JP3938274B2 - Optical input device - Google Patents

Optical input device Download PDF

Info

Publication number
JP3938274B2
JP3938274B2 JP2000310326A JP2000310326A JP3938274B2 JP 3938274 B2 JP3938274 B2 JP 3938274B2 JP 2000310326 A JP2000310326 A JP 2000310326A JP 2000310326 A JP2000310326 A JP 2000310326A JP 3938274 B2 JP3938274 B2 JP 3938274B2
Authority
JP
Japan
Prior art keywords
light
input device
displacement
photoelectric conversion
optical input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000310326A
Other languages
Japanese (ja)
Other versions
JP2002116876A (en
Inventor
正良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2000310326A priority Critical patent/JP3938274B2/en
Publication of JP2002116876A publication Critical patent/JP2002116876A/en
Application granted granted Critical
Publication of JP3938274B2 publication Critical patent/JP3938274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Position Input By Displaying (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はパーソナルコンピュータ、アミューズメント用入力装置、携帯端末等における画面上のカーソル等を移動させるための2次元、または3次元入力可能な光入力デバイスに関する。
【0002】
【従来の技術】
光スポットの移動に伴う複数の受光素子出力を用いての光入力デバイスとしては特開平9−16325がある。この光入力デバイスは、図12に示すように、光源100と所定の開口部を有する遮光板101を介して4つの受光素子103で受光する構成からなり、XY平面内の移動はデバイス105に荷重を付加した際の反射板101の傾きによるスポットの移動を検出し、Z方向については固定されている遮光板101と光源100との距離変化に伴う受光素子103への受光光量の変化に伴う受光信号の変化により検出している。
また、特開平10−207616で示された入力デバイスでは、図13に示すように、荷重方向にスライドする操作部110に連動して移動する反射部113を設け、反射部113に向けて照射されるセンサSの発光素子からの光をこの反射部113により反射し、複数の受光素子に入射させる。操作部110の移動によりこの光スポットも連動して移動することからXY平面内の変位量を検出している。Z方向には別途感圧センサを操作部下面に配置して、Z方向への荷重を検出することで実現している。
【0003】
【発明が解決しようとする課題】
しかし、図12に示す前者の技術では、XY平面内への荷重とZ方向への荷重との分離が難しく人の感覚(指先の感覚)で操作し分ける必要があり、一般に操作が難しい。また、図13に示す後者の技術では、操作性は向上するもののZ方向へは別途センサが必要であり、コスト及び小型化に問題が残る。特に、Z方向は接触型のセンサを用いるため、XY平面内変位機構との共存では摩耗等の耐久性にも問題が残る。
【0004】
そこで本発明は上記問題を鑑み、操作が容易で且つ小型化及びコストの低減が図れる光入力デバイスを提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1に記載の発明は、荷重を加えると3次元に可動する可動手段と、光源及びこの光源からの光束を集光する集光光学系を備える投光手段と、投光手段からの光束が入射する複数の受光面を備える光電変換手段とを備え、投光手段及び光電変換手段のいずれか一方を可動手段の所定の部位に設置している光入力デバイスであって、投光手段からの光束に非点収差を与える非点収差光学系と、可動手段の変位を検出する変位検出手段とを備え、可動手段の変位による光電変換手段の各受光面上における光束のスポットの移動とスポットの形状の変化とに伴って各受光面に入射する光量変化があり、変位検出手段は各受光面からの出力信号により可動手段の変位を検出することを特徴とする。
【0006】
また、請求項2に記載の発明は、可動手段を2次元の平面方向とこの平面方向に略垂直方向とに変位可能に保持する保持部材を備え、光電変換手段の各受光面は、点対称の位置に少なくとも4つの受光素子を備え、非点収差光学系は光源からの照射光束を各受光面への焦点位置前後で楕円スポット形状を付加する光学系であり、光電変換手段は、可動手段に荷重が付加されていない状態で各受光面上で略円形状をなす位置に配置され、且つ各受光面の重心が可変手段に光軸方向への変位が与えられた際の楕円スポットの長軸及び短軸に略平行になるように配置されていることを特徴とする。
【0007】
これら請求項1及び2に記載の発明では、例えば、可動手段は、3次元方向に可動になっており、可動手段を平面方向に動かすと、これに応じて光電変換手段の受光面上のスポットが移動し、各受光素子が受ける光量が変化する。変位検出手段は、各受光面からの出力信号により、スポットの変位を検出し、これによって可動手段の平面方向の変位を検出する。
【0008】
また、可動手段を光軸方向(平面方向に交差する方向)に動かすと、非点収差光学系により各受光面上のスポットの形状が変化し(例えば、真円形状から楕円形状に変化する)、このときの各受光面からの出力信号により、変位検出手段は可動手段の光軸方向の変位を検出する。
【0009】
可動手段と変位検出手段とが非接触な状態で、可動手段の3次元方向の変位を検出することができるので、可動手段の操作が容易になる。また、非点収差光学系を設けることにより、受光面のスポットの移動及び形状変化で可動手段の3次元方向の変位を検出でき、従来のように、別途センサを設ける必要がないので、小型化及びコストの低減が図れる。
【0010】
請求項3に記載の発明は、請求項1又は2に記載の発明において、可動部材の一部が、光束の光軸方向の荷重により独立して変位可能であることを特徴とする。
【0011】
この請求項3に記載の発明では、請求項1又は2に記載の発明と同様な作用効果を奏するとともに、可動部材の一部が光軸方向に独立して変位可能なので、誤動作の少ない自然な操作感を得ることができる。
【0012】
請求項4に記載の発明は、請求項1乃至3のいずれかに記載の発明において、集光光学系と非点収差光学系とが同一の光学素子により構成されていることを特徴とする。
【0013】
この請求項4に記載の発明では、請求項1乃至3のいずれかに記載の発明と同様な作用効果を奏するとともに、小型化及びコストの低減が更に図れる。
【0014】
請求項5に記載の発明は、請求項1乃至4のいずれかに記載の発明において、集光光学系若しくは非点収差光学系のいずれか一方の透過率や反射率を光軸中心から変化するように構成したことを特徴とする。
【0015】
この請求項5に記載の発明では、請求項1乃至4のいずれかに記載の発明と同様な作用効果を奏するとともに、透過率や反射率を光軸中心から変化するようにすることにより、光ビームの光量分布が均一化され、検出可能な領域を拡大することができる。
【0016】
請求項6に記載の発明は、請求項1乃至5のいずれかに記載の発明において、光電変換手段に入射する全光量を検知する光量検知手段と、光量検知手段からの光量情報を基に変位検出手段の検出感度を制御する感度制御手段とを備えたことを特徴とする。
【0017】
この請求項6に記載の発明では、請求項1乃至5のいずれかに記載の発明と同様な作用効果を奏するとともに、光電変換手段に入射する全光量に応じて検出手段感度を制御するので、経時変化に強く、検出感度のカスタマイズが可能になる。
【0018】
請求項7に記載の発明は、請求項1乃至6のいずれかに記載の発明において、変位検出手段の検出変位の感度を操作者が選択可能な選択手段と、選択手段に対応した光源の発光光量情報を参照する参照手段とを有し、光源の発光量が発光光量情報と同一になるように光源を制御する光量制御手段を備えたことを特徴とする。
【0019】
この請求項7に記載の発明では、請求項1乃至6のいずれかに記載の発明と同様な作用効果を奏するとともに、例えば、パーソナルコンピュータによるCAD等のようにイメージを作成するアプリケーション操作のために光入力デバイスを用いた場合、作業状況に応じて変位検出手段の感度を選択できるので、アプリケーションに応じた効率の良い作業環境を提供できる。
【0020】
請求項8に記載の発明では、請求項6又は7に記載の発明において、光量制御手段は、変位検出手段の所定の方向の検出感度のみを光量検出手段の出力値に依存しないことを特徴とする。
【0021】
この請求項8に記載の発明では、請求項6又は7に記載の発明と同様な作用効果を奏するとともに、所定の方向の検出感度のみを光量検出手段出力値(光源の出力値)に依存していないので、各受光面の受光光量が変化した場合であっても、所定の方向の検出感度をほぼ一定にでき、違和感のない操作性を提供することができる。
【0022】
請求項9に記載の発明は、請求項1乃至8のいずれかに記載の発明において、光入力デバイスを搭載する装置の電源若しくは光入力デバイスへの通電のいずれかを検知する通電検知手段と、通電検知手段からの制御信号により光電変換手段からの各出力信号を取り込む出力検出手段と、出力検出手段による各出力値を記憶しておく記憶手段を備え、変位検出手段による変位検出時において記憶手段の情報を参照して変位情報を補正することを備えることを特徴とする。
【0023】
この請求項9に記載の発明では、請求項1乃至8のいずれかに記載の発明と同様な作用効果を奏するとともに、光入力デバイスを搭載した装置の電源又は光入力デバイスへの通電時の光電変換手段からの出力信号と、変位検出手段による変位検出時における光電変換手段からの出力信号とにより変位情報を補正するので、例えば、光電変換手段と光源との位置ずれが発生している場合であっても、検出信号のオフセットを抑制でき、生産性の良い光入力デバイスを提供することができる。
【0024】
請求項10に記載の発明は、請求項1乃至9のいずれかに記載の発明において、光源を間欠に駆動するための光源駆動手段と、光源駆動手段の駆動信号を参照して光電変換手段からの各出力信号を取り込む駆動検出手段を備えることを特徴とする。
【0025】
この請求項10に記載の発明では、請求項1乃至9のいずれかに記載の発明と同様な作用効果を奏するとともに、間欠に駆動する光源に応じて光電変換手段からの各出力信号を取り込むので、省電力且つ対環境性に優れた光入力デバイスを提供することができる。
【0026】
請求項11に記載の発明は、請求項1乃至10に記載の発明において、変位検出手段からの光軸方向の変位情報をもとに、光電変換手段の各受光面からの平面内の変位方向の検出情報を補正する補正手段を備えることを特徴とする。
【0027】
この請求項11に記載の発明は、請求項1乃至10に記載の発明と同様な作用効果を奏するとともに、補正手段が変位検出手段の変位情報をもとに各受光面からの平面内の変位方向の検出情報を補正するので、平面内の感度の異方性を抑制でき、違和感のない操作性を提供することができる。
【0028】
【発明の実施の形態】
以下、添付した図面を参照しながら本発明の実施の形態を詳細に説明する。図1は、第1実施の形態に係る光入力デバイスを概略的に示す構成図である。図1に示す光入力デバイス80は、例えば、パーソナルコンピュータ等の情報機器、アミューズメント(ゲーム機)用入力装置、携帯端末等に搭載されるものであり、3次元に稼動する可動部材1を操作することによりこれらの画面上のカーソル等を移動させるものである。
【0029】
光入力デバイス80は、光電変換部3の受光素子3a、3b、3c、3dが感度を有する波長の光束を投光する光源2a及びその光束を集光光束に波面変換する両凸レンズ(集光光学系)2bと、集光光束に非点収差を与える円柱レンズ(非点収差光学系)2cとが一体になった発光モジュール2を備えている。尚、本実施の形態では、光源2a及び両凸レンズ2bとで投光部(投光手段)2eを形成している。
【0030】
この発光モジュール2を操作者の指圧等で3次元的に変位可能な可動部材(可動手段)1に固定し、荷重が付加されていない状態で投光光束の光軸を中心に点対称に配置された4つの受光面(受光素子)3a、3b、3c、3dを有する光電変換部(光電変換手段)3を筐体10(図3参照)に保持している。また、光電変換部3は、可動部材1に荷重が付加されていない状態で各受光面3a、3b、3c、3d上でほぼ円形の光スポットが形成されるよう、円柱レンズ2cの焦点位置に配置され、且つ各受光面3a、3b、3c、3dの重心が焦点位置前後で生じる楕円スポットの概略長短軸上になるように各受光面3a、3b、3c、3dが配置されている。
【0031】
本実施の形態による変位検出原理は、図2に示すように各受光素子3a、3b、3c、3dの受光面中心をそれぞれX、Y軸にとると、例えば、可動部材1がX軸方向に変位すると、図2(a)のように受光面3a、3b、3c、3d上の実線で示すスポット20が、破線で示すスポット21の位置に移動する。
【0032】
これに対して、移動方向にある2つの受光素子3b、3dからの光出力(出力信号)、例えば、増幅後の出力電圧値の差分Vb−Vdは、図2(a)のグラフに示すようなS字曲線22を描く。即ち、変位量と差分値が比例する領域を用いれば、変位検出回路(変位検出手段)4がこの変位量を検出できることになる。同様に、Y軸方向も移動方向にある2つの受光素子3a、3cからの光出力差分Va−Vcをとることにより同様に検出可能である。
【0033】
また、光軸方向をZ軸方向にとると、Z軸方向への変位は受光素子3a、3b、3c、3d上でのスポットの形状の変化を伴う。すなわち、可動部材1が操作者により押し込まれたとすると、各受光面3a、3b、3c、3d上でのスポット23は、円柱レンズ2cの非点収差により楕円形状のスポット24に変化する。これに伴い対角上の対をなす受光素子の光出力の和Va+Vc、Vb+Vdをとり、それぞれの演算値の差分和(Va+Vc)―(Vb+Vd)をとると、図2(b)のグラフに示すような横変位と同様なS字曲線25を描く。即ち、この差分値の線形な領域を用いればZ軸方向の変位量を検出できる。
【0034】
次に、他の実施の形態を説明するが、その説明にあたり、上述した部分と同様な部分には、同一の符号を付することにより、その説明を省略する。図3は、第2実施の形態にかかる光入力デバイス80を概略的に示す構成図である。図3に示すように、第2実施の形態では、可動部材1の下面に光電変換部3を設置し、可動部材1をXY平面内に変位可能なように弾性体(保持部材)11a、11bで保持し、光軸方向であるZ方向に変位可能なように弾性体12a、12bにより筐体10に保持している。
【0035】
図4は、第3実施の形態にかかる光入力デバイスを概略的に示す断面図である。図4に示すように、第3実施の形態では、光電変換部3を可動部材1に設置した構成で、且つ光電変換部3を搭載した可動部材1の一部である第2可動部品1bが、更に光軸方向に可動となるように第1可動部品1aと分離されている。
【0036】
本実施の形態では、第1可動部品1aは、ゴムやばね等の弾性体により筐体10と結合されている。また、第1可動部材1aの中心部において、光電変換部3を搭載した第2可動部品1b上に固定されており、第2可動部品1bは、第1可動部材1aとゴムやばね等の弾性体31a、31bにより、第1可動部品1aとXY平面内へぶれないように案内溝31を介して結合されている。
【0037】
このように構成することにより、Z方向への変位を第1可動部品1aとは個別に第2可動部品1bに与えることにより、第1可動部材1aの不要なXY平面内の変位を抑制することが可能になる。また、本実施の形態では、可動部材1のXY平面内の変位をスムーズに行うために、第1可動部品1aの底面に突起30を設けて筐体10と点で接触するようにして摩擦による抵抗を減らしている。
【0038】
図5は、第4実施の形態に係る光入力デバイスを概略的に示す構成図である。第4実施の形態では、図5に示すように、集光光学系及び非点収差光学系を同一の光学系にしている。即ち、図5(a)に示すように、光源2aからの出射光を所定の曲面形状を有する非球面からなる凹面反射ミラー素子(光学素子)35を用いて、光路変換するとともに集光作用及び非点収差付与を同時に行うことにより実現できコンパクトな発光モジュール2を構成できる。尚、本実施の形態では、光源2aとして、LD素子等の発光素子を用いている。
【0039】
尚、集光光学系及び非点収差光学系を同一にした光学素子としては、上述の凹面反射ミラー素子35に限定されない。例えば、図5(b)に示すように、LD素子2aは元々10μ程度の非点隔差を有することを利用して、NA(開口数)の大きな球レンズ36を用いて波面変換すれば、所望の集束ビームを得られ、やはりコンパクトな発光モジュール2を実現できる。
【0040】
図6は、第5実施の形態に係る集光レンズを示す図である。第5実施の形態では、図6(a)に示すように、集光レンズ2dの光軸中心から遠ざかるにつれて透過率が上昇するように表面に色素を塗布した構成の集光レンズ2dを、集光光学系として用いている。このような構成の集光レンズ2dを用いることにより、全体の光利用効率は減少するものの用いる光ビームの光量分布が均一化され、その結果、図6(b)に示すようにS字検出曲線40の線形領域を拡大(曲線41)することができ、検出可能な領域を拡大することが可能である。
【0041】
尚、集光レンズ2dの光軸中心から遠ざかるにつれて反射率が上昇するように集光レンズ2dを構成しても良い。また、本実施の形態を、非点収差光学系に適用しても良い。
【0042】
図7は、第6実施の形態に係る光入力デバイスを概略的に示す構成図である。第6実施の形態では、図7(a)に示すように、発光モジュール2からの全受光光量を光量検出部(光量検出手段)13が、光電変換部3の各受光素子3a、3b、3c、3dの総和46から求め、その情報を基に発光素子3a、3b、3c、3dの駆動電流値を制御して発光パワーを制御する光源制御部(感度制御手段)45を付加している。図7(b)に示すようにS字検出曲線は、光源2aの受光光量の増減(但し受光素子が飽和しない範囲で)に伴い、単位変位量あたりの検出信号も変化する。即ち、受光光量の変動により検出分解能(検出感度)が変動することになる。例えば、光源制御部45が自動的に受光光量を一定にするような制御回路にすることにより、経時変化による検出感度の劣化を防止することが可能になる。
【0043】
図8は、第7実施の形態に係る光入力デバイスを概略的に示す構成図である。第7実施の形態では、図7に示した受光光量の変動により検出分解能が変動することを逆に利用した構成としている。即ち、図8に示すように、光入力デバイス80を使用する操作者が選択可能な分解能選択部(選択手段)53を設け、予め記憶部(記憶手段)52に記憶しておいた操作者が選択した分解能に対応した受光光量の値を参照する。
【0044】
そして、光量検出部13からの受光光量との比較を比較部(参照手段)51により行い、その差が0になるように(受光光量と予め記憶した分解能に対応した受光光量の値とが同一になるように)光源制御部(光源制御手段)50にて発光光量を制御して、所定の検出感度を得るようにしている。
【0045】
これにより、本実施の形態の光入力デバイス80を搭載した装置(パソコン等の情報機器)での例えば、CAD等のようなイメージを作成するアプリケーション操作の入力デバイスに光入力デバイス80を用いた際に、作業状況に応じて前記感度を選択することにより効率よい作業環境を提供できる。
【0046】
また、本実施の形態では、図8に示すようにZ方向の検出値に対し、各受光面3a、3b、3c、3dが受光した全受光光量の総和で除算する除算回路54を付加しており、発光光量が変化する場合でもZ方向における変位検出回路4の検出感度はほぼ一定に保つことができる。
【0047】
これにより、光入力バイス80が搭載される装置、特にGUI(Graphical User Interface)としての入力デバイス80として用いた場合に、クリック等の選択動作において、Z方向の変位信号を用いる際に、図7のようにXY平面内の変位感度を可変にしても、安定した選択動作を提供可能にでき、操作者に自然な操作環境を提供できる。
【0048】
尚、X及びY方向の変位情報においても、除算回路54を設けることにより図7(a)と同じように光源制御部45を用いること無しに経時変化による検出感度の劣化を防止することも可能になる。
【0049】
図9は、第8実施の形態に係る光入力デバイスを概略的に示す構成図である。第8実施の形態では、図9に示すように、光入力デバイス80を搭載する装置の電源の投入信号若しくは光入力デバイス80への通電のいずれかを検知する通電検知手段60を設け、通電検知部(通電検知手段)60が投入信号又は通電のいずれかの信号を検知することにより制御信号を発生させ、光電変換部3からの各出力信号を制御信号によりスイッチ回路(出力検知手段)61a、61b、61c、61dによりスイッチングして、各受光素子3a、3b、3c、3dごとの検出信号を記憶する記憶部(記憶手段)62a、62b、62c、62dに取り込む。
【0050】
そして、所定時間経過後、上記スイッチ回路61a、61b、61c、61dを元に戻して通常の検出動作を行う。この際に記憶部62a、62b、62c、62dが記憶した値を検出値から差し引いた値を新たに検出値とすることにより、例えば、光電変換部3と発光モジュール2との位置ずれが発生した場合の検出信号のオフセットを抑制でき、検出結果への影響を最小限に抑えることが可能である。
【0051】
図10は、第9実施の形態に係る光入力デバイスを概略的に示す構成図である。第9実施の形態では、図10に示すように、例えば、光入力デバイス80が搭載される装置のクロック信号等を用いて、光源2aを間欠に駆動するよう駆動信号を生成する光源駆動部(光源駆動手段)66を有し、更に、光源2aの駆動信号を基に、駆動検出部(駆動検出手段)67a、67b、67c、67dが光電変換部3での検出値の取り込みを行うことにより、外乱による誤動作を抑制するとともに、発光素子での消費電力を抑えることが可能になる。
【0052】
図11は、第10実施の形態に係る光入力デバイスを概略的に示す構成図である。第10実施の形態では、図11(a)に示すように、可動部材1にZ軸方向に変位を与えた場合に、各受光面3a、3b、3c、3d上のスポットが楕円形状73になる。
【0053】
この楕円形状のスポット73によるXY平面内の変位感度の異方性を解決するため、光電変換部3からのZ方向の変位情報をもとに補正手段70により、平面方向(X、Y方向)の少なくとも一方の検出値に光軸方向の変位情報に基づき用意しておいたパラメータを用いて、図11(b)に示すような補正演算(ここではパラメータを用いて出力信号値を圧縮している)を行い、その結果を補正する(曲線71から72への補正)。これによって、Z軸方向とXY平面内の同時変位動作に対して、平面内の感度の異方性を抑制して操作者へ自然な操作感を提供することが可能になる。
【0054】
本発明は、上述した実施の形態に限定されず、その要旨を逸脱しない範囲内において、種々の変形が可能である。例えば、受光素子は更に細かく分割されたものを用いても良い。また、集光光学系と非点収差光学系の複合機能を非球面レンズで実現しても良い。更に、可動部材1の操作者が触れる表面には滑り止めの形状を付与したり、裏面の接触する部位に摩擦を低減するような表面処理を施しても良い。
【0055】
【発明の効果】
請求項1及び2に記載の発明では、可動手段と変位検出手段とが非接触な状態で、可動手段の3次元方向の変位を検出することができるので、可動手段の操作が容易になる。また、非点収差光学系を設けることにより、受光面のスポットの移動及び形状変化で可動手段の3次元方向の変位を検出でき、従来のように、別途センサを設ける必要がないので、小型化及びコストの低減が図れる。
【0056】
請求項3に記載の発明では、請求項1又は2に記載の発明と同様な効果を奏するとともに、可動部材の一部が光軸方向に独立して変位可能なので、誤動作の少ない自然な操作感を得ることができる。
【0057】
請求項4に記載の発明では、請求項1乃至3のいずれかに記載の発明と同様な効果を奏するとともに、小型化及びコストの低減が更に図れる。
【0058】
請求項5に記載の発明では、請求項1乃至4のいずれかに記載の発明と同様な効果を奏するとともに、透過率や反射率を光軸中心から変化するようにすることにより、光ビームの光量分布が均一化され、検出可能な領域を拡大することができる。
【0059】
請求項6に記載の発明では、請求項1乃至5のいずれかに記載の発明と同様な効果を奏するとともに、光電変換手段に入射する全光量に応じて検出手段感度を制御するので、経時変化に強く、検出感度のカスタマイズが可能になる。
【0060】
請求項7に記載の発明では、請求項1乃至6のいずれかに記載の発明と同様な効果を奏するとともに、光電変換手段に入射する全光量に応じて検出手段感度を制御するので、経時変化に強く、検出感度のカスタマイズが可能になる。
【0061】
請求項8に記載の発明では、請求項6又は7に記載の発明と同様な効果を奏するとともに、所定の方向の検出感度のみを光量検出手段出力値(光源の出力値)に依存していないので、各受光面の受光光量が変化した場合であっても、所定の方向の検出感度をほぼ一定にでき、違和感のない操作性を提供することができる。
【0062】
請求項9に記載の発明では、請求項1乃至8のいずれかに記載の発明と同様な効果を奏するとともに、光入力デバイスを搭載した装置の電源又は光入力デバイスへの通電時の光電変換手段からの出力信号と、変位検出手段による変位検出時における光電変換手段からの出力信号とにより変位情報を補正するので、検出信号のオフセットを抑制でき、生産性の良い光入力デバイスを提供することができる。
【0063】
請求項10に記載の発明では、請求項1乃至9のいずれかに記載の発明と同様な効果を奏するとともに、間欠に駆動する光源に応じて光電変換手段からの各出力信号を取り込むので、省電力且つ対環境性に優れた光入力デバイスを提供することができる。
【0064】
請求項11に記載の発明では、請求項1乃至10のいずれかに記載の発明と同様な効果を奏するとともに、補正手段が変位検出手段の変位情報をもとに各受光面からの平面内の変位方向の検出情報を補正するので、平面内の感度の異方性を抑制でき、違和感のない操作性を提供することができる。
【図面の簡単な説明】
【図1】第1実施の形態に係る光入力デバイスを概略的に示す構成図である。
【図2】光電変換部の各受光面のスポットを説明する図であり、(a)は可動部材が平面方向に移動したときのスポットを説明する図であり、(b)は可動部材が光軸方向に移動したときのスポットを説明する図である。
【図3】第2実施の形態に係る光入力デバイスを概略的に示す断面図である。
【図4】第3実施の形態に係る光入力デバイスを概略的に示す断面図である。
【図5】第4実施の形態に係る図であり、(a)は第4実施の形態に係る光入力デバイスを概略的に示す構成図であり、(b)は第4実施の形態の変形例に係る光入力デバイスを概略的に示す構成図である
【図6】第5実施の形態に係る図であり、(a)は集光レンズを示す図であり、(b)はスポットの変位と出力信号との関係を示すグラフである。
【図7】第6実施の形態に係る図であり、(a)は第6実施の形態に係る光入力デバイスを概略的に示す構成図であり、(b)は光スポットと出力信号との関係を示すグラフである。
【図8】第7実施の形態に係る光入力デバイスを概略的に示す構成図である。
【図9】第8実施の形態に係る光入力デバイスを概略的に示す構成図である。
【図10】第9実施の形態に係る光入力デバイスを概略的に示す構成図である。
【図11】第10実施の形態に係る図であり、(a)は第10実施の形態に係る光入力デバイスを概略的に示す構成図であり、(b)はスポットの変位と出力信号との関係を示すグラフである。
【図12】従来に係る光入力デバイスを示す図である。
【図13】従来に係る光入力デバイスを示す図である。
【符号の説明】
1 可動部材(可動手段)
1b 第2可動部品(可動手段の一部)
2a 光源
2b 両凸レンズ(集光光学系)
2c 円柱レンズ(非点収差光学系)
2e 投光部(投光手段)
3 光電変換部(光電変換手段)
3a、3b、3c、3d 受光面(受光素子)
4 変位検出回路(変位検出手段)
11a、11b、12a、12b 弾性体(保持部材)
13 光量検出部(光量検出手段)
20 スポット
45 光源制御部(感度制御手段)
50 光源制御部(光源制御手段)
51 比較部(参照手段)
53 分解能選択部(選択手段)
60 通電検知部(通電検知手段)
61a、61b、61c、61d スイッチ回路(出力検知手段)
62a、62b、62c、62d 記憶部(記憶手段)
65 光源駆動部(光源駆動手段)
66 光源駆動部(光源駆動手段)
67a、67b、67c、67d 駆動検出部(駆動検出手段)
70 補正部(補正手段)
80 光入力デバイス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical input device capable of two-dimensional or three-dimensional input for moving a cursor on a screen of a personal computer, an amusement input device, a portable terminal or the like.
[0002]
[Prior art]
Japanese Patent Laid-Open No. 9-16325 discloses an optical input device using a plurality of light receiving element outputs accompanying the movement of a light spot. As shown in FIG. 12, this optical input device has a configuration in which light is received by four light receiving elements 103 via a light source 100 and a light shielding plate 101 having a predetermined opening, and movement in the XY plane is a load on the device 105. The movement of the spot due to the tilt of the reflection plate 101 when the light is added is detected, and the light reception due to the change in the amount of light received by the light receiving element 103 due to the change in the distance between the light shielding plate 101 and the light source 100 fixed in the Z direction. Detected by signal change.
Further, in the input device disclosed in Japanese Patent Laid-Open No. 10-207616, as shown in FIG. 13, a reflection unit 113 that moves in conjunction with the operation unit 110 that slides in the load direction is provided, and the reflection unit 113 is irradiated. The light from the light emitting element of the sensor S is reflected by the reflecting portion 113 and is incident on a plurality of light receiving elements. Since the light spot moves in conjunction with the movement of the operation unit 110, the amount of displacement in the XY plane is detected. In the Z direction, a pressure sensor is separately provided on the lower surface of the operation unit, and the load in the Z direction is detected.
[0003]
[Problems to be solved by the invention]
However, in the former technique shown in FIG. 12, it is difficult to separate the load in the XY plane and the load in the Z direction, and it is necessary to operate them separately by human senses (fingertip senses), which is generally difficult to operate. In addition, although the latter technique shown in FIG. 13 improves operability, a separate sensor is required in the Z direction, and problems remain in cost and size reduction. In particular, since a contact-type sensor is used in the Z direction, there is a problem in durability such as wear when coexisting with an XY in-plane displacement mechanism.
[0004]
In view of the above problems, an object of the present invention is to provide an optical input device that is easy to operate and can be reduced in size and cost.
[0005]
[Means for Solving the Problems]
The invention described in claim 1 is a light projecting unit including a movable unit that moves in three dimensions when a load is applied, a light source and a condensing optical system that collects a light beam from the light source, and a light beam from the light projecting unit. A photoelectric conversion means having a plurality of light receiving surfaces on which light is incident, and one of the light projecting means and the photoelectric conversion means is installed at a predetermined part of the movable means, from the light projecting means Astigmatism optical system for giving astigmatism to the luminous flux of the light and a displacement detecting means for detecting the displacement of the movable means, and movement and spot of the spot of the luminous flux on each light receiving surface of the photoelectric conversion means due to the displacement of the movable means The displacement detecting means detects the displacement of the movable means based on the output signal from each light receiving surface.
[0006]
Further, the invention described in claim 2 includes a holding member that holds the movable means so as to be displaceable in a two-dimensional plane direction and a direction substantially perpendicular to the plane direction, and each light receiving surface of the photoelectric conversion means is point-symmetric. The astigmatism optical system is an optical system for adding an elliptical spot shape before and after the focal position on each light receiving surface. The photoelectric conversion means is a movable means. The length of the elliptical spot when the center of gravity of each light receiving surface is displaced in the direction of the optical axis to the variable means when it is arranged at a position that forms a substantially circular shape on each light receiving surface with no load applied It arrange | positions so that it may become substantially parallel to an axis | shaft and a short axis.
[0007]
In the inventions according to the first and second aspects, for example, the movable means is movable in the three-dimensional direction, and when the movable means is moved in the plane direction, the spot on the light receiving surface of the photoelectric conversion means is correspondingly moved. And the amount of light received by each light receiving element changes. The displacement detection means detects the displacement of the spot based on the output signal from each light receiving surface, and thereby detects the displacement of the movable means in the plane direction.
[0008]
When the movable means is moved in the optical axis direction (direction intersecting the plane direction), the astigmatism optical system changes the spot shape on each light receiving surface (for example, changes from a perfect circle shape to an elliptical shape). The displacement detection means detects the displacement of the movable means in the optical axis direction based on the output signals from the respective light receiving surfaces at this time.
[0009]
Since the displacement of the movable means in the three-dimensional direction can be detected in a state where the movable means and the displacement detection means are not in contact with each other, the operation of the movable means is facilitated. In addition, by providing an astigmatism optical system, it is possible to detect the displacement of the movable means in the three-dimensional direction by moving the spot and changing the shape of the light receiving surface. In addition, the cost can be reduced.
[0010]
According to a third aspect of the present invention, in the first or second aspect of the present invention, a part of the movable member can be independently displaced by a load in the optical axis direction of the light beam.
[0011]
The invention described in claim 3 has the same effect as that of the invention described in claim 1 or 2, and a part of the movable member can be independently displaced in the optical axis direction. A feeling of operation can be obtained.
[0012]
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the condensing optical system and the astigmatism optical system are configured by the same optical element.
[0013]
In the invention according to the fourth aspect, the same effect as the invention according to any one of the first to third aspects can be achieved, and the size and cost can be further reduced.
[0014]
According to a fifth aspect of the present invention, in the first aspect of the present invention, the transmittance or reflectance of either the condensing optical system or the astigmatism optical system is changed from the center of the optical axis. It is configured as described above.
[0015]
According to the fifth aspect of the invention, the same effect as that of the first to fourth aspects of the invention can be obtained, and the transmittance and the reflectance can be changed from the center of the optical axis, thereby reducing the light. The light quantity distribution of the beam is made uniform, and the detectable area can be enlarged.
[0016]
According to a sixth aspect of the invention, in the first aspect of the invention according to any one of the first to fifth aspects, the light quantity detecting means for detecting the total light quantity incident on the photoelectric conversion means and the displacement based on the light quantity information from the light quantity detecting means. Sensitivity control means for controlling the detection sensitivity of the detection means is provided.
[0017]
In the invention according to the sixth aspect, the same effect as the invention according to any one of the first to fifth aspects is exhibited, and the sensitivity of the detection unit is controlled according to the total amount of light incident on the photoelectric conversion unit. It is resistant to changes over time, and the detection sensitivity can be customized.
[0018]
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the operator can select the sensitivity of the displacement detected by the displacement detector, and the light emission of the light source corresponding to the selector. And a light quantity control means for controlling the light source so that the light emission amount of the light source is the same as the light emission light quantity information.
[0019]
According to the seventh aspect of the present invention, the same effects as those of the first to sixth aspects of the present invention can be achieved. For example, for an application operation for creating an image such as CAD by a personal computer. When the optical input device is used, the sensitivity of the displacement detection means can be selected according to the work situation, so that an efficient work environment corresponding to the application can be provided.
[0020]
The invention according to claim 8 is characterized in that, in the invention according to claim 6 or 7, the light quantity control means does not depend only on the detection sensitivity of the displacement detection means in a predetermined direction depending on the output value of the light quantity detection means. To do.
[0021]
The invention described in claim 8 has the same effect as that of the invention described in claim 6 or 7, and only the detection sensitivity in a predetermined direction depends on the output value of the light amount detection means (the output value of the light source). Therefore, even when the amount of received light on each light receiving surface changes, the detection sensitivity in a predetermined direction can be made substantially constant, and operability without a sense of incongruity can be provided.
[0022]
An invention according to claim 9 is the invention according to any one of claims 1 to 8, wherein an energization detecting means for detecting either a power source of an apparatus in which the optical input device is mounted or an energization to the optical input device; Output detecting means for capturing each output signal from the photoelectric conversion means by a control signal from the energization detecting means, and storage means for storing each output value by the output detecting means, and storing means at the time of displacement detection by the displacement detecting means The displacement information is corrected with reference to the information.
[0023]
According to the ninth aspect of the present invention, the same effects as those of the first to eighth aspects of the invention can be achieved, and the power supply of the apparatus equipped with the optical input device or the photoelectric when the optical input device is energized can be obtained. Since the displacement information is corrected by the output signal from the conversion means and the output signal from the photoelectric conversion means at the time of displacement detection by the displacement detection means, for example, when there is a positional deviation between the photoelectric conversion means and the light source. Even if it exists, the offset of a detection signal can be suppressed and an optical input device with good productivity can be provided.
[0024]
According to a tenth aspect of the present invention, in the invention according to any one of the first to ninth aspects, the light source driving means for intermittently driving the light source, and the photoelectric conversion means with reference to the drive signal of the light source driving means It is characterized by comprising drive detection means for capturing each output signal.
[0025]
According to the tenth aspect of the present invention, the same effects as those of the first aspect of the present invention can be obtained, and each output signal from the photoelectric conversion means is taken in according to the light source that is intermittently driven. Thus, it is possible to provide an optical input device that is power-saving and excellent in environmental friendliness.
[0026]
An eleventh aspect of the present invention is the invention according to any one of the first to tenth aspects, wherein the displacement direction in the plane from each light receiving surface of the photoelectric conversion means is based on the displacement information in the optical axis direction from the displacement detection means. Correction means for correcting the detected information is provided.
[0027]
According to the eleventh aspect of the present invention, the same effect as that of the first to tenth aspects of the present invention can be achieved, and the correction means can perform displacement within the plane from each light receiving surface based on the displacement information of the displacement detection means. Since the direction detection information is corrected, the anisotropy of sensitivity in the plane can be suppressed, and operability without a sense of incongruity can be provided.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a configuration diagram schematically showing an optical input device according to the first embodiment. An optical input device 80 shown in FIG. 1 is mounted on, for example, an information device such as a personal computer, an input device for an amusement (game machine), a portable terminal, etc., and operates the movable member 1 that operates in three dimensions. Thus, the cursor on the screen is moved.
[0029]
The optical input device 80 includes a light source 2a that projects a light beam having a wavelength with which the light receiving elements 3a, 3b, 3c, and 3d of the photoelectric conversion unit 3 are sensitive, and a biconvex lens (condensing optics) that converts the light beam into a condensed light beam. System) 2b and a light-emitting module 2 in which a cylindrical lens (astigmatism optical system) 2c for giving astigmatism to the condensed light beam is integrated. In the present embodiment, the light source 2a and the biconvex lens 2b form a light projecting section (light projecting means) 2e.
[0030]
The light emitting module 2 is fixed to a movable member (movable means) 1 that can be displaced three-dimensionally by an operator's finger pressure, etc., and is arranged point-symmetrically around the optical axis of the projected light beam with no load applied. A photoelectric conversion unit (photoelectric conversion means) 3 having the four received light receiving surfaces (light receiving elements) 3a, 3b, 3c, and 3d is held in a housing 10 (see FIG. 3). The photoelectric conversion unit 3 is positioned at the focal position of the cylindrical lens 2c so that a substantially circular light spot is formed on each of the light receiving surfaces 3a, 3b, 3c, and 3d in a state where no load is applied to the movable member 1. The light receiving surfaces 3a, 3b, 3c, and 3d are arranged so that the centers of gravity of the light receiving surfaces 3a, 3b, 3c, and 3d are on the major long and short axes of the elliptical spots generated before and after the focal position.
[0031]
As shown in FIG. 2, the displacement detection principle according to the present embodiment is, for example, when the center of the light receiving surface of each of the light receiving elements 3a, 3b, 3c, and 3d is taken as the X and Y axes, respectively. When displaced, the spot 20 indicated by the solid line on the light receiving surfaces 3a, 3b, 3c, and 3d moves to the position of the spot 21 indicated by the broken line as shown in FIG.
[0032]
On the other hand, the optical output (output signal) from the two light receiving elements 3b and 3d in the moving direction, for example, the difference Vb−Vd in the output voltage value after amplification is as shown in the graph of FIG. A simple S-shaped curve 22 is drawn. That is, if a region in which the displacement amount and the difference value are proportional is used, the displacement detection circuit (displacement detection means) 4 can detect the displacement amount. Similarly, the Y-axis direction can be similarly detected by taking the light output difference Va−Vc from the two light receiving elements 3a and 3c in the moving direction.
[0033]
Further, when the optical axis direction is taken as the Z-axis direction, the displacement in the Z-axis direction is accompanied by a change in spot shape on the light receiving elements 3a, 3b, 3c, and 3d. That is, if the movable member 1 is pushed in by the operator, the spot 23 on each light receiving surface 3a, 3b, 3c, 3d changes to an elliptical spot 24 due to the astigmatism of the cylindrical lens 2c. Along with this, the sums Va + Vc and Vb + Vd of the light outputs of the diagonal light receiving elements are taken, and the difference sum (Va + Vc) − (Vb + Vd) of the respective calculated values is taken and shown in the graph of FIG. An S-shaped curve 25 similar to the lateral displacement is drawn. That is, the displacement amount in the Z-axis direction can be detected by using the linear region of the difference value.
[0034]
Next, other embodiments will be described. In the description, the same parts as those described above are denoted by the same reference numerals, and the description thereof is omitted. FIG. 3 is a configuration diagram schematically showing an optical input device 80 according to the second embodiment. As shown in FIG. 3, in 2nd Embodiment, the photoelectric conversion part 3 is installed in the lower surface of the movable member 1, and elastic body (holding member) 11a, 11b so that the movable member 1 can be displaced in XY plane. And is held in the housing 10 by the elastic bodies 12a and 12b so as to be displaceable in the Z direction that is the optical axis direction.
[0035]
FIG. 4 is a cross-sectional view schematically showing an optical input device according to the third embodiment. As shown in FIG. 4, in 3rd Embodiment, the 2nd movable component 1b which is the structure which installed the photoelectric conversion part 3 in the movable member 1, and is a part of the movable member 1 carrying the photoelectric conversion part 3 is provided. Further, it is separated from the first movable part 1a so as to be movable in the optical axis direction.
[0036]
In the present embodiment, the first movable part 1a is coupled to the housing 10 by an elastic body such as rubber or a spring. Moreover, it is being fixed on the 2nd movable component 1b which mounted the photoelectric conversion part 3 in the center part of the 1st movable member 1a, and the 2nd movable component 1b is elastic with 1st movable member 1a, rubber | gum, a spring, etc. The bodies 31a and 31b are coupled to the first movable part 1a via the guide groove 31 so as not to be moved into the XY plane.
[0037]
With this configuration, the displacement in the Z direction is given to the second movable component 1b separately from the first movable component 1a, thereby suppressing unnecessary displacement of the first movable member 1a in the XY plane. Is possible. Further, in the present embodiment, in order to smoothly move the movable member 1 in the XY plane, a protrusion 30 is provided on the bottom surface of the first movable component 1a so that the movable member 1 is brought into contact with the housing 10 at a point by friction. The resistance is being reduced.
[0038]
FIG. 5 is a block diagram schematically showing an optical input device according to the fourth embodiment. In the fourth embodiment, as shown in FIG. 5, the condensing optical system and the astigmatism optical system are the same optical system. That is, as shown in FIG. 5 (a), the light emitted from the light source 2a is converted into an optical path using a concave reflecting mirror element (optical element) 35 made of an aspheric surface having a predetermined curved surface shape, and the light collecting action and A compact light emitting module 2 that can be realized by applying astigmatism at the same time can be configured. In the present embodiment, a light emitting element such as an LD element is used as the light source 2a.
[0039]
The optical element having the same condensing optical system and astigmatism optical system is not limited to the concave reflecting mirror element 35 described above. For example, as shown in FIG. 5B, if the LD element 2a originally has an astigmatic difference of about 10 μm and a wavefront conversion is performed using a spherical lens 36 having a large NA (numerical aperture), a desired value can be obtained. Thus, a compact light emitting module 2 can be realized.
[0040]
FIG. 6 is a diagram showing a condenser lens according to the fifth embodiment. In the fifth embodiment, as shown in FIG. 6A, a collecting lens 2d having a structure in which a pigment is applied to the surface so that the transmittance increases as the distance from the optical axis center of the collecting lens 2d increases. Used as an optical optical system. By using the condensing lens 2d having such a configuration, although the overall light use efficiency is reduced, the light amount distribution of the light beam used is made uniform. As a result, as shown in FIG. Forty linear regions can be magnified (curve 41), and the detectable region can be magnified.
[0041]
The condensing lens 2d may be configured so that the reflectance increases as the distance from the optical axis center of the condensing lens 2d increases. Further, this embodiment may be applied to an astigmatism optical system.
[0042]
FIG. 7 is a block diagram schematically showing an optical input device according to the sixth embodiment. In the sixth embodiment, as shown in FIG. 7A, the light amount detection unit (light amount detection unit) 13 detects the total amount of received light from the light emitting module 2, and each light receiving element 3 a, 3 b, 3 c of the photoelectric conversion unit 3. The light source control unit (sensitivity control means) 45 is added to control the light emission power by controlling the drive current values of the light emitting elements 3a, 3b, 3c, and 3d based on the information obtained from the sum 46 of 3d. As shown in FIG. 7B, in the S-shaped detection curve, the detection signal per unit displacement also changes as the amount of light received by the light source 2a increases or decreases (in a range where the light receiving element is not saturated). That is, the detection resolution (detection sensitivity) varies due to the variation in the amount of received light. For example, it is possible to prevent deterioration of detection sensitivity due to a change with time by using a control circuit in which the light source controller 45 automatically makes the amount of received light constant.
[0043]
FIG. 8 is a block diagram schematically showing an optical input device according to the seventh embodiment. In the seventh embodiment, the detection resolution fluctuates due to fluctuations in the amount of received light shown in FIG. That is, as shown in FIG. 8, a resolution selection unit (selection unit) 53 that can be selected by an operator who uses the optical input device 80 is provided, and an operator stored in the storage unit (storage unit) 52 in advance is provided. The received light amount value corresponding to the selected resolution is referred to.
[0044]
Then, the comparison with the received light quantity from the light quantity detection unit 13 is performed by the comparison unit (reference means) 51, and the difference between the received light quantity and the received light quantity corresponding to the resolution stored in advance is the same. The light emission amount is controlled by the light source control unit (light source control means) 50 so as to obtain a predetermined detection sensitivity.
[0045]
As a result, when the optical input device 80 is used as an input device for an application operation for creating an image such as CAD, for example, in an apparatus (information device such as a personal computer) equipped with the optical input device 80 of the present embodiment. In addition, an efficient work environment can be provided by selecting the sensitivity according to the work situation.
[0046]
Further, in the present embodiment, as shown in FIG. 8, a division circuit 54 that divides the detection value in the Z direction by the sum of the total received light amounts received by the respective light receiving surfaces 3a, 3b, 3c, and 3d is added. Thus, even when the amount of emitted light changes, the detection sensitivity of the displacement detection circuit 4 in the Z direction can be kept substantially constant.
[0047]
As a result, when using the displacement signal in the Z direction in a selection operation such as a click when the optical input device 80 is used, particularly as an input device 80 as a GUI (Graphical User Interface), FIG. Thus, even if the displacement sensitivity in the XY plane is variable, a stable selection operation can be provided, and a natural operating environment can be provided to the operator.
[0048]
For the displacement information in the X and Y directions, by providing the divider circuit 54, it is possible to prevent deterioration of detection sensitivity due to changes over time without using the light source controller 45 as in FIG. 7A. become.
[0049]
FIG. 9 is a block diagram schematically showing an optical input device according to the eighth embodiment. In the eighth embodiment, as shown in FIG. 9, an energization detection means 60 for detecting either a power-on signal of an apparatus in which the optical input device 80 is mounted or energization to the optical input device 80 is provided. Unit (energization detection means) 60 detects a signal of either a turn-on signal or energization to generate a control signal, and each output signal from the photoelectric conversion unit 3 is switched to a switch circuit (output detection means) 61a by the control signal. It switches by 61b, 61c, 61d, and takes in the memory | storage part (memory | storage means) 62a, 62b, 62c, 62d which memorize | stores the detection signal for each light receiving element 3a, 3b, 3c, 3d.
[0050]
Then, after a predetermined time elapses, the switch circuits 61a, 61b, 61c, 61d are returned to their original positions to perform a normal detection operation. At this time, the value obtained by subtracting the value stored in the storage units 62a, 62b, 62c, and 62d from the detection value is used as a new detection value. For example, a positional deviation between the photoelectric conversion unit 3 and the light emitting module 2 occurs. In this case, the offset of the detection signal can be suppressed, and the influence on the detection result can be minimized.
[0051]
FIG. 10 is a block diagram schematically showing an optical input device according to the ninth embodiment. In the ninth embodiment, as illustrated in FIG. 10, for example, a light source driving unit (for example, a driving signal is generated so as to drive the light source 2 a intermittently using a clock signal of an apparatus in which the optical input device 80 is mounted). Light source driving means) 66, and further, drive detection units (drive detection means) 67a, 67b, 67c, and 67d capture detection values in the photoelectric conversion unit 3 based on the drive signal of the light source 2a. In addition, it is possible to suppress malfunction due to disturbance and to suppress power consumption in the light emitting element.
[0052]
FIG. 11 is a block diagram schematically showing an optical input device according to the tenth embodiment. In the tenth embodiment, as shown in FIG. 11A, when the movable member 1 is displaced in the Z-axis direction, the spots on the light receiving surfaces 3a, 3b, 3c, and 3d have an elliptical shape 73. Become.
[0053]
In order to solve the anisotropy of the displacement sensitivity in the XY plane due to the elliptical spot 73, the correction unit 70 based on the displacement information in the Z direction from the photoelectric conversion unit 3 causes the plane direction (X, Y direction). Using a parameter prepared on the basis of displacement information in the optical axis direction for at least one of the detected values, a correction operation as shown in FIG. 11B (here, the output signal value is compressed using the parameter). And correct the result (correction from curve 71 to curve 72). This makes it possible to suppress the anisotropy of the sensitivity in the plane with respect to the simultaneous displacement operation in the Z-axis direction and the XY plane and provide a natural feeling of operation to the operator.
[0054]
The present invention is not limited to the embodiment described above, and various modifications can be made without departing from the scope of the invention. For example, the light receiving element may be further finely divided. Further, the combined function of the condensing optical system and the astigmatism optical system may be realized by an aspheric lens. Further, the surface touched by the operator of the movable member 1 may be provided with a non-slip shape, or a surface treatment may be applied to reduce the friction at the contacted portion of the back surface.
[0055]
【The invention's effect】
In the first and second aspects of the invention, since the displacement of the movable means in the three-dimensional direction can be detected in a state where the movable means and the displacement detection means are not in contact with each other, the operation of the movable means is facilitated. In addition, by providing an astigmatism optical system, it is possible to detect the displacement of the movable means in the three-dimensional direction by moving the spot and changing the shape of the light receiving surface, and it is not necessary to provide a separate sensor as in the prior art. In addition, the cost can be reduced.
[0056]
The invention according to claim 3 has the same effects as those of the invention according to claim 1 or 2, and a part of the movable member can be displaced independently in the optical axis direction, so that a natural operation feeling with few malfunctions can be obtained. Can be obtained.
[0057]
The invention described in claim 4 achieves the same effects as those of the invention described in any one of claims 1 to 3, and further achieves downsizing and cost reduction.
[0058]
The invention according to claim 5 achieves the same effect as the invention according to any one of claims 1 to 4, and changes the transmittance and the reflectance from the center of the optical axis, whereby The light quantity distribution is made uniform, and the detectable area can be enlarged.
[0059]
The invention according to claim 6 has the same effect as the invention according to any one of claims 1 to 5 and controls the sensitivity of the detection means according to the total amount of light incident on the photoelectric conversion means. The detection sensitivity can be customized.
[0060]
The invention according to the seventh aspect has the same effect as the invention according to any one of the first to sixth aspects and controls the sensitivity of the detection means according to the total amount of light incident on the photoelectric conversion means. The detection sensitivity can be customized.
[0061]
The invention described in claim 8 has the same effect as that of the invention described in claim 6 or 7, and only the detection sensitivity in a predetermined direction does not depend on the light amount detection means output value (light source output value). Therefore, even if the amount of light received by each light receiving surface changes, the detection sensitivity in a predetermined direction can be made substantially constant, and operability without a sense of incongruity can be provided.
[0062]
The invention according to claim 9 has the same effect as the invention according to any one of claims 1 to 8, and photoelectric conversion means at the time of energizing the power supply or the optical input device of the apparatus equipped with the optical input device Since the displacement information is corrected by the output signal from the output signal and the output signal from the photoelectric conversion means at the time of displacement detection by the displacement detection means, it is possible to suppress the offset of the detection signal and provide a highly productive optical input device. it can.
[0063]
The invention according to claim 10 achieves the same effect as the invention according to any one of claims 1 to 9, and takes in each output signal from the photoelectric conversion means according to the light source driven intermittently. It is possible to provide an optical input device that is excellent in power and environmental friendliness.
[0064]
The invention according to claim 11 has the same effect as the invention according to any one of claims 1 to 10, and the correction means is within the plane from each light receiving surface based on the displacement information of the displacement detection means. Since the detection information of the displacement direction is corrected, the anisotropy of sensitivity in the plane can be suppressed, and operability without a sense of incongruity can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram schematically showing an optical input device according to a first embodiment.
FIGS. 2A and 2B are diagrams illustrating spots on each light receiving surface of the photoelectric conversion unit, FIG. 2A is a diagram illustrating spots when the movable member moves in a plane direction, and FIG. It is a figure explaining a spot when it moves to an axial direction.
FIG. 3 is a cross-sectional view schematically showing an optical input device according to a second embodiment.
FIG. 4 is a cross-sectional view schematically showing an optical input device according to a third embodiment.
FIGS. 5A and 5B are diagrams according to a fourth embodiment, FIG. 5A is a configuration diagram schematically showing an optical input device according to the fourth embodiment, and FIG. 5B is a modification of the fourth embodiment; It is a block diagram which shows schematically the optical input device which concerns on an example
6A and 6B are diagrams according to a fifth embodiment, where FIG. 6A is a diagram illustrating a condenser lens, and FIG. 6B is a graph illustrating a relationship between spot displacement and an output signal.
FIG. 7 is a diagram according to a sixth embodiment, (a) is a block diagram schematically showing an optical input device according to the sixth embodiment, and (b) is a diagram of an optical spot and an output signal; It is a graph which shows a relationship.
FIG. 8 is a block diagram schematically showing an optical input device according to a seventh embodiment.
FIG. 9 is a block diagram schematically showing an optical input device according to an eighth embodiment.
FIG. 10 is a block diagram schematically showing an optical input device according to a ninth embodiment.
11A and 11B are diagrams related to the tenth embodiment. FIG. 11A is a configuration diagram schematically illustrating an optical input device according to the tenth embodiment. FIG. 11B is a diagram illustrating spot displacements, output signals, and the like. It is a graph which shows the relationship.
FIG. 12 shows a conventional optical input device.
FIG. 13 is a diagram showing a conventional optical input device.
[Explanation of symbols]
1 Movable member (movable means)
1b Second movable part (part of movable means)
2a Light source
2b Biconvex lens (Condensing optical system)
2c Cylindrical lens (astigmatism optical system)
2e Light projecting part (light projecting means)
3 Photoelectric conversion part (photoelectric conversion means)
3a, 3b, 3c, 3d Light receiving surface (light receiving element)
4 Displacement detection circuit (displacement detection means)
11a, 11b, 12a, 12b Elastic body (holding member)
13 Light quantity detection unit (light quantity detection means)
20 spots
45 Light source controller (sensitivity control means)
50 Light source control unit (light source control means)
51 Comparison part (reference means)
53 Resolution selection unit (selection means)
60 Energization detection unit (energization detection means)
61a, 61b, 61c, 61d Switch circuit (output detection means)
62a, 62b, 62c, 62d Storage unit (storage unit)
65 Light source drive unit (light source drive means)
66 Light source drive unit (light source drive means)
67a, 67b, 67c, 67d Drive detection unit (drive detection means)
70 Correction part (correction means)
80 Optical input devices

Claims (11)

荷重を加えると3次元に可動する可動手段と、光源及びこの光源からの光束を集光する集光光学系を備える投光手段と、投光手段からの光束が入射する複数の受光面を備える光電変換手段とを備え、投光手段及び光電変換手段のいずれか一方を可動手段の所定の部位に設置している光入力デバイスであって、
投光手段からの光束に非点収差を与える非点収差光学系と、可動手段の変位を検出する変位検出手段とを備え、可動手段の変位による光電変換手段の各受光面上における光束のスポットの移動とスポットの形状の変化とに伴って各受光面に入射する光量変化があり、変位検出手段は各受光面からの出力信号により可動手段の変位を検出することを特徴とする光入力デバイス。
A movable unit that moves in three dimensions when a load is applied, a light projecting unit that includes a light source and a condensing optical system that collects a light beam from the light source, and a plurality of light receiving surfaces on which the light beam from the light projecting unit is incident An optical input device comprising a photoelectric conversion means, wherein one of the light projecting means and the photoelectric conversion means is installed at a predetermined part of the movable means,
An astigmatism optical system that gives astigmatism to the light flux from the light projecting means, and a displacement detection means for detecting the displacement of the movable means, and a spot of the light flux on each light receiving surface of the photoelectric conversion means due to the displacement of the movable means The light input device is characterized in that there is a change in the amount of light incident on each light receiving surface with the movement of the light and the change in the shape of the spot, and the displacement detecting means detects the displacement of the movable means based on the output signal from each light receiving surface. .
可動手段を2次元の平面方向とこの平面方向に略垂直方向とに変位可能に保持する保持部材を備え、光電変換手段の各受光面は、点対称の位置に少なくとも4つの受光素子を備え、非点収差光学系は光源からの照射光束を各受光面への焦点位置前後で楕円スポット形状を付加する光学系であり、光電変換手段は、可動手段に荷重が付加されていない状態で各受光面上で略円形状をなす位置に配置され、且つ各受光面の重心が可変手段に光軸方向への変位が与えられた際の楕円スポットの長軸及び短軸に略平行になるように配置されていることを特徴とする請求項1に記載の光入力デバイス。A holding member that holds the movable means so as to be displaceable in a two-dimensional plane direction and a direction substantially perpendicular to the plane direction, and each light receiving surface of the photoelectric conversion means includes at least four light receiving elements at point-symmetric positions; The astigmatism optical system is an optical system that adds an elliptical spot shape before and after the focal position on each light receiving surface of the light flux from the light source. The photoelectric conversion means receives each light in a state where no load is applied to the movable means. So that the center of gravity of each light receiving surface is substantially parallel to the major and minor axes of the elliptical spot when the variable means is displaced in the direction of the optical axis. The optical input device according to claim 1, wherein the optical input device is arranged. 可動部材の一部が、光束の光軸方向の荷重により独立して変位可能であることを特徴とする請求項1又は2に記載の光入力デバイス。The optical input device according to claim 1, wherein a part of the movable member can be independently displaced by a load in the optical axis direction of the light beam. 集光光学系と非点収差光学系とが同一の光学素子により構成されていることを特徴とする請求項1乃至3のいずれかに記載の光入力デバイス。4. The optical input device according to claim 1, wherein the condensing optical system and the astigmatism optical system are configured by the same optical element. 集光光学系若しくは非点収差光学系のいずれか一方の透過率や反射率を光軸中心から変化するように構成したことを特徴とする請求項1乃至4のいずれかに記載の光入力デバイス。5. The optical input device according to claim 1, wherein the transmittance or reflectance of either the condensing optical system or the astigmatism optical system is changed from the center of the optical axis. . 光電変換手段に入射する全光量を検知する光量検知手段と、光量検知手段からの光量情報を基に変位検出手段の検出感度を制御する感度制御手段とを備えたことを特徴とする請求項1乃至5のいずれかに記載の光入力デバイス。2. A light quantity detection means for detecting the total light quantity incident on the photoelectric conversion means, and a sensitivity control means for controlling the detection sensitivity of the displacement detection means based on the light quantity information from the light quantity detection means. The optical input device according to any one of 1 to 5. 変位検出手段の検出変位の感度を操作者が選択可能な選択手段と、選択手段に対応した光源の発光光量情報を参照する参照手段とを有し、光源の発光量が発光光量情報と同一になるように光源を制御する光量制御手段を備えたことを特徴とする請求項1乃至6のいずれかに記載の光入力デバイス。There is a selection unit that allows the operator to select the sensitivity of the detected displacement of the displacement detection unit, and a reference unit that refers to the light emission amount information of the light source corresponding to the selection unit, and the light emission amount of the light source is the same as the light emission amount information The light input device according to claim 1, further comprising a light amount control means for controlling the light source. 光量制御手段は、変位検出手段の所定の方向の検出感度のみを光量検出手段の出力値に依存しないことを特徴とする請求項6又は7に記載の光入力デバイス。The light input device according to claim 6 or 7, wherein the light quantity control means does not depend only on a detection sensitivity of the displacement detection means in a predetermined direction depending on an output value of the light quantity detection means. 光入力デバイスを搭載する装置の電源若しくは光入力デバイスへの通電のいずれかを検知する通電検知手段と、通電検知手段からの制御信号により光電変換手段からの各出力信号を取り込む出力検出手段と、出力検出手段による各出力値を記憶しておく記憶手段を備え、変位検出手段による変位検出時において記憶手段の情報を参照して変位情報を補正することを特徴とする請求項1乃至8のいずれかに記載の光入力デバイス。An energization detecting means for detecting either the power supply of the apparatus equipped with the optical input device or the energization to the optical input device, an output detecting means for capturing each output signal from the photoelectric conversion means by a control signal from the energization detecting means, 9. A storage means for storing each output value by the output detection means, and the displacement information is corrected by referring to the information in the storage means at the time of displacement detection by the displacement detection means. An optical input device according to claim 1. 光源を間欠に駆動するための光源駆動手段と、光源駆動手段の駆動信号を参照して光電変換手段からの各出力信号を取り込む駆動検出手段を備えることを特徴とする請求項1乃至9のいずれかに記載の光入力デバイス。10. A light source driving means for intermittently driving the light source, and a drive detection means for taking in each output signal from the photoelectric conversion means with reference to a driving signal of the light source driving means. An optical input device according to claim 1. 変位検出手段からの光軸方向の変位情報をもとに、光電変換手段の各受光面からの平面内の変位方向の検出情報を補正する補正手段を備えることを特徴とする請求項1乃至10のいずれかに記載の光入力デバイス。11. A correction means for correcting detection information in a displacement direction in a plane from each light receiving surface of the photoelectric conversion means based on displacement information in the optical axis direction from the displacement detection means. The optical input device according to any one of the above.
JP2000310326A 2000-10-11 2000-10-11 Optical input device Expired - Fee Related JP3938274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000310326A JP3938274B2 (en) 2000-10-11 2000-10-11 Optical input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000310326A JP3938274B2 (en) 2000-10-11 2000-10-11 Optical input device

Publications (2)

Publication Number Publication Date
JP2002116876A JP2002116876A (en) 2002-04-19
JP3938274B2 true JP3938274B2 (en) 2007-06-27

Family

ID=18790307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000310326A Expired - Fee Related JP3938274B2 (en) 2000-10-11 2000-10-11 Optical input device

Country Status (1)

Country Link
JP (1) JP3938274B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024163A1 (en) * 2005-08-22 2007-03-01 Qinzhong Ye Free-space pointing and handwriting

Also Published As

Publication number Publication date
JP2002116876A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
US8536472B2 (en) Rotary switch mechanism
US8212794B2 (en) Optical finger navigation utilizing quantized movement information
CN1928801B (en) Position detection system using laser speckle
US7889178B2 (en) Programmable resolution for optical pointing device
JPH10207616A (en) Inputting device
WO2007024163A1 (en) Free-space pointing and handwriting
GB2383128A (en) Optical pointing device with a transparent removable panel
US20060158424A1 (en) Optical slide pad
KR20010051563A (en) Optical digitizer using curved mirror
US7514668B2 (en) Optical navigation device that utilizes a vertical cavity surface emitting laser (VCSEL) configured to emit visible coherent light
US20070109269A1 (en) Input system with light source shared by multiple input detecting optical sensors
JP3938274B2 (en) Optical input device
RU2630165C2 (en) Compact pointing device "mouse"
JP3473888B2 (en) Input device
JPH09160713A (en) Signal conversion device, signal input device and force-electricity transducing device
EP2227733B1 (en) Input device for an electronic device
JP3837804B2 (en) Optical digitizer
US20110186639A1 (en) Contact aperture for imaging apparatus
TWI406163B (en) Mouse with single image sensor chip for sensing of movement and clicking, and transferring method of signal thereof
KR20070001292A (en) Complex input device comprising mouse function, digital pen function and space pointer function
JPH09128139A (en) Input device for computer or the like
WO2012071020A1 (en) Optics for pencil optical input computer peripheral controller
JP2001084108A (en) Device for inputting and detecting and displaying coordinate
JP2024018184A (en) electronic pen
JPH06250780A (en) Data input device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees