JP3937655B2 - Method of manufacturing a thermal overload / break-off trip device for circuit breakers - Google Patents

Method of manufacturing a thermal overload / break-off trip device for circuit breakers Download PDF

Info

Publication number
JP3937655B2
JP3937655B2 JP18184499A JP18184499A JP3937655B2 JP 3937655 B2 JP3937655 B2 JP 3937655B2 JP 18184499 A JP18184499 A JP 18184499A JP 18184499 A JP18184499 A JP 18184499A JP 3937655 B2 JP3937655 B2 JP 3937655B2
Authority
JP
Japan
Prior art keywords
shifter
bimetal
differential
phase
arm portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18184499A
Other languages
Japanese (ja)
Other versions
JP2001014999A (en
Inventor
永廣  勇
直司 内田
勝典 久保山
進一 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP18184499A priority Critical patent/JP3937655B2/en
Publication of JP2001014999A publication Critical patent/JP2001014999A/en
Application granted granted Critical
Publication of JP3937655B2 publication Critical patent/JP3937655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/20Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition
    • H01H83/22Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition the other condition being imbalance of two or more currents or voltages
    • H01H83/223Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition the other condition being imbalance of two or more currents or voltages with bimetal elements

Landscapes

  • Breakers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、配線用しゃ断器,電磁接触器などを対象に、電動機などの過電流保護,および欠相保護を行う回路しゃ断器に組み込んだバイメタル式の熱動形過負荷・欠相引外し装置に関する。
【0002】
【従来の技術】
まず、バイメタル式の熱動形過負荷・欠相引外し装置の従来例として、電磁接触器(3相用)に適用するサーマルリレーの全体構成,およびその主要部構造を図3,図4に示す。図3において、1はリレーの樹脂ケース、2はU,V,Wの各相に対応するバイメタル3u,3v,3w,および各相のバイメタルに巻装して主回路電流を通流するヒータ4からなるヒートエレメント部、5はバイメタルの湾曲変位に従動する差動シフタ機構、6は接点機構、7は差動シフタ機構5に連動して接点機構6を開閉動作する反転ばね機構である。
【0003】
ここで、各相のバイメタル3u,3v,3wは左右一列に等間隔で並び、その一端(図示の上端)が支持金具8を介して樹脂ケース1に固定支持されている。一方、差動シフタ機構5は図4で示すように、バイメタル列に沿ってその両側に敷設した第1のシフタ(押しシフタ)5I,第2のシフタ(引きシフタ)5II,およびシフタ5Iと5IIとの間に跨がって回動自在にリンク結合したトリガレバー(釈放レバー)5III とからなり、第1シフタ5I,第2シフタ5IIからは各相のバイメタル3u,3v,3wの作動端となる先端部3aを左右から挟んで対向するように腕部5a,5bが側方に分岐している。
【0004】
かかる過電流・欠相引外し装置の動作は周知であり、主回路に過負荷電流が流れるとヒータ4の発熱によるバイメタル3u,3v,3wの湾曲変位で第1シフタ5Iを押し、これによりトリガレバー5III が図3の反転ばね機構7を反転させて接点機構6の接点を切換動作させる。また、欠相発生時には欠相の生じた相のバイメタル (湾曲変位しない) が第2シフタ5IIを待機位置に拘束したまま第1シフタ5Iが前方に押される。これにより、シフタ5Iと5IIの差動によりトリガレバー5III が反時計方向に揺動して前記と同様な動作を行う。
【0005】
なお、配線用回路しゃ断器に組み込んだ熱動形過負荷引外し装置では、前記したバイメタルの湾曲変位に従動する差動シフタ機構の動きで主回路接触子を閉極位置に拘束保持している接触子開閉機構のラッチ受けを釈放し、主回路接触子を引外し動作させる。
【0006】
【発明が解決しようとする課題】
ところで、前記した従来の構成では、各相のバイメタル3u,3v,3w,および差動シフタ機構5を樹脂ケース1に組付けた組立状態で、バイメタルの先端部3aとシフタ5I,5IIの腕部5a,5bの間のギャップd,eが残っていると、バイメタルの撓みロスが生じてバイメタル変位量が正確に差動シフタ機構5に伝達されない。また、組立時にバイメタルの取付け姿勢(傾き),組立誤差などに起因してバイメタル3u,3v,3wの相間ピッチにバラツキがあると、回路しゃ断器の安定した引外し動作特性が得られない。
【0007】
そこで、従来では製品組立後の検査工程で、差動シフタ機構5を基準に図4に表わしたバイメタル3u,3v,3wの先端部3aまでの距離a,b,c,およびシフタI,IIの腕部5a,5bとバイメタル先端部3aとの間のギャップd,eを測定し、許容範囲以上の位置ずれがある場合には前記した距離,ギャップが所定の位置精度(例えば±0.2mm)に納まるようにバイメタル3u,3v,3wを固定した支持金具8を折り曲げて矯正したり、シフタ腕部5aの端面を研削するなどしてギャップ調整を行っている。
【0008】
しかしながら、バイメタルの支持金具を折り曲げ矯正した場合には支持金具のスプリングバックにより高精度の調整が困難である。また、シフタの腕部を研削するには製品を組立ラインから別な加工ラインに移して作業を行う必要があるなど、その調整作業に手間が掛かる。
【0009】
本発明は上記の点に鑑みなされたものであり、その目的は前記課題を解決し、製品の組立工程で各相のバイメタルの取付姿勢,組立誤差などに起因する相間ピッチの誤差を巧みに吸収してバイメタル/差動シフタ機構間の相対的な位置精度を確保できるように改良した回路しゃ断器の熱動型過負荷・欠相引外し装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、主回路の過負荷電流,欠相の検出手段として、各相に対応する熱動素子としてのバイメタル,およびバイメタルに連動する差動シフタ機構をユニットケースに組付け、該差動シフタ機構の動作に従動して主回路の開閉接触子を引外し動作させるようにした回路しゃ断器の熱動形過負荷・欠相引外し装置であり、前記差動シフタ機構がバイメタルの配列に沿ってその両側に敷設した第1,第2のシフタと、各シフタとの間に跨がってリンク結合したトリガレバーとからなり、かつ各相ごとにバイメタルの作動端を左右両側から挟んで第1,第2のシフタから分岐した腕部を対向させたものにおいて、前記の差動シフタ機構を、第1シフタの腕部と第2シフタの腕部の間が薄肉な連結部で連なる一体型の樹脂成形品で構成、バイメタルの作動端の先端に前記シフタの連結部を分断する打ち抜き用刃型を形成し、前記ユニットケースに前記バイメタルを組付け、該バイメタルに対して前記差動シフタ機構をバイメタルの先端側からユニットケース内に挿入して、該差動シフタ機構を基準位置に位置決めし、この位置でシフタの連結部をバイメタル先端の刃型に押し当てて、第1シフタの腕部と第2シフタの腕部の間を前記バイメタル先端の刃型で打ち抜き分断し、前記バイメタルの作動端を左右両側から前記第1シフタの腕部と第2シフタの腕部で挟み込むようにする。
【0011】
かかる構成により、製品の組立工程で各相のバイメタルをユニットケースに組付けた後に、差動シフタ機構(この時点では第1シフタと第2シフタとが連なった一体構造の状態にある)を組立ロボットなどに保持して所定位置に位置決めセットし、ここで、シフタをバイメタルの先端に当てがって加圧力を加えると、第1シフタと第2シフタの間で腕部がバイメタルの刃型により打ち抜き分断される。しかも、分断後の組立状態では、第1シフタの腕部と第2シフタの腕部の先端がバイメタルを挟んでその両側に殆ど遊びなしに接するようになる。これにより、各バイメタルの取付位置,姿勢の傾きなどの誤差に起因する相間ピッチ誤差が吸収されて安定した引外し動作特性が確保できるようになる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図1,図2に示す実施例に基づいて説明する。なお、実施例の図中で図4に対応する部材には同じ符号を付してその説明は省略する。
【0013】
すなわち、この実施例では、図1(a)あるいは(b) で示すように各相のバイメタル3u,3v,3wの先端部(作動端側)3aには台形,あるいはV字形の切溝からなる鋭利な刃型3bが形成されている。一方、差動シフタ機構5はフエノール樹脂, エポキシ樹脂などのモールド品であり、図1(c) で示すように第1シフタ5Iと第2シフタIIとは各相に対応する腕部5aと5bとの間が厚さ1mm程度の薄肉な連結部5cで連なっている一体成形部品としてなる。なお、A,Bは図4に示したトリガレバー5III を連結するために第1シフタ5I, 第2シフタIIの左端部に穿孔した支軸穴である。
【0014】
次に、製品の組立工程で前記した刃型3b付きのバイメタル3u,3v,3wに差動シフタ機構5を装着する組立手順を図2(a) 〜(d) で説明する。まず、図3に示したユニットケース1に各相のバイメタル3u,3v,3w,および回路しゃ断器の接触子開閉機構に連繋するラッチ受9などの各部品を組付けた組立段階で、図1(c) に示した樹脂一体成形部品である差動シフタ機構5の第1シフタ5I,第2シフタ5IIを組立ロボットのハンドリングヘッド(図示せず)などに保持した上で、図2(a),(b) のようにバイメタルの先端部3aに対向する定位置に位置決めセットする。なお、このセット位置は、例えば先記したラッチ受9(既にユニットケースに組付けられている)を基準点としてシフタに穿孔したトリガレバーの支軸穴Aとの間の間隔Xが設定距離となるように位置決めし、続いてこの位置から第1,第2のシフタ5I,5IIの間を連ねている腕部5a/5b間の連結部5cをバイメタル3の先端部3aに押し当てて加圧力を加える。
【0015】
これにより、薄肉な連結部5cがバイメタル3u,3v,3wとの当接位置でその先端に形成した刃型3bによって打ち抜かれ、第1シフタ5Iの腕部5aと第2シフタ5IIの腕部5bとの間が分断される。そして、連結部5cを分断した後の組立状態では、図2(c),(d) のように第1シフタ5Iの腕部5a,および第2シフタ5IIの腕部5bの先端がバイメタル3u,3v,3wの側面に殆ど遊び隙間なく密着するようになる。
【0016】
したがって、この組立段階で各製品にバイメタル3u,3v,3wの取付位置,取付姿勢にバラツキがあっても、そのバラツキを吸収して差動シフタ機構5の第1シフタ5I,第2シフタ5IIを相対的に適正位置に組合せることができ、これにより回路しゃ断器の引外し動作特性の安定化が図れる。
【0017】
【発明の効果】
以上述べたように、本発明によれば、差動シフタ機構を、第1シフタの腕部と第2シフタの腕部の間が薄肉な連結部で連なる一体型の樹脂成形品で構成するとともに、バイメタルの作動端の先端に前記シフタの連結部を分断する打ち抜き用刃型を形成し、前記ユニットケースに前記バイメタルを組付け、該バイメタルに対して前記差動シフタ機構をバイメタルの先端側からユニットケース内に挿入して、該差動シフタ機構を基準位置に位置決めし、この位置でシフタの連結部をバイメタル先端の刃型に押し当てて、第1シフタの腕部と第2シフタの腕部の間を前記バイメタル先端の刃型で打ち抜き分断し、前記バイメタルの作動端を左右両側から前記第1シフタの腕部と第2シフタの腕部で挟み込むようにしたので、製品の組立状態では差動シフタ機構の第1,第2シフタの腕部先端が殆ど遊び隙間なくバイメタルの側面と当接し合うことになり、これによりバイメタルの取付け姿勢,組立誤差に起因する相間ピッチの誤差を吸収してバイメタルの湾曲変位が撓みロスなしに正確にシフタに伝達されるようになり、その結果として回路しゃ断器の引外し動作特性が安定化する。
【図面の簡単な説明】
【図1】本発明の実施例による過負荷,欠相検出部の主要部品の構成図で、(a),(b) はそれぞれバイメタルの異なる実施例の側面図、(c) は差動シフタ機構の組付け前状態の平面図
【図2】図1のバイメタルと差動シフタを組合せる組立工程の説明図あり、(a),(b) および(c),(d) はそれぞれ組付け直前,組付け後の状態を表す平面図,および正面図
【図3】熱動形過負荷引外し装置の従来例として示したサーマルリレーの全体構成図
【図4】バイメタルと差動シフタ機構を組合せた過負荷,欠相検出部の従来構造図
【符号の説明】
2 ヒートエレメント部
3u,3v,3w バイメタル
3a 先端部
3b 刃型
5 差動シフタ機構
5I 第1シフタ
5II 第2シフタ
5III トリガレバー
5a,5b 腕部
5c 連結部
[0001]
BACKGROUND OF THE INVENTION
The present invention is a bimetal type thermal overload and phase loss trip device incorporated in a circuit breaker that performs overcurrent protection and phase loss protection for motors and the like for circuit breakers and magnetic contactors. About.
[0002]
[Prior art]
First, as a conventional example of a bimetal thermal overload and phase loss tripping device, the overall configuration of a thermal relay applied to an electromagnetic contactor (for three phases) and the structure of its main part are shown in FIGS. Show. In FIG. 3, 1 is a resin case of a relay, 2 is a bimetal 3u, 3v, 3w corresponding to each phase of U, V, and W, and a heater 4 that is wound around the bimetal of each phase and passes a main circuit current. The heat element unit 5 includes a differential shifter mechanism that follows the bending displacement of the bimetal, 6 a contact mechanism, and 7 a reversing spring mechanism that opens and closes the contact mechanism 6 in conjunction with the differential shifter mechanism 5.
[0003]
Here, the bimetals 3 u, 3 v, 3 w of each phase are arranged at equal intervals in the left and right rows, and one end (the upper end in the drawing) is fixedly supported by the resin case 1 via the support fitting 8. On the other hand, as shown in FIG. 4, the differential shifter mechanism 5 includes a first shifter (push shifter) 5I, a second shifter (pull shifter) 5II, and shifters 5I and 5II laid on both sides of the bimetal row. Between the first shifter 5I and the second shifter 5II, and the working ends of the bimetals 3u, 3v, 3w of the respective phases. The arm portions 5a and 5b branch to the side so as to face each other with the leading end portion 3a sandwiched from the left and right.
[0004]
The operation of such an overcurrent / open-phase trip device is well known. When an overload current flows in the main circuit, the first shifter 5I is pushed by the bending displacement of the bimetals 3u, 3v, 3w due to the heat generated by the heater 4, thereby triggering The lever 5III reverses the reversing spring mechanism 7 of FIG. 3 to switch the contact of the contact mechanism 6. In addition, when phase loss occurs, the first shifter 5I is pushed forward while the bimetal of the phase where phase loss has occurred (no bending displacement) restrains the second shifter 5II at the standby position. As a result, the trigger lever 5III swings counterclockwise by the differential between the shifters 5I and 5II, and the same operation as described above is performed.
[0005]
In the thermal overload tripping device incorporated in the circuit breaker for wiring, the main circuit contactor is restrained and held at the closed position by the movement of the differential shifter mechanism driven by the bending displacement of the bimetal described above. The latch receiver of the contact opening / closing mechanism is released, and the main circuit contact is tripped.
[0006]
[Problems to be solved by the invention]
By the way, in the above-described conventional configuration, the bimetal tip 3a and the arm portions of the shifters 5I and 5II in the assembled state in which the bimetals 3u, 3v and 3w of each phase and the differential shifter mechanism 5 are assembled to the resin case 1. If gaps d and e between 5a and 5b remain, bimetal deflection loss occurs, and the amount of bimetal displacement is not accurately transmitted to differential shifter mechanism 5. In addition, if the phase pitch between the bimetals 3u, 3v, and 3w varies due to the mounting orientation (tilt) of the bimetal, assembly errors, etc. during assembly, stable tripping operation characteristics of the circuit breaker cannot be obtained.
[0007]
Therefore, conventionally, in the inspection process after product assembly, the distances a, b, c and the shifters I, II to the tip 3a of the bimetal 3u, 3v, 3w shown in FIG. The gaps d and e between the arm portions 5a and 5b and the bimetal tip 3a are measured. If there is a positional deviation exceeding the allowable range, the above-mentioned distance and gap have a predetermined positional accuracy (for example, ± 0.2 mm). The gap is adjusted by bending the support metal fixture 8 to which the bimetals 3u, 3v, 3w are fixed so as to fit in, or by grinding the end face of the shifter arm portion 5a.
[0008]
However, when the bimetal support metal fitting is bent and corrected, it is difficult to adjust with high accuracy by the springback of the support metal fitting. Further, in order to grind the arm portion of the shifter, it is necessary to move the product from the assembly line to another processing line, and the adjustment work is troublesome.
[0009]
The present invention has been made in view of the above points, and its object is to solve the above-mentioned problems, and to skillfully absorb interphase pitch errors caused by the mounting orientation of each phase, assembly errors, etc. in the product assembly process. It is another object of the present invention to provide a thermal overload / break-off trip device for a circuit breaker which is improved so as to ensure relative positional accuracy between a bimetal / differential shifter mechanism.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, as a means for detecting an overload current and an open phase of a main circuit, a bimetal as a thermal element corresponding to each phase, and a differential shifter mechanism linked to the bimetal are provided. assembled in the unit case, a said differential shifter thermal overload, open-phase tripping device of the circuit breaker which is adapted to tripping the closing contacts of the main circuit by being driven by the operation mechanism, the The differential shifter mechanism is composed of first and second shifters laid on both sides along the bimetal arrangement, and a trigger lever linked between the shifters, and bimetal for each phase. The arm portion branched from the first and second shifters is opposed to each other with the operation end of the first and second shifters opposed to each other, and the differential shifter mechanism is connected to the arm portions of the first shifter and the second shifter. Integrated with a thin connecting part Constituted by the resin molded article to form a punching blade type that divides the connecting portion of the shifter to the tip of the bimetal operating end, assembled the bimetal to the unit case, the differential shifter to said bimetal insert the mechanism from bimetallic tip side in the unit case, to position the differential shifter mechanism at the reference position, by pressing a coupling portion of the shifter in this position to the blade-type bimetal tip, the arm of the first shifter And the arm portion of the second shifter is punched and divided with a blade shape at the tip of the bimetal so that the working end of the bimetal is sandwiched between the arm portion of the first shifter and the arm portion of the second shifter from both the left and right sides. .
[0011]
With this configuration, after assembling each phase bimetal to the unit case in the product assembly process, the differential shifter mechanism (in this state, the first shifter and the second shifter are in an integrated structure) is assembled. The robot is held by a robot or the like and positioned at a predetermined position. When a pressure is applied by applying the shifter to the tip of the bimetal, the arm part is between the first shifter and the second shifter by the bimetal blade shape. It is punched and divided. Moreover, in the assembled state after the division, the ends of the arm portions of the first shifter and the second shifter come into contact with both sides of the bimetal with little play. As a result, interphase pitch errors caused by errors such as the mounting position and posture inclination of each bimetal are absorbed, and stable tripping operation characteristics can be ensured.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on the examples shown in FIGS. In addition, in the figure of an Example, the same code | symbol is attached | subjected to the member corresponding to FIG. 4, and the description is abbreviate | omitted.
[0013]
In other words, in this embodiment, as shown in FIG. 1 (a) or (b), the bimetal 3u, 3v, 3w of each phase has a trapezoidal or V-shaped kerf at the front end (operation end side) 3a. A sharp blade mold 3b is formed. On the other hand, the differential shifter mechanism 5 is a molded product such as phenol resin or epoxy resin. As shown in FIG. 1 (c), the first shifter 5I and the second shifter II are arm portions 5a and 5b corresponding to each phase. Is formed as an integrally molded part connected by a thin connecting portion 5c having a thickness of about 1 mm. In addition, A and B are spindle holes drilled in the left end portions of the first shifter 5I and the second shifter II in order to connect the trigger lever 5III shown in FIG.
[0014]
Next, an assembly procedure for mounting the differential shifter mechanism 5 on the bimetals 3u, 3v, 3w with the blade mold 3b in the product assembly process will be described with reference to FIGS. 2 (a) to 2 (d). First, in the assembly stage in which each component such as the bimetal 3u, 3v, 3w of each phase and the latch receiver 9 linked to the contact opening / closing mechanism of the circuit breaker is assembled to the unit case 1 shown in FIG. 2C, the first shifter 5I and the second shifter 5II of the differential shifter mechanism 5 which are resin integrated molded parts shown in FIG. 2C are held on the handling head (not shown) of the assembly robot. , (b) is positioned and set at a fixed position facing the bimetal tip 3a. This set position is determined by, for example, setting the distance X between the support lever hole A of the trigger lever drilled in the shifter with the latch receiver 9 (already assembled in the unit case) as a reference point. Then, the connecting portion 5c between the arm portions 5a / 5b connecting the first and second shifters 5I and 5II is pressed against the distal end portion 3a of the bimetal 3 from this position. Add
[0015]
Thereby, the thin connecting portion 5c is punched out by the blade mold 3b formed at the tip thereof at the contact position with the bimetal 3u, 3v, 3w, and the arm portion 5a of the first shifter 5I and the arm portion 5b of the second shifter 5II. Is divided. In the assembled state after dividing the connecting portion 5c, the tips of the arm portion 5a of the first shifter 5I and the arm portion 5b of the second shifter 5II are formed as shown in FIGS. 2 (c) and 2 (d). It comes in close contact with the side of 3v, 3w with almost no play gap.
[0016]
Therefore, even if the mounting positions and mounting postures of the bimetals 3u, 3v, and 3w vary in each product at this assembly stage, the variations are absorbed and the first shifter 5I and the second shifter 5II of the differential shifter mechanism 5 are installed. It can be combined at a relatively appropriate position, thereby stabilizing the tripping operation characteristics of the circuit breaker.
[0017]
【The invention's effect】
As described above, according to the present invention, the differential shifter mechanism is constituted by an integrated resin molded product in which the arm portion of the first shifter and the arm portion of the second shifter are connected by a thin connecting portion. A punching blade mold is formed at the tip of the working end of the bimetal , and the bimetal is assembled to the unit case , and the differential shifter mechanism is attached to the bimetal from the tip of the bimetal. is inserted into the unit case, to position the differential shifter mechanism at the reference position, by pressing a coupling portion of the shifter in this position to the blade-type bimetal distal arm portion and the arm of the second shifter of the first shifter Since the bimetal cutting edge is punched and divided between the parts, and the working end of the bimetal is sandwiched between the arm part of the first shifter and the arm part of the second shifter from both the left and right sides. Differential The ends of the arms of the first and second shifters of the lid mechanism come into contact with the side surfaces of the bimetal with almost no play gap. This absorbs errors in the intermetal pitch due to the mounting orientation and assembly errors of the bimetal. The bending displacement of the circuit breaker is accurately transmitted to the shifter without bending loss, and as a result, the tripping operation characteristics of the circuit breaker are stabilized.
[Brief description of the drawings]
FIGS. 1A and 1B are configuration diagrams of main components of an overload and phase loss detection unit according to an embodiment of the present invention, in which FIGS. 1A and 1B are side views of different bimetal embodiments, and FIG. Fig. 2 is a plan view of the mechanism before assembly. Fig. 2 is an explanatory diagram of the assembly process of combining the bimetal and differential shifter of Fig. 1, where (a), (b) and (c), (d) are assembled. Fig. 3 is a plan view showing the state immediately before and after assembly, and a front view. Fig. 3 is an overall configuration diagram of a thermal relay as a conventional example of a thermal overload tripping device. Fig. 4 is a bimetal and differential shifter mechanism. Conventional structure of combined overload and phase loss detector [Explanation of symbols]
2 Heat element parts 3u, 3v, 3w Bimetal 3a Tip part 3b Blade type 5 Differential shifter mechanism 5I First shifter 5II Second shifter 5III Trigger lever 5a, 5b Arm part 5c Connection part

Claims (1)

主回路の過負荷電流,欠相の検出手段として、各相に対応する熱動素子としてのバイメタル,およびバイメタルに連動する差動シフタ機構をユニットケースに組付け、該差動シフタ機構の動作に従動して主回路の開閉接触子を引外し動作させるようにした回路しゃ断器の熱動形過負荷・欠相引外し装置であり、前記差動シフタ機構がバイメタルの配列に沿ってその両側に敷設した第1,第2のシフタと、各シフタとの間に跨がってリンク結合したトリガレバーとからなり、かつ各相ごとにバイメタルの作動端を左右両側から挟んで第1,第2のシフタから分岐した腕部を対向させたものにおいて、
前記の差動シフタ機構を、第1シフタの腕部と第2シフタの腕部の間が薄肉な連結部で連なる一体型の樹脂成形品で構成、バイメタルの作動端の先端に前記シフタの連結部を分断する打ち抜き用刃型を形成し、前記ユニットケースに前記バイメタルを組付け、該バイメタルに対して前記差動シフタ機構をバイメタルの先端側からユニットケース内に挿入して、該差動シフタ機構を基準位置に位置決めし、この位置でシフタの連結部をバイメタル先端の刃型に押し当てて、第1シフタの腕部と第2シフタの腕部の間を前記バイメタル先端の刃型で打ち抜き分断し、前記バイメタルの作動端を左右両側から前記第1シフタの腕部と第2シフタの腕部で挟み込むことを特徴とする回路しゃ断器の熱動形過負荷・欠相引外し装置の製造方法
Overload current of the main circuit, as the detection means of phase failure, the bimetal as thermally activated element corresponding to each phase, and assembling the differential shifter mechanism interlocked with the bimetal unit case, the operation of the differential shifter mechanism A thermal circuit type overload and phase loss trip device for a circuit breaker that is driven to trip the open / close contact of the main circuit, and the differential shifter mechanism is arranged on both sides of the bimetal array. The first and second shifters are laid and trigger levers that are linked and linked between the shifters, and the bimetal working ends are sandwiched from the left and right sides for each phase. In what opposed the arm branched from the shifter of
The differential shifter mechanism, between the arms of the first shifter and the arm portion of the second shifter is constituted by integrated resin molding continuous with the thin coupling portion, of the shifter to the tip of the bimetal operating end forming a punching blade type that divides the connecting part, assembled the bimetal to the unit case, the insert the differential shifter mechanism bimetal tip side in the unit case with respect to the bimetal, the differential The shifter mechanism is positioned at the reference position, and at this position, the shifter connecting portion is pressed against the blade shape at the tip of the bimetal, and the blade shape at the tip of the bimetal is between the arm portion of the first shifter and the arm portion of the second shifter. A thermal overload and phase loss tripping device for a circuit breaker characterized by punching and cutting and sandwiching the working end of the bimetal from the left and right sides between the arm portion of the first shifter and the arm portion of the second shifter Manufacturing method .
JP18184499A 1999-06-28 1999-06-28 Method of manufacturing a thermal overload / break-off trip device for circuit breakers Expired - Fee Related JP3937655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18184499A JP3937655B2 (en) 1999-06-28 1999-06-28 Method of manufacturing a thermal overload / break-off trip device for circuit breakers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18184499A JP3937655B2 (en) 1999-06-28 1999-06-28 Method of manufacturing a thermal overload / break-off trip device for circuit breakers

Publications (2)

Publication Number Publication Date
JP2001014999A JP2001014999A (en) 2001-01-19
JP3937655B2 true JP3937655B2 (en) 2007-06-27

Family

ID=16107814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18184499A Expired - Fee Related JP3937655B2 (en) 1999-06-28 1999-06-28 Method of manufacturing a thermal overload / break-off trip device for circuit breakers

Country Status (1)

Country Link
JP (1) JP3937655B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100881365B1 (en) * 2007-08-07 2009-02-02 엘에스산전 주식회사 Trip sensitivity adjusting method for thermal overload protection apparatus
CN101823104A (en) * 2010-03-19 2010-09-08 郑建汉 Punching process of thrermostatic bimetal plate
JP5656899B2 (en) * 2012-03-26 2015-01-21 三菱電機株式会社 Method of manufacturing thermal trip device and circuit breaker using thermal trip device manufactured by the manufacturing method
JPWO2023135887A1 (en) * 2022-01-17 2023-07-20

Also Published As

Publication number Publication date
JP2001014999A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
EP0434338B1 (en) Circuit breaker with auxiliary status indicating switch
IE902320A1 (en) Unitary breaker assembly for a circuit breaker
US5694101A (en) Circuit breaker
JPS6156753U (en)
KR101007081B1 (en) Protective circuit breaker for protecting an electric circuit
JP3937655B2 (en) Method of manufacturing a thermal overload / break-off trip device for circuit breakers
US9024711B2 (en) Thermal-magnetic trip device for tripping a multiphase circuit breaker
US7999641B2 (en) Circuit breaker having reduced auxiliary trip requirements
CA2668343A1 (en) Method of bi-directional thermal calibration of a circuit interrupter frame and circuit interrupter test system including the same
KR940008189B1 (en) Bimetallic strip differential thermal triggering device
JP4045709B2 (en) Thermal overload trip device for circuit breaker
JPH09161641A (en) Circuit breaker
US6838961B2 (en) Self-contained mechanism on a frame
KR20150044744A (en) Gap Adjusting Method of Trip Mechanism of Molded Case Circuit Breaker
PL200689B1 (en) Circuit breaker thermal magnetic trip unit
US3152232A (en) Circuit breaker having bimetal rigidly secured to cradle
JPH01186528A (en) Wiring breaker bimetal with high calibration yield
US6362711B1 (en) Circuit breaker cover with screw locating feature
US4675640A (en) Line terminal assembly for a circuit breaker
US4500863A (en) Circuit breaker having an integrated power trap arm
US4570142A (en) Pushbutton-actuated excess-current switch
KR100550732B1 (en) Thermal Overload Tripping Device for Circuit Breaker
JP6219854B2 (en) Instantaneous tripping device for breaker type wiring protection electrical equipment
JPH0347241Y2 (en)
JPH0347243Y2 (en)

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees