JP3938059B2 - Neutron detector - Google Patents

Neutron detector Download PDF

Info

Publication number
JP3938059B2
JP3938059B2 JP2003024690A JP2003024690A JP3938059B2 JP 3938059 B2 JP3938059 B2 JP 3938059B2 JP 2003024690 A JP2003024690 A JP 2003024690A JP 2003024690 A JP2003024690 A JP 2003024690A JP 3938059 B2 JP3938059 B2 JP 3938059B2
Authority
JP
Japan
Prior art keywords
neutrons
moderator
neutron
ultrafast
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003024690A
Other languages
Japanese (ja)
Other versions
JP2004233282A (en
Inventor
剛 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003024690A priority Critical patent/JP3938059B2/en
Publication of JP2004233282A publication Critical patent/JP2004233282A/en
Application granted granted Critical
Publication of JP3938059B2 publication Critical patent/JP3938059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、原子力発電所等における放射線量を計測するための線量計等に使用される中性子検出器に関する。
【0002】
【従来の技術】
中性子は、電荷をもたない放射線であって、物質との相互作用が弱く、直接検出することが難しい放射線である。そのため、中性子検出器には、中性子との相互作用の断面積(核反応断面積)が大きい物質との相互作用で発生する陽子やα線を介して中性子を検出する方式が採用されている。その方式の中性子検出器の一つとして、熱中性子との核反応断面積が大きいHeを用いた球形のHe中性子計数管と、厚いポリエチレン等からなる球形のモデレータと、を組み合わせた方式のものがある。
【0003】
図4はこのような中性子検出器の一例の構成を示す概念図である。
この中性子検出器1は、He中性子計数管11とモデレータ12と信号処理回路14と前2者を保持し信号処理回路14を収納する架台13とで構成されている。
Heと熱中性子の核反応断面積は非常に大きく、核反応の結果として陽子が生成される。He中性子計数管11は、この陽子による電離電流を検出することによって中性子、主に熱中性子、を検出する。厚いポリエチレン等からなるモデレータ12は、He中性子計数管11の球状部と同じ中心をもつ球状で、エネルギーの大きい高中速中性子を減速して、He中性子計数管11で検出され易い低速中性子にする。モデレータ12の大きさは、例えばΦ350mmである。
【0004】
参考までに、Heと中性子の核反応断面積を、中性子のエネルギーが1MeVの場合を基準として示すと、下記のとおりである。
熱中性子 : 8,700
10 keV : 13
0.1MeV : 3.1
1 MeV : 1
5 MeV : 0.56
【0005】
【発明が解決しようとする課題】
しかし、上記の中性子検出器1においては、宇宙線等に含まれる50MeV以上の非常に高いエネルギーの中性子(超高速中性子)に対するモデレータ12の減速効果が不十分であり、100MeVのエネルギーをもつ中性子の検出感度が3分の1以下に低下してしまう。また、測定した線量値が増加した場合に、宇宙線によるバックグランド値の増加なのか、問題としなければならない人工的な中性子(遮蔽体劣化による漏洩中性子等)の増加なのか、を区別することが困難である。
この発明の課題は、50MeV以上のエネルギーをもつ中性子(超高速中性子)の検出感度低下が改善されて、中性子の検出精度が高く、且つ、検出された中性子の主なものが宇宙線等の超高速中性子か数MeV以下の中性子かを区別できる中性子検出器を提供することである。
【0006】
【課題を解決するための手段】
請求項1の発明は、中低速中性子の検出手段と、この検出手段を囲み中性子を減速するモデレータと、検出手段からの信号を処理する信号処理回路と、を備えた中性子検出器であって、2組の検出手段及びモデレータを備え、一方のモデレータの外側に、宇宙線等に含まれる超高速中性子と相互作用して複数の中性子を放出する増感部材を備えている。
一方のモデレータの外側に、宇宙線等に含まれる超高速中性子と相互作用して複数の中性子を放出する増感部材を備えているので、中性子の中に超高速中性子が含まれていると、増感部材を備えていないモデレータ側からの測定値に比べて、増感部材を備えているモデレータ側からの測定値の方が大きくなり、超高速中性子の検出感度が改善され、両者の差から、測定された中性子の線量値の内に占める超高速中性子の線量値を算出することができる。
【0007】
請求項2の発明は、中低速中性子の検出手段と、この検出手段を囲み中性子を減速するモデレータと、検出手段からの信号を処理する信号処理回路と、を備えた中性子検出器であって、モデレータの一部に挿入孔を有し、この挿入孔に着脱可能に挿入され、且つ宇宙線等に含まれる超高速中性子と相互作用して複数の中性子を放出する増感部材を備えている。
増感部材をモデレータの挿入孔に挿入するか取り出すかによって、増感部材の有無による2つの測定値が得られるので、請求項1の発明と同様に、超高速中性子の検出感度が改善され、両測定値の差から、測定された中性子の線量値の内に占める超高速中性子の線量値を算出することができる。
【0008】
請求項3の発明は、中低速中性子の検出手段と、この検出手段を囲み中性子を減速するモデレータと、検出手段からの信号を処理する信号処理回路と、を備えた中性子検出器であって、モデレータの表面に着脱可能に装着され、且つ宇宙線等に含まれる超高速中性子と相互作用して複数の中性子を放出する増感部材を備えている。
増感部材をモデレータの表面に着脱することによって、請求項2の発明と同様に、増感部材の有無による2つの測定値が得られるので、超高速中性子の検出感度が改善され、両測定値の差から、測定された中性子の線量値の内に占める超高速中性子の線量値を算出することができる。
【0009】
請求項4の発明は、請求項1から請求項3の発明のいずれかにおいて、前記増感部材が鉛からなる。
鉛は、増感部材としての効果が高く、入手が容易であり、それほど高価な材料ではない。
【0010】
【発明の実施の形態】
この発明による中性子検出器の実施の形態について、実施例を用いて説明する。なお、従来技術と同じ機能の部分には同じ符号を付ける。
〔第1の実施例〕
図1は、この発明による中性子検出器の第1の実施例の構成を示す概念図である。
この中性子検出器1aは、2組のHe中性子計数管11及びモデレータ12と、一方(図1では左側)のモデレータ12の外側を覆う増感部材としての鉛増感度材15と、2つのHe中性子計数管11からの信号を処理する信号処理回路14aと、表示回路16と、He中性子計数管11、モデレータ12及び鉛増感度材15からなる中性子検出部を保持し、信号処理回路14a及び表示回路16を収納する架台13aと、で構成されている。
【0011】
He中性子計数管11及びモデレータ12は、従来技術と同じであるので、その説明は省略する。
増感部材としての鉛増感度材15は、宇宙線等の超高速中性子の検出感度を高めるための部材であり、鉛からなり、厚さ15mmの球殻状である。鉛は、超高速中性子と核反応して複数個の中性子を放出する核反応断面積が大きいので、超高速中性子の検出感度を高める部材として機能する。したがって、鉛増感度材15を備えることによって、超高速中性子が存在する時の計数値が増加し、従来の中性子検出器における超高エネルギー領域での感度低下が改善される。
【0012】
2つのHe中性子計数管11の出力信号は信号処理回路14aに入力され、それぞれの計数値が計数され、左側のHe中性子計数管11の計数値と右側のHe中性子計数管11の計数値とが比較され、その差が求められる。左側のHe中性子計数管11は、鉛増感度材15によって完全に囲まれているので、鉛増感度材15から放出された中性子を効率良く検出するが、右側のHe中性子計数管11は、鉛増感度材15から離れているので、鉛増感度材15から放出された中性子をそれほど検出しない。したがって、両計数値の差とそれぞれの部材の大きさや配置から、超高速中性子によって鉛増感度材15から放出された中性子の数が推定され、超高速中性子の線量が推定される。両計数値の差が小さい場合は、超高速中性子が少ないことを表し、大きい場合は、超高速中性子が多いことを表す。
【0013】
このようにして算出される超高速中性子の線量値が、それ以外の中性子の線量値と合算され、中性子の線量値として表示回路16に表示される。必要に応じて、超高速中性子の線量値も表示回路16に表示される。
なお、鉛増感度材15の大きさや厚さを最適値に選定すれば、左側のHe中性子計数管11の出力信号だけで中性子の線量値を算出することも可能である。この場合には、右側のHe中性子計数管11の出力信号は、超高速中性子の線量値の割合を算出するのに必要とされるだけである。したがって、超高速中性子の線量値の割合を算出する必要が無い場合には、右側のHe中性子計数管11及びモデレータ12を省略することができる。
【0014】
第1の実施例は、2組のHe中性子計数管及びモデレータを備えているが、以下で説明する第2の実施例及び第3の実施例は、軽量化して可搬型とするために、He中性子計数管及びモデレータを1組とし、且つ増感部材を着脱可能な構造として、増感部材の着脱によって、増感部材の有無に対応する中性子の計数値を計数する。
〔第2の実施例〕
図2は第2の実施例の構成を示す概念図である。
この中性子検出器1bにおいては、モデレータとして、増感部材である鉛増感板15aを挿入する挿入孔121を備えたモデレータ12aが用いられ、信号処理回路14bを収納するケース17は、携帯に適した形状とするために、モデレータ12aの側面に取り付けられ、ケース17には不図示の把手も取り付けられている。
【0015】
可搬型とするために、モデレータ12aの直径を200mmと小さくし、鉛増感板15aも軽くした。鉛増感板15aの寸法は、例えば厚さ15mm、長さ200mm、幅150mmである。
鉛増感板15aの効果の例を以下に示す。
バックグランドの計数において、鉛増感板15aを外した状態では1.2cpmを計数したのに対して、鉛増感板15aを挿入した状態では1.6cpmを計数した。増加した0.4cpmが、宇宙線に含まれる超高速中性子によって鉛増感板15aから放出された中性子に対応する。
【0016】
また、加速器による65MeVの中性子場における計数では、鉛増感板15aを外した状態では240cpsを計数したのに対して、鉛増感板15aを挿入した状態では770cpsを計数し、鉛増感板15aの挿入によって計数値が約3倍に増大した。
〔第3の実施例〕
図3は第3の実施例の構成を示す概念図である。
この中性子検出器1cにおいては、モデレータとして、従来例と同じ形状の、挿入孔のないモデレータ12が用いられ、増感部材として、モデレータ12の表面にぴったりと載せられるような、球殻の一部に相当する形状の鉛増感板15bが用いられている。信号処理回路14b及びケース17は第2の実施例と同じである。
【0017】
図3のように鉛増感板15bをモデレータ12上に載置するか、取り外すか、によって、第2の実施例と同様に、宇宙線等に含まれる超高速中性子による計数を弁別することができる。
なお、図3には図示していないが、モデレータ12の頂点に小さな突起等を設け、鉛増感板15bの中央に凹みまたは貫通孔を設けて、突起等と凹みまたは貫通孔とを嵌め合わせる構造にするとよく、必要に応じて鉛増感板15bをネジ止めする構造にすればよい。この構造は、鉛増感板15bの位置決め及び固定が簡単にでき、携帯にも便利である。
【0018】
以上の実施例においては、中低速中性子の検出手段としてHe中性子計数管を用いた場合のみを説明してきたが、He中性子計数管を他の検出手段、例えば表面に10B膜を形成された半導体検出器、に置き換えることも可能である。
【0019】
【発明の効果】
請求項1の発明においては、2組の検出手段及びモデレータを備え、一方のモデレータの外側に、宇宙線等に含まれる超高速中性子と相互作用して複数の中性子を放出する増感部材を備えているので、超高速中性子の検出感度が改善され、且つ、中性子の中に超高速中性子が含まれていると、増感部材を備えていないモデレータ側からの測定値に比べて、増感部材を備えているモデレータ側からの測定値の方が大きくなり、両者の差から、測定された中性子の線量値の内に占める超高速中性子の線量値を算出することができる。
【0020】
したがって、この発明によれば、検出精度が高く、且つ、検出された中性子の主なものが、宇宙線等の超高速中性子か、数MeV以下の中性子か、の区別可能な中性子検出器を提供することができる。
請求項2の発明においては、モデレータの一部に挿入孔を有し、この挿入孔に着脱可能に挿入され、且つ宇宙線等に含まれる超高速中性子と相互作用して複数の中性子を放出する増感部材を備えているので、増感部材をモデレータの挿入孔に挿入するか取り出すかによって、増感部材の有無による2つの測定値が得られ、請求項1の発明と同様に、超高速中性子の検出感度が改善され、両測定値の差から、測定された中性子の線量値の内に占める超高速中性子の線量値を算出することができる。
【0021】
請求項3の発明においては、モデレータの表面に着脱可能に装着され、且つ宇宙線等に含まれる超高速中性子と相互作用して複数の中性子を放出する増感部材を備えているので、増感部材をモデレータの表面に着脱することによって、増感部材の有無による2つの測定値が得られ、超高速中性子の検出感度が改善され、両測定値の差から、測定された中性子の線量値の内に占める超高速中性子の線量値を算出することができる。
請求項4の発明においては、増感部材が鉛からなる。鉛は、超高速中性子の増感効果が高く、入手が容易であり、それほど高価な材料ではなく、増感部材として最適の材料である。
【図面の簡単な説明】
【図1】この発明による中性子検出器の第1の実施例の構成を示す概念図
【図2】第2の実施例の構成を示す概念図
【図3】第3の実施例の構成を示す概念図
【図4】従来技術による中性子検出器の一例の構成を示す概念図
【符号の説明】
1, 1a, 1b, 1c 中性子検出器
11 He中性子計数管
12, 12a モデレータ
13, 13a 架台
14, 14a, 14b 信号処理回路
15 鉛増感度材
15a, 15b 鉛増感板
16 表示回路
17 ケース
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a neutron detector used for a dosimeter for measuring a radiation dose in a nuclear power plant or the like.
[0002]
[Prior art]
Neutrons are radiation that has no electric charge and is difficult to detect directly because of its weak interaction with matter. Therefore, a neutron detector employs a method of detecting neutrons via protons and α rays generated by interaction with a substance having a large cross-sectional area (nuclear reaction cross-section) of interaction with neutrons. As one of the neutron detectors, a combination of a spherical 3 He neutron counter using 3 He, which has a large nuclear reaction cross section with thermal neutrons, and a spherical moderator made of thick polyethylene, etc. There is something.
[0003]
FIG. 4 is a conceptual diagram showing the configuration of an example of such a neutron detector.
The neutron detector 1 includes a 3 He neutron counter 11, a moderator 12, a signal processing circuit 14, and a base 13 that holds the former two and accommodates the signal processing circuit 14.
The nuclear reaction cross section between 3 He and thermal neutrons is very large, and protons are generated as a result of the nuclear reaction. The 3 He neutron counter 11 detects neutrons, mainly thermal neutrons, by detecting the ionization current due to the protons. Moderator 12 made of thick polyethylene or the like, spherical with the same center as the spherical portion of the 3 He neutron counter tube 11, to slow the taller medium speed neutrons energy, to easily slow neutrons detected by the 3 He neutron counter tube 11 To do. The size of the moderator 12 is, for example, Φ350 mm.
[0004]
For reference, the nuclear reaction cross section of 3 He and neutrons is shown below with reference to the case where the neutron energy is 1 MeV.
Thermal neutrons: 8,700
10 keV: 13
0.1MeV: 3.1
1 MeV: 1
5 MeV: 0.56
[0005]
[Problems to be solved by the invention]
However, in the neutron detector 1 described above, the moderator 12 has an insufficient moderating effect on very high energy neutrons (ultrafast neutrons) of 50 MeV or more contained in cosmic rays and the like, and neutrons having energy of 100 MeV are insufficient. The detection sensitivity is reduced to 1/3 or less. In addition, when the measured dose value increases, it is necessary to distinguish between an increase in the background value due to cosmic rays and an increase in artificial neutrons (such as leaked neutrons due to shield deterioration) that must be a problem. Is difficult.
The problem of the present invention is that the detection sensitivity of neutrons (ultrafast neutrons) with energy of 50 MeV or more is improved, the detection accuracy of neutrons is high, and the main detected neutrons are super cosmic rays, etc. The purpose is to provide a neutron detector that can distinguish between fast neutrons and neutrons of several MeV or less.
[0006]
[Means for Solving the Problems]
The invention of claim 1 is a neutron detector comprising a medium-slow neutron detection means, a moderator surrounding the detection means and decelerating neutrons, and a signal processing circuit for processing a signal from the detection means, Two sets of detection means and a moderator are provided, and a sensitizing member that emits a plurality of neutrons by interacting with ultrafast neutrons included in cosmic rays or the like is provided outside one moderator.
Since there is a sensitizing member that emits multiple neutrons by interacting with ultrafast neutrons contained in cosmic rays etc. on the outside of one moderator, if ultrafast neutrons are included in the neutrons, Compared with the measured value from the moderator without the sensitizing member, the measured value from the moderator with the sensitizing member is larger, and the detection sensitivity of ultrafast neutrons is improved. The dose value of ultrafast neutrons in the measured dose value of neutrons can be calculated.
[0007]
The invention of claim 2 is a neutron detector comprising a medium-slow neutron detection means, a moderator surrounding the detection means and decelerating neutrons, and a signal processing circuit for processing a signal from the detection means, The moderator has an insertion hole, and is provided with a sensitizing member that is detachably inserted into the insertion hole and that emits a plurality of neutrons by interacting with ultrafast neutrons contained in cosmic rays or the like.
Depending on whether the sensitizing member is inserted into or removed from the insertion hole of the moderator, two measurement values based on the presence or absence of the sensitizing member can be obtained, so that the detection sensitivity of ultrafast neutrons is improved as in the first aspect of the invention. From the difference between the two measured values, it is possible to calculate the ultrafast neutron dose value that occupies the measured neutron dose value.
[0008]
The invention of claim 3 is a neutron detector comprising a medium-slow neutron detection means, a moderator surrounding the detection means and decelerating neutrons, and a signal processing circuit for processing a signal from the detection means, A sensitizing member that is detachably attached to the surface of the moderator and that emits a plurality of neutrons by interacting with ultrafast neutrons contained in cosmic rays or the like is provided.
By attaching / detaching the sensitizing member to / from the surface of the moderator, two measurement values based on the presence / absence of the sensitizing member can be obtained in the same manner as in the invention of claim 2. From this difference, it is possible to calculate the ultrafast neutron dose value that occupies the measured neutron dose value.
[0009]
According to a fourth aspect of the present invention, in any one of the first to third aspects, the sensitizing member is made of lead.
Lead has a high effect as a sensitizing member, is easily available, and is not a very expensive material.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the neutron detector according to the present invention will be described using examples. In addition, the same code | symbol is attached | subjected to the part of the same function as a prior art.
[First embodiment]
FIG. 1 is a conceptual diagram showing a configuration of a first embodiment of a neutron detector according to the present invention.
This neutron detector 1a includes two sets of 3 He neutron counters 11 and a moderator 12, a lead sensitizing material 15 as a sensitizing member covering the outside of one moderator 12 (left side in FIG. 1), and two three A signal processing circuit 14a for processing a signal from the He neutron counter 11, a display circuit 16, a neutron detector comprising a 3 He neutron counter 11, a moderator 12 and a lead sensitizer 15 are held, and a signal processing circuit 14a And a gantry 13a for accommodating the display circuit 16.
[0011]
Since the 3 He neutron counter 11 and the moderator 12 are the same as those in the prior art, the description thereof is omitted.
The lead sensitizing material 15 as a sensitizing member is a member for increasing the detection sensitivity of ultrafast neutrons such as cosmic rays, and is made of lead and has a spherical shell shape with a thickness of 15 mm. Since lead has a large nuclear reaction cross-sectional area that emits a plurality of neutrons by reacting with ultrafast neutrons, it functions as a member that increases the detection sensitivity of ultrafast neutrons. Therefore, by providing the lead sensitizing material 15, the count value when ultrafast neutrons are present is increased, and the sensitivity reduction in the ultrahigh energy region in the conventional neutron detector is improved.
[0012]
The output signals of the two 3 He neutron counters 11 are input to the signal processing circuit 14a, and the respective count values are counted, and the count values of the left 3 He neutron counter 11 and the right 3 He neutron counter 11 are totaled. The numerical value is compared and the difference is obtained. Since the left 3 He neutron counter 11 is completely surrounded by the lead sensitizer 15, it efficiently detects neutrons emitted from the lead sensitizer 15, but the right 3 He neutron counter 11 The neutron emitted from the lead sensitizing material 15 is not detected so much because it is away from the lead sensitizing material 15. Therefore, the number of neutrons emitted from the lead-sensitized material 15 by ultrafast neutrons is estimated from the difference between the two count values and the size and arrangement of each member, and the dose of ultrafast neutrons is estimated. When the difference between the two count values is small, it indicates that there are few ultrafast neutrons, and when the difference is large, there are many ultrafast neutrons.
[0013]
The ultrafast neutron dose value calculated in this way is added to the other neutron dose values, and is displayed on the display circuit 16 as a neutron dose value. If necessary, the dose value of ultrafast neutrons is also displayed on the display circuit 16.
If the size and thickness of the lead sensitizing material 15 are selected as optimum values, it is possible to calculate the neutron dose value only from the output signal of the left 3 He neutron counter 11. In this case, the output signal of the right 3 He neutron counter 11 is only required to calculate the dose ratio of ultrafast neutrons. Therefore, when it is not necessary to calculate the dose ratio of ultrafast neutrons, the right 3 He neutron counter 11 and moderator 12 can be omitted.
[0014]
The first embodiment includes two sets of 3 He neutron counters and a moderator. However, the second and third embodiments described below are designed to be lightweight and portable. The 3 He neutron counter and moderator are combined into one set, and the sensitizing member is detachable, and the neutron count value corresponding to the presence or absence of the sensitizing member is counted by attaching / detaching the sensitizing member.
[Second Embodiment]
FIG. 2 is a conceptual diagram showing the configuration of the second embodiment.
In this neutron detector 1b, a moderator 12a having an insertion hole 121 for inserting a lead sensitizing plate 15a, which is a sensitizing member, is used as a moderator, and the case 17 for housing the signal processing circuit 14b is suitable for carrying. In order to obtain a curved shape, it is attached to the side surface of the moderator 12a, and a handle (not shown) is also attached to the case 17.
[0015]
In order to make it portable, the diameter of the moderator 12a was reduced to 200 mm, and the lead intensifying plate 15a was also lightened. The dimensions of the lead intensifying plate 15a are, for example, 15 mm thick, 200 mm long, and 150 mm wide.
An example of the effect of the lead intensifying plate 15a is shown below.
In the background counting, 1.2 cpm was counted when the lead sensitizing plate 15a was removed, whereas 1.6 cpm was counted when the lead sensitizing plate 15a was inserted. The increased 0.4 cpm corresponds to the neutrons emitted from the lead intensifying plate 15a by the ultrafast neutrons included in the cosmic rays.
[0016]
In addition, in the 65 MeV neutron field counting by the accelerator, 240 cps was counted with the lead intensifying plate 15a removed, whereas 770 cps was counted with the lead intensifying plate 15a inserted, and the lead intensifying plate Insertion of 15a increased the count value approximately 3-fold.
[Third embodiment]
FIG. 3 is a conceptual diagram showing the configuration of the third embodiment.
In this neutron detector 1c, a moderator 12 having the same shape as that of the conventional example and having no insertion hole is used as a moderator, and a part of a spherical shell that can be placed on the surface of the moderator 12 as a sensitizing member. A lead intensifying plate 15b having a shape corresponding to the above is used. The signal processing circuit 14b and the case 17 are the same as those in the second embodiment.
[0017]
As in the second embodiment, it is possible to discriminate counting by ultrafast neutrons contained in cosmic rays, depending on whether the lead sensitizing plate 15b is placed on the moderator 12 or removed as shown in FIG. it can.
Although not shown in FIG. 3, a small protrusion or the like is provided at the apex of the moderator 12, a recess or a through hole is provided in the center of the lead sensitizing plate 15b, and the protrusion or the like is fitted to the recess or the through hole. A structure may be used, and the lead sensitizing plate 15b may be screwed as necessary. With this structure, the lead intensifying plate 15b can be easily positioned and fixed, and is convenient for carrying.
[0018]
In the above embodiment, only the case where the 3 He neutron counter is used as the medium slow neutron detection means has been described. However, the 3 He neutron counter is formed by another detection means such as a 10 B film on the surface. It is also possible to replace it with a semiconductor detector.
[0019]
【The invention's effect】
According to the first aspect of the present invention, two sets of detection means and a moderator are provided, and a sensitizing member that emits a plurality of neutrons by interacting with ultrafast neutrons included in cosmic rays or the like is provided outside one of the moderators. Therefore, when the detection sensitivity of ultrafast neutrons is improved and the ultrafast neutrons are included in the neutrons, the sensitizing member is compared with the measured value from the moderator without the sensitizing member. The measured value from the moderator side equipped with is larger, and the dose value of ultrafast neutrons in the measured neutron dose value can be calculated from the difference between the two.
[0020]
Therefore, according to the present invention, there is provided a neutron detector with high detection accuracy and capable of distinguishing whether the main detected neutrons are ultrafast neutrons such as cosmic rays or neutrons of several MeV or less. can do.
In the invention of claim 2, the moderator has an insertion hole, is detachably inserted into the insertion hole, and emits a plurality of neutrons by interacting with ultrafast neutrons contained in cosmic rays or the like. Since the sensitizing member is provided, two measured values based on the presence or absence of the sensitizing member can be obtained depending on whether the sensitizing member is inserted into or removed from the insertion hole of the moderator. The detection sensitivity of neutrons is improved, and the dose value of ultrafast neutrons occupying the measured dose value of neutrons can be calculated from the difference between the two measured values.
[0021]
In the invention of claim 3, since the sensitizing member is detachably attached to the surface of the moderator and emits a plurality of neutrons by interacting with ultrafast neutrons contained in cosmic rays or the like, it is sensitized. By attaching / detaching the member to / from the surface of the moderator, two measurements based on the presence or absence of the sensitizing member are obtained, the detection sensitivity of ultrafast neutrons is improved, and the measured neutron dose value is calculated from the difference between the two measurements. The dose value of ultrafast neutrons occupying the inside can be calculated.
In the invention of claim 4, the sensitizing member is made of lead. Lead has a high sensitization effect of ultrafast neutrons, is easily available, is not a very expensive material, and is an optimal material as a sensitizing member.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing the configuration of a first embodiment of a neutron detector according to the present invention. FIG. 2 is a conceptual diagram showing the configuration of a second embodiment. FIG. 3 shows the configuration of a third embodiment. Schematic diagram [Fig. 4] Schematic diagram showing the configuration of an example of a conventional neutron detector [Explanation of symbols]
1, 1a, 1b, 1c neutron detector
11 3 He Neutron Counter
12, 12a Moderator
13, 13a
14, 14a, 14b Signal processing circuit
15 Lead sensitizer
15a, 15b Lead intensifier
16 Display circuit
17 cases

Claims (4)

中低速中性子の検出手段と、この検出手段を囲み中性子を減速するモデレータと、検出手段からの信号を処理する信号処理回路と、を備えた中性子検出器であって、
2組の検出手段及びモデレータを備え、
一方のモデレータの外側に、宇宙線等に含まれる超高速中性子と相互作用して複数の中性子を放出する増感部材を備えている、
ことを特徴とする中性子検出器。
A neutron detector comprising a medium / low-speed neutron detection means, a moderator surrounding the detection means and decelerating neutrons, and a signal processing circuit for processing a signal from the detection means,
2 sets of detection means and moderator,
Provided on the outside of one moderator is a sensitizing member that emits multiple neutrons by interacting with ultrafast neutrons contained in cosmic rays, etc.
A neutron detector characterized by that.
中低速中性子の検出手段と、この検出手段を囲み中性子を減速するモデレータと、検出手段からの信号を処理する信号処理回路と、を備えた中性子検出器であって、
モデレータの一部に挿入孔を有し、
この挿入孔に着脱可能に挿入され、且つ宇宙線等に含まれる超高速中性子と相互作用して複数の中性子を放出する増感部材を備えている、
ことを特徴とする中性子検出器。
A neutron detector comprising a medium / low-speed neutron detection means, a moderator surrounding the detection means and decelerating neutrons, and a signal processing circuit for processing a signal from the detection means,
There is an insertion hole in a part of the moderator,
It is detachably inserted into this insertion hole, and includes a sensitizing member that interacts with ultrafast neutrons contained in cosmic rays and the like to emit a plurality of neutrons,
A neutron detector characterized by that.
中低速中性子の検出手段と、この検出手段を囲み中性子を減速するモデレータと、検出手段からの信号を処理する信号処理回路と、を備えた中性子検出器であって、
モデレータの表面に着脱可能に装着され、且つ宇宙線等に含まれる超高速中性子と相互作用して複数の中性子を放出する増感部材を備えている、
ことを特徴とする中性子検出器。
A neutron detector comprising a medium / low-speed neutron detection means, a moderator surrounding the detection means and decelerating neutrons, and a signal processing circuit for processing a signal from the detection means,
It is detachably mounted on the surface of the moderator and includes a sensitizing member that interacts with ultrafast neutrons contained in cosmic rays and the like to emit a plurality of neutrons.
A neutron detector characterized by that.
前記増感部材が鉛からなる、
ことを特徴とする請求項1から請求項3のいずれかに記載の中性子検出器。
The sensitizing member is made of lead,
The neutron detector according to any one of claims 1 to 3, wherein
JP2003024690A 2003-01-31 2003-01-31 Neutron detector Expired - Lifetime JP3938059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024690A JP3938059B2 (en) 2003-01-31 2003-01-31 Neutron detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024690A JP3938059B2 (en) 2003-01-31 2003-01-31 Neutron detector

Publications (2)

Publication Number Publication Date
JP2004233282A JP2004233282A (en) 2004-08-19
JP3938059B2 true JP3938059B2 (en) 2007-06-27

Family

ID=32953155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024690A Expired - Lifetime JP3938059B2 (en) 2003-01-31 2003-01-31 Neutron detector

Country Status (1)

Country Link
JP (1) JP3938059B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0722430D0 (en) * 2007-11-15 2007-12-27 Health Prot Agency Radiation detection
KR101058523B1 (en) 2008-12-08 2011-08-23 한국원자력연구원 Apparatus and method for measuring neutron energy distribution over a wide energy range

Also Published As

Publication number Publication date
JP2004233282A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
EP2778716B1 (en) Detector and method for simultaneously detecting gamma ray and neutron ray using same
JP2010503873A (en) Neutron detection method and neutron detection apparatus based on coincidence signal
EP2293112A1 (en) Gamma-ray detector, radiation diagnostic device, tomographic device, and analysis method therefor
US3566118A (en) An axially aligned gamma ray-neutron detector
JP2015072227A (en) Neutron detector
JP2018200235A (en) Neutron detector and neutron measurement device
JP3938059B2 (en) Neutron detector
US4814623A (en) Pulsed neutron detector
CN111175805A (en) Radiation detection device, gamma neutron measuring instrument and image positioning system
JP4528268B2 (en) Scintillation detector and radiation detection apparatus
US4617167A (en) Underwater radiation detector
JP2004151089A (en) Radiation detector, radiation detection element and radiation image device
JP6875265B2 (en) Neutron beam detector
JPH08285949A (en) Radiation detection apparatus
JP2012242369A (en) Radiation detector
CN211603562U (en) Radiation detection device, gamma neutron measuring instrument and image positioning system
JP2001027674A (en) Neutron dose rate meter
JP2552414B2 (en) Neutron measuring device
JP2001311780A (en) Neutron ray measuring device
JP3960232B2 (en) Neutron detector
JP4380994B2 (en) Neutron measurement system and out-of-core detector system
JPH1144766A (en) Body surface monitor
RU2143711C1 (en) Detector for registration of ionizing radiation
RU2222818C1 (en) Aid for neutron detection and spectrometry
WO2021136562A1 (en) Device for measuring the mixed radiation field of photons and neutrons

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Ref document number: 3938059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term