a subject with light and a light receiving unit that detects light, a light control unit that controls irradiation of the light, and a detection signal obtained by the light receiving unit Signal processing means for processing, wherein the signal processing means detects an incident state of disturbance light, and the light control means determines whether the measurement probe is floated or detached according to the incidence of the disturbance light , If it is determined that the float or off occurs, longer emission interval of the light, or the light emission intensity of the light changes the irradiation state of the light so as to reduce, when determining that the float or off is eliminated, the light irradiation An apparatus for measuring a light scatterer, wherein the state is returned before being changed .
JP17652596A 1996-07-05 1996-07-05 Light scatterer measurement device Expired - Fee Related JP3939782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17652596A JP3939782B2 (en) 1996-07-05 1996-07-05 Light scatterer measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17652596A JP3939782B2 (en) 1996-07-05 1996-07-05 Light scatterer measurement device

Publications (2)

Publication Number Publication Date
JPH1019766A JPH1019766A (en) 1998-01-23
JP3939782B2 true JP3939782B2 (en) 2007-07-04

Family

ID=16015144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17652596A Expired - Fee Related JP3939782B2 (en) 1996-07-05 1996-07-05 Light scatterer measurement device

Country Status (1)

Country Link
JP (1) JP3939782B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7689259B2 (en) 2000-04-17 2010-03-30 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US7809419B2 (en) 2000-08-31 2010-10-05 Mallinckrodt Inc. Oximeter sensor with digital memory encoding sensor data
US7881761B2 (en) 2000-08-31 2011-02-01 Mallinckrodt Inc. Method and circuit for storing and providing historical physiological data
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8095192B2 (en) 2003-01-10 2012-01-10 Nellcor Puritan Bennett Llc Signal quality metrics design for qualifying data for a physiological monitor
US8103325B2 (en) 1999-03-08 2012-01-24 Tyco Healthcare Group Lp Method and circuit for storing and providing historical physiological data
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8224412B2 (en) 2000-04-17 2012-07-17 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US8290730B2 (en) 2009-06-30 2012-10-16 Nellcor Puritan Bennett Ireland Systems and methods for assessing measurements in physiological monitoring devices
US8532751B2 (en) 2008-09-30 2013-09-10 Covidien Lp Laser self-mixing sensors for biological sensing
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
US9211090B2 (en) 2004-03-08 2015-12-15 Covidien Lp Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US9351688B2 (en) 2013-01-29 2016-05-31 Covidien Lp Low power monitoring systems and method
US9560994B2 (en) 2008-03-26 2017-02-07 Covidien Lp Pulse oximeter with adaptive power conservation
USD794206S1 (en) 2015-12-18 2017-08-08 Covidien Lp Combined strap and cradle for wearable medical monitor
USD804042S1 (en) 2015-12-10 2017-11-28 Covidien Lp Wearable medical monitor
US10342485B2 (en) 2014-10-01 2019-07-09 Covidien Lp Removable base for wearable medical monitor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3839202B2 (en) * 1999-10-28 2006-11-01 株式会社日立製作所 Biological light measuring device and program for causing this device to function
JP3892232B2 (en) * 2001-01-30 2007-03-14 株式会社日立製作所 Biological monitoring system
JP2007536053A (en) * 2004-05-06 2007-12-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Protection mechanism for spectroscopic analysis of biological tissue
JP4128160B2 (en) 2004-06-30 2008-07-30 三洋電機株式会社 Control method of mixing ratio detector
CN105324073B (en) 2013-07-12 2018-02-13 精工爱普生株式会社 Bioinformation detecting device
JP6436186B2 (en) * 2017-05-26 2018-12-12 セイコーエプソン株式会社 Biological information detection device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8103325B2 (en) 1999-03-08 2012-01-24 Tyco Healthcare Group Lp Method and circuit for storing and providing historical physiological data
US8078246B2 (en) 2000-04-17 2011-12-13 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US8224412B2 (en) 2000-04-17 2012-07-17 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US7689259B2 (en) 2000-04-17 2010-03-30 Nellcor Puritan Bennett Llc Pulse oximeter sensor with piece-wise function
US8112137B2 (en) 2000-08-31 2012-02-07 Tyco Healthcare Group Lp Method and circuit for storing and providing historical physiological data
US8112136B2 (en) 2000-08-31 2012-02-07 Tyco Healthcare Group Lp Method and circuit for storing and providing historical physiological data
US7983729B2 (en) 2000-08-31 2011-07-19 Mallinckrodt Inc. Method and circuit for storing and providing historical physiological data
US8000760B2 (en) 2000-08-31 2011-08-16 Mallinckrodt Inc. Method and circuit for storing and providing historical physiological data
US8010173B2 (en) 2000-08-31 2011-08-30 Mallinckrodt Inc. Method and circuit for storing and providing historical physiological data
US8064974B2 (en) 2000-08-31 2011-11-22 Tyco Healthcare Group Lp Method and circuit for storing and providing historical physiological data
US8068889B2 (en) 2000-08-31 2011-11-29 Tyco Healthcare Group Ip Oximeter sensor with digital memory encoding sensor data
US10806406B2 (en) 2000-08-31 2020-10-20 Covidien Lp Method and circuit for storing and providing historical physiological data
US8078247B2 (en) 2000-08-31 2011-12-13 Tyco Healthcare Group Lp Method and circuit for storing and providing historical physiological data
US7949380B2 (en) 2000-08-31 2011-05-24 Mallinckrodt Inc. Oximeter sensor with digital memory encoding sensor data
US8090425B2 (en) 2000-08-31 2012-01-03 Tyco Healthcare Group Lp Oximeter sensor with digital memory encoding patient data
US9844348B2 (en) 2000-08-31 2017-12-19 Coviden Lp Method and circuit for storing and providing historical physiological data
US8095195B2 (en) 2000-08-31 2012-01-10 Tyco Healthcare Group Lp Method and circuit for storing and providing historical physiological data
US7904131B2 (en) 2000-08-31 2011-03-08 Mallinckrodt Inc. Method and circuit for storing and providing historical physiological data
US7881761B2 (en) 2000-08-31 2011-02-01 Mallinckrodt Inc. Method and circuit for storing and providing historical physiological data
US7957781B2 (en) 2000-08-31 2011-06-07 Mallinckrodt Inc. Method and circuit for storing and providing historical physiological data
US8639307B2 (en) 2000-08-31 2014-01-28 Covidien Lp Oximeter sensor with digital memory encoding sensor data
US8185178B2 (en) 2000-08-31 2012-05-22 Tyco Healthcare Group Lp Oximeter sensor with digital memory encoding patient data
US7809419B2 (en) 2000-08-31 2010-10-05 Mallinckrodt Inc. Oximeter sensor with digital memory encoding sensor data
US8626256B2 (en) 2000-08-31 2014-01-07 Covidien Lp Oximeter sensor with digital memory encoding sensor data
US8095192B2 (en) 2003-01-10 2012-01-10 Nellcor Puritan Bennett Llc Signal quality metrics design for qualifying data for a physiological monitor
US9211090B2 (en) 2004-03-08 2015-12-15 Covidien Lp Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US9560994B2 (en) 2008-03-26 2017-02-07 Covidien Lp Pulse oximeter with adaptive power conservation
US8532751B2 (en) 2008-09-30 2013-09-10 Covidien Lp Laser self-mixing sensors for biological sensing
US8290730B2 (en) 2009-06-30 2012-10-16 Nellcor Puritan Bennett Ireland Systems and methods for assessing measurements in physiological monitoring devices
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
US9351688B2 (en) 2013-01-29 2016-05-31 Covidien Lp Low power monitoring systems and method
US10342485B2 (en) 2014-10-01 2019-07-09 Covidien Lp Removable base for wearable medical monitor
USD804042S1 (en) 2015-12-10 2017-11-28 Covidien Lp Wearable medical monitor
USD794206S1 (en) 2015-12-18 2017-08-08 Covidien Lp Combined strap and cradle for wearable medical monitor

Also Published As

Publication number Publication date
JPH1019766A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
JP3939782B2 (en) Light scatterer measurement device
JP3455654B2 (en) An analyzer equipped with a means for detecting a minute sample amount
US6757555B2 (en) Ophthalmologic apparatus
JP2015007643A (en) Method
US20070004972A1 (en) Handheld device for determining skin age, proliferation status and photodamage level
JPH0311772B2 (en)
CA2544204A1 (en) Determination of a measure of a glycation end-product or disease state using tissue fluorescence
JP2010088487A (en) Pulse wave detecting apparatus, vehicle having pulse wave detecting apparatus, and method of controlling pulse wave detecting apparatus
JP2003503727A (en) Methods and devices for fiber optic measurement systems
CN103747732A (en) A non-invasive device and method for measuring bilirubin levels
KR102185227B1 (en) Apparatus and method for monitoring bladder
KR930010545B1 (en) Apparatus for inspecting fuction of liver
CN102695459B (en) Organism light measuring device and method for displaying information relating to necessity/unnecessity of replacement of light-emitting part
JP6270724B2 (en) Ophthalmic device and method for measuring an eye
JP5245942B2 (en) Film thickness measuring device
JPH02237544A (en) Oximeter
JPH0658307B2 (en) Plant abnormality inspection device
CN110025300B (en) Vital sign monitoring device and method based on DFB fiber laser sensing technology
JP3980816B2 (en) Fire detector
JP4103111B2 (en) Photoelectric sensor device
JP2002042263A (en) Fire detector
JP4218880B2 (en) Edge sensor diagnostic method and diagnostic apparatus
JP2000241347A (en) Method and apparatus for examining egg
JP2001153796A (en) Optical apparatus for measuring living matter
JP2000258146A (en) Radiation thickness measurement device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees