JP3935692B2 - Method for estimating temperature of Ni-based alloy parts - Google Patents

Method for estimating temperature of Ni-based alloy parts Download PDF

Info

Publication number
JP3935692B2
JP3935692B2 JP2001223345A JP2001223345A JP3935692B2 JP 3935692 B2 JP3935692 B2 JP 3935692B2 JP 2001223345 A JP2001223345 A JP 2001223345A JP 2001223345 A JP2001223345 A JP 2001223345A JP 3935692 B2 JP3935692 B2 JP 3935692B2
Authority
JP
Japan
Prior art keywords
phase
gamma
temperature
specimen
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001223345A
Other languages
Japanese (ja)
Other versions
JP2003035161A (en
Inventor
郁生 岡田
泰治 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001223345A priority Critical patent/JP3935692B2/en
Publication of JP2003035161A publication Critical patent/JP2003035161A/en
Application granted granted Critical
Publication of JP3935692B2 publication Critical patent/JP3935692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービン、ジェットエンジンなどの高温部品、特に動翼あるいは静翼に使用されるNi基合金製部品の温度推定方法に関する。
【0002】
【従来の技術】
周知の如く、例えばガスタービンの動翼や静翼等の高温部品には、Ni基合金が使用されている。こうした動翼や静翼は高温下で応力をかけられながら長時間使用されるので、運転中にクリープ損傷を受け、金属組織,特にγ’相(NiAl金属間化合物)が粗大化する等の形態変化が生じる。この形態変化は材料劣化を意味し、その要因としてNi基合金の温度(メタル温度)、応力、使用時間等が挙げられる。従って、ガスタービンでは、材料劣化を考慮して長時間の使用に耐えうるように翼の材質の組成や形状等を決めている。
【0003】
しかし、このように配慮しても何らかの要因でメタル温度が急激に上昇する等の理由により、ガスタービンがその寿命に達する前に破損する可能性がある。そこで、動翼や静翼の劣化状況を正確に検知して残りの寿命を的確に予測する技術が求められている。従来、その一手段として、動翼や静翼の断面ミクロ組織によりγ’相の形態変化を測定してメタル温度を求めることが行われている。具体的には、図3(A)に示すように表面にγ’相1が存在する母材(γ相)2の状態から、王水(HCl:HNO=3:1)でその表面をエッチングして図3(B)のような状態にし、γ’相1側から顕微鏡で断面ミクロ組織を観察してγ’相1の形態変化を測定して行なっている。
【0004】
【発明が解決しようとする課題】
しかし、従来によるメタル温度の推定方法の場合、温度を推定する対象材を破壊して検査せざるを得ないという問題があった。本発明はこうした事情を考慮してなされたので、γ’相を抽出してこれを媒体主面に被着させ、γ’相の被着側の前記媒体にカーボンを蒸着させてカーボン蒸着膜を形成し、前記媒体を除去し、γ’相付きカーボン蒸着膜をすくいとった後、γ’相を観察して画像処理によりγ’相の粒径を測定することにより、従来のように対象材としてのNi基合金製部品を切断することなく、非破壊的にメタル温度を推定しえるNi基合金製部品の温度推定方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記の課題を解決するためになされ、下記の(1)から()の手段を提供するものであり、以下、特許請求の範囲に記載の順に説明する。
(1)その第1の手段として、ガスタービン、ジェットエンジンなどの高温部品に使用されるNi基合金の組織変化に基づいて対象材であるNi基合金製部品の温度を推定する方法において、同Ni基合金製部品と同じ組成の供試体からγ’相を抽出し、これを媒体主面に被着させる工程と、γ’相の被着側の前記媒体にカーボンを蒸着させ、カーボン蒸着膜を形成する工程と、前記媒体を除去する工程と、γ’相付きカーボン蒸着膜をすくいとる工程と、γ’相を観察して画像処理によりγ’相の粒径を測定する工程と、前記供試体の加熱後のγ’相の粒径(R)の3乗と前記供試体の初期材のγ’相の粒径(Ro)の3乗の差と、前記供試体の加熱時間と加熱温度から求まるラーソンミラーパラメーター値との関係を示す特性図を得る工程を具備し、同様に測定された同Ni基合金製部品の加熱後のγ’相の粒径(R)の3乗とその初期材のγ’相の粒径(Ro)の3乗の差に対する前記特性図におけるラーソンミラーパラメーター値と加熱時間より、ラーソンミラーパラメーターの関係式から、対象材を切断せずに非破壊的にNi基合金製部品の温度を推定することを特徴とするNi基合金製部品の温度推定方法を提供する。
(2)第2の手段としては、ガスタービン、ジェットエンジンなどの高温部品に使用されるNi基合金の組織変化に基づいて対象材であるNi基合金製部品の温度を推定する方法において、同Ni基合金製部品と同じ組成の供試体からγ’相を抽出する前に、前記供試体を過硫酸アンモニアとクエン酸と水からなる電解液を用いて電解エッチングする工程と、前記供試体からγ’相を抽出し、これを媒体主面に被着させる工程と、γ’相の被着側の前記媒体にカーボンを蒸着させ、カーボン蒸着膜を形成する工程と、前記媒体を除去する工程と、γ’相付きカーボン蒸着膜をすくいとる工程と、γ’相を観察して画像処理によりγ’相の粒径を測定する工程と、前記供試体の加熱後のγ’相の粒径(R)の3乗と前記供試体の初期材のγ’相の粒径(Ro)の3乗の差と、前記供試体の加熱時間と加熱温度から求まるラーソンミラーパラメーター値との関係を示す特性図を得る工程を具備し、同様に測定された同Ni基合金製部品の加熱後のγ’相の粒径(R)の3乗とその初期材のγ’相の粒径(Ro)の3乗の差に対する前記特性図におけるラーソンミラーパラメーター値と加熱時間より、ラーソンミラーパラメーターの関係式から、対象材を切断せずに非破壊的にNi基合金製部品の温度を推定することを特徴とするNi基合金製部品の温度推定方法を提供する。
)第の手段として、第1または2の手段のNi基合金製部品の温度推定方法において、前記媒体がアセチルセルロースであることを特徴とするNi基合金製部品の温度推定方法を提供する。
)第の手段として、第1ないし第のいずれかの手段のNi基合金製部品の温度推定方法において、前記媒体を酢酸メチルに浸漬することにより除去することを特徴とするNi基合金製部品の温度推定方法を提供する。
【0006】
【発明の実施の形態】
以下、本発明について更に詳細に説明する。本発明においては、γ’相の粒径を測定した後、ラーソンミラーパラメーター(LMP)の関係式より、温度を推定する対象材としてのNi基合金製部品の温度を推定することが好ましい。
【0007】
本発明において、供試体からγ’相を抽出するが、抽出前に供試体を過硫酸アンモニアとクエン酸と水を適宜混合した電解液を用いて電解エッチングすることが好ましい。この電解における電圧、電流及び時間は、γ’相が供試体の表面に露出しやすいように適宜設定する。また、抽出したγ’相を被着させる媒体としては、例えばアセチルセルロースが挙げられるが、これに限らない。
【0008】
本発明において、γ’相が被着したカーボン蒸着膜から媒体を除去する手段としては、例えば前記媒体を酢酸メチルに浸漬することが挙げられるが、これに限らない。
【0009】
本発明において、カーボン蒸着膜に付着したγ’相は例えばCuメッシュによりすくいとるが、すくいとったγ’相は走査型電子顕微鏡(SEM)もしくは透過型電子顕微鏡(TEM)を倍率2500〜100000にして観察することができる。この後、画像処理することにより上記のカーボン蒸着膜に付着したγ’相、すなわちレプリカのγ’相の粒径を測定することができる。
【0010】
【実施例】
以下、本発明の一実施例に係るNi基合金製部品の温度推定方法について説明する。但し、本実施例では、Ni基合金がIN738LC,即ちNi−16Cr−8.5Co−1.7Mo−2.7W−1.8Ta−3.4Ti−3.4Al−0.12C−0.1Zr−0.01Bである場合について試験した。
【0011】
また、下記実施例で述べる各部材の材質、数値等は一例を示すもので、本発明の権利範囲を特定するものではない。
【0012】
[1]供試体(レプリカ)のγ’相の粒径の求め方:
図1(A)〜(E)及び図2を参照して説明する。ここで、図1は本発明に係るNi基合金製部品の温度推定方法に使用されるγ’相の粒径を求めるまでを工程順に示す説明図であり、図2はカーボン蒸着膜に付着したγ’相をすくいとる場合の説明図を示す。
【0013】
1)まず、温度を推定する対象剤となる使用するNi(ニッケル)基合金製部品と同じ組成の供試体11を用い、供試体11を研磨(バブ仕上げまで)した。次に、この供試体11を電解液を使用して電解エッチングした(図1(A)参照)。なお、図1(A)において、付番12は供試体11の表面に露出したγ’相を示す。前記エッチングにおける条件は、陽極:供試体、陰極Pt(プラチナ)、電解液(過硫酸アンモンとクエン酸と水とを適宜混合した液)、電圧約20V、電流約1A、時間30秒とした。つづいて、供試体11を電解液から取出して洗浄した。
【0014】
2)次に、γ’相12を抽出した。具体的には、供試体11のγ’相12側に媒体としてのアセチルセルロースフィルム13を貼り付け、このフィルム13にγ’相12を被着させた(図1(B)参照)。つづいて、前記フィルム13のγ’相12側にカーボンを蒸着させ、カーボン蒸着膜14を形成した(図1(C)参照)。
【0015】
3)次に、前記フィルム13を収容槽15に収容され酢酸メチル16に浸漬し(図1(D)参照)、前記フィルム13を除去した。この結果、図1(E)に示すようにγ’相12が付着したカーボン蒸着膜14が得られた。つづいて、図2に示すようにCuメッシュ17を用いてγ’相12が付着したカーボン蒸着膜14をすくいとった。
【0016】
4)次に、カーボン蒸着膜14に付着したγ’相12を例えば走査型電子顕微鏡(倍率2500〜100000)で観察し、画像処理によりγ’相12の粒径を求めた。
【0017】
[2]供試体の加熱後の粒径(R)の3乗と初期材の粒径(R)の3乗の差と、LMP値との関係の求め方:
LMP値(パラメーター:P)は、下記のラーソンミラーパラメーター(LMP)式を用いる。
LMP=(273+T℃)(15+logt)/1000 …(1)
但し、上記式(1)中、Tは加熱時の供試体の温度、tは加熱時間を示す。また、式(1)中の数値15は定数であり、15の代わりに20を用いることも可能である。
【0018】
ここで、加熱時間t,t,t,…tに対応する供試体の温度を夫々T,T,T,…Tとし、粒径Rを夫々R,R,R,…Rとすると、初期材の粒径Rは上記[1]で述べた方法により求めることができるので、(R−R )の値が求まる(図4の縦軸)。一方、上記加熱時間tと加熱温度Tとの関係からLMP値(図4の横軸)が求まる。従って、図4に示すようにγ’相粒径の3乗差(μm)とパラメーターP(P,P,P,P,P,P,P)との関係を示す特性図(ベースカーブ)を得る。
【0019】
[3]温度を推定する対象材としてのNi基合金製部品のメタル温度の推定の仕方:上記特性図を利用して、(同様に測定されたNi基合金製部品の加熱後の粒径Rの3乗−その初期材の粒径Rの3乗)値よりパラメーターPを求め、更に上記(1)式に加熱時間tを挿入してNi基合金製部品の加熱温度Tが求まる。
【0020】
このように、上記実施例によれば、温度を推定する対象材となるNi基合金製部品と同じ組成の供試体11を用いて、同供試体の加熱後の粒径Rの3乗と初期材の粒径Rの3乗の差である(R−R )値を求めるとともにLMP値を求めて、これら両者の値との関係から図4に示すようなベースカーブを求め、このベースカーブを利用して、Ni基合金製部品から得た(R−R )値、加熱時間tより加熱温度を求めるため、従来のように対象材を切断せずに非破壊的にメタル温度を推定することができる。
【0021】
なお、上記実施例では、供試体としてIN738LCを用いた場合について述べたが、これに限らず、その他、MGA1400CC(三菱重工業(株)合金),MGA1400DS(三菱重工業(株)合金),U520(Special Metals社合金)についても上記実施例と同様にして試験したところ、上記実施例と同様に、別な特性図(ベースカーブが夫々描かれ、メタル温度を推定できることが確認された。
【0022】
【発明の効果】
以上詳述したように本発明によれば、ガスタービン、ジェットエンジンなどの高温部品に使用されるNi基合金の組織変化に基づいて対象材であるNi基合金製部品の温度を推定する方法において、同Ni基合金製部品と同じ組成の供試体からγ’相を抽出しこれを媒体主面に被着させる工程と、γ’相の被着側の前記媒体にカーボンを蒸着させカーボン蒸着膜を形成する工程と、前記媒体を除去する工程と、γ’相付きカーボン蒸着膜をすくいとる工程と、γ’相を観察して画像処理によりγ’相の粒径を測定する工程と、前記供試体の加熱後のγ’相の粒径(R)の3乗と前記供試体の初期材のγ’相の粒径(Ro)の3乗の差と、前記供試体の加熱時間と加熱温度から求まるラーソンミラーパラメーター値との関係を示す特性図を得る工程を具備し、同様に測定された同Ni基合金製部品の加熱後のγ’相の粒径(R)の3乗とその初期材のγ’相の粒径(Ro)の3乗の差に対する前記特性図におけるラーソンミラーパラメーター値と加熱時間より、ラーソンミラーパラメーターの関係式から、対象材を切断せずに非破壊的にNi基合金製部品の温度を推定するので、温度を推定する対象材としてのNi基合金製部品を切断せずに非破壊的にメタル温度を推定しえるNi基合金製部品の温度推定方法を提供できる。
【図面の簡単な説明】
【図1】 本発明に係るNi基合金製部品の温度推定方法に使用されるγ’相の粒径を求めるまでを工程順に示す説明図。
【図2】 カーボン蒸着膜に付着したγ’相をすくいとる場合の説明図。
【図3】 従来に係るNi基合金製部品の温度推定方法を工程順に示す説明図。
【図4】 本発明の実施例に係る特性
【符号の説明】
11…供試体、
12…γ’相、
13…アセチルセルロースフィルム、
15…収容槽、
14…カーボン蒸着膜、
16…酢酸メチル、
17…Cuメッシュ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature estimation method for high-temperature parts such as gas turbines and jet engines, particularly Ni-base alloy parts used for moving blades or stationary blades.
[0002]
[Prior art]
As is well known, Ni-based alloys are used for high-temperature parts such as moving blades and stationary blades of gas turbines, for example. Since these moving blades and stationary blades are used for a long time while being stressed at high temperatures, they are subject to creep damage during operation, and the metal structure, especially the γ 'phase (Ni 3 Al intermetallic compound) becomes coarse. Changes in shape. This form change means material deterioration, and the factors include Ni-base alloy temperature (metal temperature), stress, usage time, and the like. Therefore, in the gas turbine, the composition and shape of the blade material are determined so as to withstand long-term use in consideration of material deterioration.
[0003]
However, even if such consideration is taken into account, there is a possibility that the gas turbine may be damaged before reaching its lifetime due to a sudden rise in the metal temperature due to some factor. Therefore, there is a demand for a technique for accurately detecting the deterioration state of the moving blades and the stationary blades and accurately predicting the remaining life. Conventionally, as one of the means, the metal temperature is obtained by measuring the morphological change of the γ ′ phase by the cross-sectional microstructure of the moving blade or the stationary blade. Specifically, as shown in FIG. 3A, the surface of the base material (γ phase) 2 in which the γ ′ phase 1 exists on the surface is washed with aqua regia (HCl: HNO 3 = 3: 1). Etching is performed to obtain a state as shown in FIG. 3B, and the cross-sectional microstructure is observed with a microscope from the γ ′ phase 1 side to measure the morphological change of the γ ′ phase 1.
[0004]
[Problems to be solved by the invention]
However, in the conventional metal temperature estimation method, there is a problem that the target material whose temperature is to be estimated must be destroyed and inspected. Since the present invention has been made in consideration of these circumstances, gamma 'to extract phase which was deposited on the medium major surface, gamma' by depositing carbon on the medium of the called side phase carbon deposition film After removing the medium and scooping out a carbon deposited film with a γ ′ phase, the γ ′ phase is observed and the particle size of the γ ′ phase is measured by image processing to obtain the target as in the past. An object of the present invention is to provide a temperature estimation method for a Ni-based alloy part that can non-destructively estimate the metal temperature without cutting the Ni-based alloy part as a material.
[0005]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and provides the following means (1) to ( 4 ), and will be described below in the order of the claims.
(1) As a first means, in a method of estimating the temperature of the Ni-base alloy components are subject material based on tissue changes in Ni-based alloys used for gas turbine hot parts such as jet engine, the Ni based alloy part and gamma from specimens of the same composition 'out extract the phase which the step of depositing the medium major surface, gamma' by depositing carbon on the medium of the called side-phase carbon deposition A step of forming a film, a step of removing the medium, a step of scooping a carbon deposition film with a γ ′ phase, a step of observing the γ ′ phase and measuring the particle size of the γ ′ phase by image processing , The difference between the cube of the particle diameter (R) of the γ ′ phase after heating of the specimen and the cube of the grain diameter (Ro) of the γ ′ phase of the initial material of the specimen, and the heating time of the specimen comprising the step of obtaining a characteristic diagram showing the relationship between the Larson-Miller parameter values obtained from the heating temperature, the In the above characteristic diagram, the difference between the cube of the particle diameter (R) of the γ ′ phase after heating of the Ni-based alloy part measured in the above and the cube of the particle diameter (Ro) of the γ ′ phase of the initial material is shown in FIG. The temperature of a Ni-based alloy part characterized in that the temperature of the Ni-based alloy part is estimated non-destructively from the relational expression of the Larson mirror parameter from the Larson mirror parameter value and the heating time without cutting the target material. An estimation method is provided.
(2) As a second means, in a method for estimating the temperature of a Ni-based alloy part as a target material based on a structural change of a Ni-based alloy used in a high-temperature part such as a gas turbine or a jet engine, Before extracting the γ ′ phase from the specimen having the same composition as the Ni-based alloy part, the specimen is subjected to electrolytic etching using an electrolyte solution composed of ammonia persulfate, citric acid and water, and from the specimen. extracting the γ 'phase and depositing it on the main surface of the medium; depositing carbon on the medium on the deposition side of the γ'phase; forming a carbon deposition film; and removing the medium A step of scooping a carbon deposited film with a γ ′ phase, a step of observing the γ ′ phase and measuring a particle size of the γ ′ phase by image processing, and a particle size of the γ ′ phase after heating the specimen (R) of the cube and the specimen of the initial material of gamma 'phase of the particle size of (Ro) The difference between the multiplication, comprising the step of obtaining a characteristic diagram showing the relationship between the Larson-Miller parameter values obtained from said specimen heating time and the heating temperature, after similar heat of the measured the Ni based alloy part γ The relational expression of the Larson mirror parameter based on the Larson mirror parameter value and the heating time in the above characteristic diagram with respect to the difference between the cubic of the particle size (R) of the phase and the cube of the particle size (Ro) of the initial material γ. from that provides temperature estimation method of the Ni-base alloy components and estimates the non-destructive temperature of the Ni-base alloy components without cutting the target object.
( 3 ) A temperature estimation method for a Ni-based alloy part according to the first or second means, wherein the medium is acetyl cellulose as a third means. provide.
( 4 ) As a fourth means, in the temperature estimation method for a Ni-based alloy part according to any one of the first to third means, the medium is removed by immersing the medium in methyl acetate. A temperature estimation method for an alloy part is provided.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail. In the present invention, after measuring the particle size of the gamma 'phase, than the relation of the Larson-Miller parameter (LMP), it is preferable to estimate the Ni-base temperature of alloy part article as a target material for estimating the temperature.
[0007]
In the present invention, the γ ′ phase is extracted from the specimen, but it is preferable to subject the specimen to electrolytic etching using an electrolytic solution in which ammonia persulfate, citric acid, and water are appropriately mixed before extraction. The voltage, current, and time in this electrolysis are appropriately set so that the γ ′ phase is easily exposed on the surface of the specimen. Further, examples of the medium for depositing the extracted γ ′ phase include acetylcellulose, but are not limited thereto.
[0008]
In the present invention, as a means for removing the medium from the carbon vapor deposition film to which the γ ′ phase is applied, for example, the medium is immersed in methyl acetate, but is not limited thereto.
[0009]
In the present invention, the γ ′ phase adhering to the carbon deposition film is scooped by, for example, Cu mesh, but the scooped γ ′ phase is set to a magnification of 2500 to 100,000 using a scanning electron microscope (SEM) or transmission electron microscope (TEM). Can be observed. Thereafter, the particle size of the γ ′ phase adhering to the carbon vapor deposition film, that is , the γ ′ phase of the replica can be measured by image processing.
[0010]
【Example】
Hereinafter, a temperature estimation method for a Ni-based alloy part according to an embodiment of the present invention will be described. However, in this example, the Ni-based alloy is IN738LC, that is, Ni-16Cr-8.5Co-1.7Mo-2.7W-1.8Ta-3.4Ti-3.4Al-0.12C-0.1Zr- The case of 0.01B was tested.
[0011]
Moreover, the material of each member described in the following Example, a numerical value, etc. show an example, and do not specify the right range of this invention.
[0012]
[1] Determining the particle diameter of the γ ′ phase of the specimen (replica):
A description will be given with reference to FIGS. Here, FIG. 1 is explanatory drawing which shows in order of process until it calculates | requires the particle size of (gamma) 'phase used for the temperature estimation method of the Ni-base alloy parts based on this invention, and FIG. 2 adhered to the carbon vapor deposition film | membrane. An explanatory view in the case of scooping the γ ′ phase is shown.
[0013]
1) First, the specimen 11 having the same composition as the Ni (nickel) -based alloy part to be used, which is the target agent for estimating the temperature, was polished (until bubbing). Next, this specimen 11 was electrolytically etched using an electrolytic solution (see FIG. 1A). In FIG. 1A, reference numeral 12 indicates a γ ′ phase exposed on the surface of the specimen 11. The etching conditions were as follows: anode: specimen, cathode Pt (platinum), electrolyte (a solution obtained by appropriately mixing ammonium persulfate, citric acid, and water), a voltage of about 20 V, a current of about 1 A, and a time of 30 seconds. Subsequently, the specimen 11 was taken out from the electrolytic solution and washed.
[0014]
2) Next, the γ ′ phase 12 was extracted. Specifically, an acetyl cellulose film 13 as a medium was attached to the γ ′ phase 12 side of the specimen 11, and the γ ′ phase 12 was adhered to the film 13 (see FIG. 1B). Subsequently, carbon was deposited on the γ ′ phase 12 side of the film 13 to form a carbon deposited film 14 (see FIG. 1C).
[0015]
3) Next, the film 13 was stored in a storage tank 15 and immersed in methyl acetate 16 (see FIG. 1D), and the film 13 was removed. As a result, as shown in FIG. 1E, a carbon deposited film 14 with the γ ′ phase 12 attached thereto was obtained. Subsequently, as shown in FIG. 2, the carbon vapor deposition film 14 to which the γ ′ phase 12 was adhered was scooped using a Cu mesh 17.
[0016]
4) Next, the γ ′ phase 12 adhered to the carbon deposited film 14 was observed with, for example, a scanning electron microscope (magnification 2500 to 100,000), and the particle size of the γ ′ phase 12 was determined by image processing.
[0017]
[2] How to determine the relationship between the LMP value and the difference between the cube of the particle size (R) after heating of the specimen and the cube of the particle size (R 0 ) of the initial material:
For the LMP value (parameter: P), the following Larson Miller parameter (LMP) equation is used.
LMP = (273 + T ° C.) (15 + logt) / 1000 (1)
However, in said formula (1), T shows the temperature of the test piece at the time of a heating, and t shows a heating time. The numerical value 15 in the formula (1) is a constant, and 20 can be used instead of 15.
[0018]
Here, the temperatures of the specimens corresponding to the heating times t 1 , t 2 , t 3 ,... T n are T 1 , T 2 , T 3 , ... T n , respectively , and the particle size R is R 1 , R 2, respectively. , R 3 ,... R n , the particle size R 0 of the initial material can be obtained by the method described in [1] above, so that the value of (R 3 −R 0 3 ) is obtained (the vertical axis in FIG. 4). axis). On the other hand, the LMP value (horizontal axis in FIG. 4) is obtained from the relationship between the heating time t and the heating temperature T. Therefore, as shown in FIG. 4, the relationship between the cube difference (μm 3 ) of the γ ′ phase particle size and the parameter P (P 1 , P 2 , P 3 , P 4 , P 5 , P 6 , P 7 ) A characteristic diagram (base curve) is obtained.
[0019]
[3] How the Ni-base alloy components of the estimated metal temperature as a target material for estimating the temperature by utilizing the characteristic diagram, after heating (similarly measured Ni-based alloy portions article particle size the cube of R - the initial material sought parameters P from the cube) value of the particle diameter R 0 of the heating temperature T of the Ni-base alloy part is obtained further by inserting the heating time t in the above equation (1).
[0020]
As described above, according to the above example, using the specimen 11 having the same composition as the Ni-based alloy part that is the target material for estimating the temperature, the cube of the particle diameter R after heating of the specimen and the initial value are used. The (R 3 −R 0 3 ) value, which is the difference between the cubes of the particle size R 0 of the material, and the LMP value were determined, and a base curve as shown in FIG. 4 was determined from the relationship between these values. By using this base curve, the heating temperature is obtained from the (R 3 -R 0 3 ) value obtained from the Ni-based alloy part and the heating time t, so that the target material is not cut as in the prior art. The metal temperature can be estimated.
[0021]
In addition, although the case where IN738LC was used as the specimen was described in the above embodiment, the present invention is not limited to this, but MGA1400CC (Mitsubishi Heavy Industries, Ltd. alloy), MGA1400DS (Mitsubishi Heavy Industries, Ltd. alloy), U520 (Special) Metals alloy) was tested in the same manner as in the above example, and as in the above example , different characteristic diagrams ( base curves ) were drawn, confirming that the metal temperature could be estimated.
[0022]
【The invention's effect】
As described above in detail, according to the present invention, in the method for estimating the temperature of a Ni-based alloy part as a target material based on the structural change of a Ni-based alloy used in a high-temperature part such as a gas turbine or a jet engine. , gamma from specimens of the same composition as the Ni-based alloy part 'extracts phase, which comprising the steps of Ru is deposited on the medium major surface, gamma' by depositing carbon on the medium of the called side phase measurement forming a carbon deposited film, removing the medium, 'a step Ru preparative rake phase with carbon deposition film, gamma' gamma by observing the phase particle size of gamma 'phase by image processing And the difference between the cube of the particle diameter (R) of the γ ′ phase after heating the specimen and the cube of the grain diameter (Ro) of the γ ′ phase of the initial material of the specimen, and the specimen A step of obtaining a characteristic diagram showing the relationship between the heating time and the Larson mirror parameter value obtained from the heating temperature. The above-mentioned characteristics with respect to the difference between the cube of the particle diameter (R) of the γ ′ phase after heating of the Ni-based alloy part measured in the same way and the cube of the particle diameter (Ro) of the γ ′ phase of the initial material From the Larson mirror parameter value and heating time in the figure, the temperature of the Ni-based alloy part is estimated non-destructively from the relational expression of the Larson mirror parameter without cutting the target material. It is possible to provide a temperature estimation method for a Ni-based alloy part capable of nondestructively estimating the metal temperature without cutting the Ni-based alloy part.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory view showing steps until a particle diameter of a γ ′ phase used in a temperature estimation method for a Ni-based alloy part according to the present invention is obtained.
FIG. 2 is an explanatory diagram when scavenging a γ ′ phase adhering to a carbon vapor deposition film.
FIG. 3 is an explanatory view showing a temperature estimation method for a Ni-based alloy part according to the related art in order of steps.
FIG. 4 is a characteristic diagram according to an embodiment of the present invention .
[Explanation of symbols]
11 ... test body,
12 ... γ 'phase,
13 ... Acetylcellulose film,
15 ... Container tank,
14 ... Carbon vapor deposition film,
16 ... methyl acetate,
17 ... Cu mesh.

Claims (4)

ガスタービン、ジェットエンジンなどの高温部品に使用されるNi基合金の組織変化に基づいて対象材であるNi基合金製部品の温度を推定する方法において、同Ni基合金製部品と同じ組成の供試体からγ’相を抽出し、これを媒体主面に被着させる工程と、γ’相の被着側の前記媒体にカーボンを蒸着させ、カーボン蒸着膜を形成する工程と、前記媒体を除去する工程と、γ’相付きカーボン蒸着膜をすくいとる工程と、γ’相を観察して画像処理によりγ’相の粒径を測定する工程と、前記供試体の加熱後のγ’相の粒径(R)の3乗と前記供試体の初期材のγ’相の粒径(Ro)の3乗の差と、前記供試体の加熱時間と加熱温度から求まるラーソンミラーパラメーター値との関係を示す特性図を得る工程を具備し、同様に測定された同Ni基合金製部品加熱後のγ’相の粒径(R)の3乗とその初期材のγ’相の粒径(Ro)の3乗の差に対する前記特性図におけるラーソンミラーパラメーター値と加熱時間より、ラーソンミラーパラメーターの関係から、対象材を切断せずに非破壊的にNi基合金製部品の温度を推定することを特徴とするNi基合金製部品の温度推定方法。In a method for estimating the temperature of a Ni-based alloy part, which is a target material, based on a structural change of a Ni-based alloy used in a high-temperature part such as a gas turbine or a jet engine, the same composition as that of the Ni-based alloy part is provided. gamma from specimens 'extracts phase, a step of depositing this medium major surface, gamma' by depositing carbon on the medium of the called side phase, forming a carbon deposited film, the medium removing, gamma 'and steps Nikki rake phase with carbon deposition film, gamma''and measuring the particle size of phase, the specimen gamma after heating' gamma by observing the image processing phase phase Of the particle size (R) of the sample and the cube of the particle size (Ro) of the γ 'phase of the initial material of the specimen, and the Larson mirror parameter value obtained from the heating time and heating temperature of the specimen comprising the step of obtaining a characteristic diagram showing the relationship, the Ni-based steel alloy, which is measured in the same manner From Larson-Miller parameter value and the heating time in the characteristic diagram for the difference of the cube of 'the cube and its initial material gamma particle size of phase (R)' particle size of phase (Ro) gamma after heating goods, A temperature estimation method for a Ni-based alloy part, wherein the temperature of the Ni-based alloy part is estimated non-destructively from a relational expression of Larson Miller parameters without cutting the target material . ガスタービン、ジェットエンジンなどの高温部品に使用されるNi基合金の組織変化に基づいて対象材であるNi基合金製部品の温度を推定する方法において、同Ni基合金製部品と同じ組成の供試体からγ’相を抽出する前に、前記供試体を過硫酸アンモニアとクエン酸と水からなる電解液を用いて電解エッチングする工程と、前記供試体からγ’相を抽出し、これを媒体主面に被着させる工程と、γ’相の被着側の前記媒体にカーボンを蒸着させ、カーボン蒸着膜を形成する工程と、前記媒体を除去する工程と、γ’相付きカーボン蒸着膜をすくいとる工程と、γ’相を観察して画像処理によりγ’相の粒径を測定する工程と、前記供試体の加熱後のγ’相の粒径(R)の3乗と前記供試体の初期材のγ’相の粒径(Ro)の3乗の差と、前記供試体の加熱時間と加熱温度から求まるラーソンミラーパラメーター値との関係を示す特性図を得る工程を具備し、同様に測定された同Ni基合金製部品の加熱後のγ’相の粒径(R)の3乗とその初期材のγ’相の粒径(Ro)の3乗の差に対する前記特性図におけるラーソンミラーパラメーター値と加熱時間より、ラーソンミラーパラメーターの関係式から、対象材を切断せずに非破壊的にNi基合金製部品の温度を推定することを特徴とするNi基合金製部品の温度推定方法。 In a method for estimating the temperature of a Ni-based alloy part, which is a target material, based on a structural change of a Ni-based alloy used in a high-temperature part such as a gas turbine or a jet engine, the same composition as that of the Ni-based alloy part is provided. Before extracting the γ ′ phase from the specimen, a step of electrolytically etching the specimen using an electrolyte solution composed of ammonia persulfate, citric acid and water, and extracting the γ ′ phase from the specimen, A step of depositing on the main surface, a step of depositing carbon on the medium on the deposition side of the γ ′ phase to form a carbon deposition film, a step of removing the medium, and a carbon deposition film with a γ ′ phase. and Nikki rake step, a step of measuring the particle diameter of 'by observing the phase image processing by gamma' gamma phase, the cube and the specimen of the specimen particle size after heating of gamma 'phase (R) and the cube of the difference between the initial material of gamma 'phase of particle size (Ro) of the specimen of the pressurized Comprising the step of obtaining a characteristic diagram showing the relationship between the Larson-Miller parameter values obtained from the time and the heating temperature, similarly measured particle size of the gamma 'phase after heating the Ni-base alloy component (R) 3 than multiplication and the heating time and the Larson-Miller parameter values in the characteristic diagram for the difference of the cube of its initial material gamma 'phase of particle size (Ro), the relational expression of Larson-Miller parameter, non without cutting the target object N i groups temperature estimation method of the alloy part characterized in that destructively estimate the temperature of the Ni-base alloy component. 前記媒体がアセチルセルロースであることを特徴とする請求項1または請求項2に記載のNi基合金製部品の温度推定方法。The method for estimating a temperature of a Ni-based alloy part according to claim 1 or 2, wherein the medium is acetylcellulose. 前記媒体を酢酸メチルに浸漬することにより除去することを特徴とする請求項1ないし請求項3のいずれか記載のNi基合金製部品の温度推定方法。The temperature estimation method for the Ni-based alloy part according to any one of claims 1 to 3, wherein the medium is removed by immersing the medium in methyl acetate.
JP2001223345A 2001-07-24 2001-07-24 Method for estimating temperature of Ni-based alloy parts Expired - Lifetime JP3935692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001223345A JP3935692B2 (en) 2001-07-24 2001-07-24 Method for estimating temperature of Ni-based alloy parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001223345A JP3935692B2 (en) 2001-07-24 2001-07-24 Method for estimating temperature of Ni-based alloy parts

Publications (2)

Publication Number Publication Date
JP2003035161A JP2003035161A (en) 2003-02-07
JP3935692B2 true JP3935692B2 (en) 2007-06-27

Family

ID=19056698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001223345A Expired - Lifetime JP3935692B2 (en) 2001-07-24 2001-07-24 Method for estimating temperature of Ni-based alloy parts

Country Status (1)

Country Link
JP (1) JP3935692B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100182B2 (en) * 2014-02-19 2017-03-22 三菱日立パワーシステムズ株式会社 Turbine member temperature estimation method

Also Published As

Publication number Publication date
JP2003035161A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
Texier et al. Effect of interdiffusion on mechanical and thermal expansion properties at high temperature of a MCrAlY coated Ni-based superalloy
US7094444B2 (en) Method for repairing coated components using NiAl bond coats
Isotahdon et al. Corrosion mechanisms of sintered Nd–Fe–B magnets in the presence of water as vapour, pressurised vapour and liquid
SHI et al. Isothermal oxidation behavior of single crystal superalloy DD6
US20040082069A1 (en) Systems and methods for estimating exposure temperatures and remaining operational life of high temperature components
RU2686745C9 (en) Nickel-based alloy regenerated member, and method for manufacturing same
CN107462456A (en) Method for displaying metallographic structure
Pollock et al. Oxide‐Assisted Degradation of Ni‐Base Single Crystals During Cyclic Loading: the Role of Coatings
JP2001330542A (en) Fatigue life evaluation method and fatigue lift evaluation device for coated component of gas turbine
JP3935692B2 (en) Method for estimating temperature of Ni-based alloy parts
JP4440124B2 (en) Damage assessment method for gas turbine parts
Rettberg et al. Rejuvenation of directionally solidified and single-crystal Nickel-base superalloys
CN111896458A (en) Method for analyzing thermal corrosion performance of nickel-based single crystal superalloy
JP3794943B2 (en) Method for estimating metal temperature and material properties of Ni-based alloy parts
Eastman et al. Phase equilibria and diffusion in the Ni-Cr-Pt system at 1200° C
JP2003004548A (en) Method of estimating metal temperature of high- temperature member
CN112129686A (en) Positioning tracking characterization method for corrosion research
US7150798B2 (en) Non-destructive testing method of determining the service metal temperature of a component
JP6485905B2 (en) Remaining life evaluation method
JP3441181B2 (en) Method for detecting deterioration of super heat resistant alloy steel
JPH05223809A (en) Remaining service life estimating method for gamma' phase precipitation reinforcement type alloy
JP3519703B2 (en) Temperature estimation method for high temperature parts
Rayatpour et al. Thermal analysis and microstructural evaluation of Inconel 738LC superalloy gas turbine blade
Podrez-Radziszewska et al. Influence of heat treatment on resistance to electrochemical corrosion of the strain-hardened strips made of the Ni3Al phase based alloys
JP2009074868A (en) Lifetime estimation method of nickel-based alloy component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R151 Written notification of patent or utility model registration

Ref document number: 3935692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term