JP3935057B2 - Stability analysis method of induction generator - Google Patents

Stability analysis method of induction generator Download PDF

Info

Publication number
JP3935057B2
JP3935057B2 JP2002344821A JP2002344821A JP3935057B2 JP 3935057 B2 JP3935057 B2 JP 3935057B2 JP 2002344821 A JP2002344821 A JP 2002344821A JP 2002344821 A JP2002344821 A JP 2002344821A JP 3935057 B2 JP3935057 B2 JP 3935057B2
Authority
JP
Japan
Prior art keywords
induction generator
generator
time
stability
output power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002344821A
Other languages
Japanese (ja)
Other versions
JP2004180435A (en
Inventor
俊久 舟橋
智信 千住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2002344821A priority Critical patent/JP3935057B2/en
Publication of JP2004180435A publication Critical patent/JP2004180435A/en
Application granted granted Critical
Publication of JP3935057B2 publication Critical patent/JP3935057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、誘導発電機の安定度解析方法に関する。
【0002】
【従来の技術】
近年環境問題に対する意識の高揚により風力エネルギーなどの自然エネルギーの有効利用が推進されており、我が国においても、1999年11月に北海道苫前町で民間大規模ウインドパーク(容量20MW,1MW×20機)が運転開始するなど、風力発電が環境に優しいエネルギー源として注目されている。風力エネルギーは自然エネルギーの中でもエネルギー密度は希薄であるが、化石燃料を使用しないクリーンなエネルギーであることから良風地域では将来有望なエネルギーとして期待されている。また、風力エネルギーは純国産エネルギーであることからエネルギー資源の大半を海外に依存している我が国においては、エネルギーセキュリティーの観点からも重要である。
【0003】
【発明が解決しようとする課題】
風力発電では一般に、構造が簡単、堅牢なため保守が容易であり、その上価格が安く、さらに系統並列時に位相調整の必要がないなどの利点からかご形誘導発電機が多く用いられる。しかし誘導発電機は励磁源を持たないため、系統並列時には発電機定格電流の6〜7倍の突入電流が流れる。また、誘導発電機が系統に連系されて運転している際に短絡故障や地絡故障等が生じた場合にも過大な故障電流が流れ系統へ多大な影響を与える。この誘導発電機は系統で短絡故障や地絡故障が生じた場合には回転子が加速し始めるため、故障発生から比較的短時問で系統へ再投入されると発電機は安定な動作を維持するが、再投入時間が長くなれば不安定な状態に陥る。したがって、誘導発電機の故障電流解析または過渡安定度解析は重要な課題となっている。
【0004】
このような背景から、本発明者らはこれまでに三相地絡故障時における誘導発電機の故障電流及び各出力に関する解析式を導出し、これらの解析式を用いて過渡時における誘導発電機の挙動について解析を行ってきた(例えば、非特許文献1参照。)。
【0005】
また、これまで等面積法による同期発電機の過渡安定度解析等を行ってきた。この同期発電機の過渡安定度解析は、入力する最終の擾乱発生時間以外の発電機機械的入力,発電機内部電圧,無限大母線電圧,発電機過渡リアクタンス,変圧器リアクタンス,送電線リアクタンス,発電機単位慣性定数,発電機定格角速度,事故発生時間,事故遮断時間等のすべての入力を固定して等面積法により安定限界相差角を求め、次いで、最終の擾乱発生時間も含めてすべての入力を固定し擾乱発生時の揺動方程式により最終の擾乱発生時の相差角を求め、安定限界相差角と擾乱発生時の相差角とを比較して安定判別を行うというものである(例えば、特許文献1参照。)。
【0006】
【非特許文献1】
千住智信、末吉儀秀、上里勝美、藤田秀紀「三相地絡故障時における誘導発電機の過渡現象解析」平成14年電気学会電力技術電力系統技術合同研究会資料、PE−02−16、PSE−2−26、2002.
【0007】
【特許文献1】
特開2000−270481号公報
ただし、これらの安定度解析手法は同期発電機を対象とするものであり、誘導発電機の安定度解析には適用できない。
【0008】
本発明は、上記課題に鑑みてなされたものであり、上記誘導発電機の故障電流及び各出力に関する解析式を用いて上記同期発電機の安定度解析に用いられてきた等面積法による安定度解析を誘導発電機の安定度解析へ適用した誘導発電機の安定度解析方法を提供するものである。
【0009】
【課題を解決するための手段】
本発明の誘導発電機の安定度解析方法は、誘導発電機の出力電力−時間特性を用いて故障期間中に発電機に加えられ回転子を加速するエネルギーと再閉路後に発電機速度を減少させるエネルギーを算出し、その両者が等しいことから安定限界再閉路時間を算出することを特徴とするものである。
【0010】
【発明の実施の形態】
〔発明が解決しようとする課題〕の項で述べたように、誘導発電機は故障発生から再投入までの時間によりその動作が安定状態と不安定状態に分かれる。つまり、再投入後誘導発電機が安定な動作を維持するための安定限界再閉路時間が存在する。本発明はこの安定限界時間を「臨界再閉路時間」と定義し、この値を等面積法によって求める。このとき一般によく知られている誘導発電機のすべり−出力電力特性を用いる。
I.解析式の導出
まず、本発明の誘導発電機の安定度解析方法に使用する解析式の導出について説明する。
【0011】
1.三相地絡故障時の過渡解析式
対象とする誘導発電機が連繋された一機無限大母線系統を図1に示す。この一機無限大母線系統は、無限大母線1に接続された送電線路2と、送電線路2の負荷側母線3に接続されたかご型誘導発電機4で構成されている。なお、図中、Fは送電線路に発生した三相地絡故障点、R1、R30-1及びL1、L30-1は送電線路の抵抗及びインダクタンス、CB1、CB2、CB3は遮断器、前記抵抗及びインダクタンスの小文字の添字エルは、誘導発電機から故障点までの距離を示す。また、シミュレーションに用いたシステムパラメータを表1に示す。
【0012】
【表1】
システムパラメータ
定格電力 674kVA
定格線間電圧 690V
定格周波数 50Hz
極数P 4極
回転子抵抗Rs 0.0118p.u.
回転子漏洩インダクタンスLls 0.217p.u.
回転子抵抗r′r 0.0156p.u.
励磁インダクタンスL′m 7.28p.u.
線路抵抗Rl 0.000195p.u./Km
線路インダクタンスLl 0.0195p.u./Km
慣性定数J 18.03kgm2
図1のかご形誘導発電機4を用いた一機無限大母線系統において、送電線路3上で三相地絡故障Fが発生することを想定した誘導発電機4の安定解析を行つた。図2は三相地絡時の誘導発電機4の等価回路であり、図中、Vfは故障点Fでの電圧、Rl、Llは線路の抵抗及びインダクタンス、rr′,Lr′は誘導発電機回転子の抵抗及びインダクタンス、ωrは回転子角速度、λ′drはd軸鎖交磁束数を示す。図2より三相地絡故障時におけるq軸,d軸電流は回転子角速度ωrを一定と仮定すれば、q軸電流iqs、i′qr及びd軸電流ids、i′drは(1)〜(4)式のように表される。
【0013】
【数1】

Figure 0003935057
【0014】
ただし、式中のωrssは定常状態における回転子角速度、θsは三相地絡故障発生時のa相固定子電流の位相角、また式中の時間tに付してある” ′”は三相地絡故障発生時刻をゼロと考えた場合の経過時間であることを示している。なお、他の定数を表2に示す。
【0015】
【表2】
Figure 0003935057
【0016】
また、誘導発電機の出力トルクTem及び電力PIGは(5)、(6式)で表される。
【0017】
【数2】
Figure 0003935057
【0018】
(1)〜(4)式を(5)式に代入し、整理すると、(7)式となる。
【0019】
【数3】
Figure 0003935057
【0020】
2.運動方程式
上記過渡解析式((1)〜(7)式)を用いて三相地絡故障時の回転子角速度を表現する速度方程式の導出を説明する。回転子の運動方程式は(8)式で表される。
【0021】
【数4】
Figure 0003935057
【0022】
ただし、ωf;故障期間中の回転子角速度、Tmech;機械的入力トルク、Tdamp;制動トルクである。ここで、
【0023】
【数5】
Figure 0003935057
【0024】
とおき、(8)式を回転子角速度ωfについて解くと(9)式となる。
【0025】
【数6】
Figure 0003935057
【0026】
【数7】
Figure 0003935057
【0027】
である。ここで、(2α/ωrss2≪1よりZA≒1であり、またLm≫L′lrの場合にはθA≒θB及びA≒Bが成り立つ。したがって、(9)式右辺第1項は第2項に比して十分小となり、(10)式のように近似できる。
【0028】
【数8】
Figure 0003935057
【0029】
(10)式を用いることで三相地絡故障期間中の回転子の速度変化を考慮した誘導発電機の出力電力を表現できる。(10)式を用いると故障期間中の誘導発電機の出力電力は(11)式のように書き直される。
【0030】
【数9】
Figure 0003935057
【0031】
(10)、(11)式の妥当性を数値計算プログラムを用いたシミュレーシン結果と比較することで検証する。数値計算プログラムにおけるシミュレーシンモデルは誘導発電機の非線形性を考慮したシステム方程式を用いて構成されている。
図3(a)及び(b)に回転子角速度及び出力電力の解析式による計算結果(実線)及び数値計算プログラムを用いたシミュレーション結果(点線)を示す。ただし、図3は誘導発電機が定常運転中、送電線路中央で三相地絡故障が発生(tf=4.0sec)した場合のシミュレーション結果である。
【0032】
図3より、解析式による計算結果は数値計算プログラムを用いたシミュレーション結果によく一致おり、解析式の妥当性が確認できる。図3において数値計算プログラムを用いたシミュレーション結果で地絡故障直後の回転子角速度に振動がみられるが、これは(9)式右辺第一項に示す成分である。また、出力電力のシミュレーション結果に関する誤差は、解析式を導出する際に用いた近似の影響により(11)式中の係数Zの値に誤差が生じたためである。
3.等面積法による誘導発電機の安定性解析
誘導発電機の出力特性表示に通常よく用いられる出力電力−すべり特性を(10)式を用いて時間領域に変換し,等面積法によって安定性解析を行うために必要な方程式の導出を行う。
3.1 出力電力−すべり特性
誘導発電機の回転子角速度の変化に対する出力特性は(12)式によって表される。
【0033】
【数10】
Figure 0003935057
【0034】
ここで、ωeは電源電圧の角速度である。(12)式より誘導発電機の出力電力−すべり特性は図4(a)のようになる。ただし、図4の特性は故障発生後の誘導発電機の出力電力をゼロと仮定した場合である。図中のsfは定常状態における発電機機速度であり、scrは再閉路時の発電機速度である。ここで、発電機の損失を無視すれば図中のA′acは故障期間中発電機に加えられ、回転子を加速させるエネルギーであり、A′deは再投入後発電機速度を減少させるエネルギーである。したがって、A′ac=A′deとなるすべりscrが誘導発電機の安定限界である。
3.2 出力電力−時間特性
時間領域における誘導発電機の出力特性について説明する。(12)式に(10)式を代入すると、故障期間における誘導発電機の出力電力−時間特性は図4(b)のようになる。ただし、図4は故障発生後の誘導発電機の出力電力をゼロと仮定した場合を表しており、実際の解析では(11)式に示す出力を考慮した安定性解析を行う。したがって、故障期間中の発電機出力を考慮すれば図中のAac、Adcは(13)、(14)式によって求められる。
【0035】
【数11】
Figure 0003935057
【0036】
ただし、Pssは定常状態における発電機出力電力である。等面積法では、Aac=Adcの場合が安定限界であり、Aac>Adcの場合は不安定、Aac<Adcの場合が安定である。(13)、(14)式を用いることにより、Aac=Adcにより得られる安定限界時間t′crを計算できる。
4.シミュレーション結果
送電線路上で三相地絡故障が生じた場合に、各機械的入力トルクに対して安定限界となる再閉路時間tcrを(13)、(14)式とを用いて求め、その結果の妥当性を数値計算プログラムを用いたシミュレーション結果と比較することにより検証する。安定限界となる再閉路時間tcrの評価は、送電線路長l=30km、故障発生時間tf=4.00sec、故障継続時間tcont=0.10secに固定し、再投入時間のみを変化させた場合に誘導発電機が再投入後に安定な動作をするか否かで行った。図5(a)及び(b)はその時の回転速度及び有効電力の出力波形で、図5(a)は再投入後誘導発電機が安定な動作を継続する場合の出力波形、図5(b)は再投入後不変定な場合の出力波形である。この安定限界となる再閉路時間を臨界再閉路時間(CriticarReclosingTime;CRT)とし、(15)式によって定義する。
【0037】
【数12】
CRT=tcr−tf (15)
ここで、tf及びtcrはそれぞれ故障発生時間及び再閉路時間である。故障シーケンスは、誘導発電機が定常運転中送電線路上で三相地絡故障が発生(t=tf)、その後線路ブレーカを開放(t=to)し、故障復旧後発電機を系統へ再投入(t=tcr)とした。通常、風力発電機の系統への再投入は故障除去から数分程度後であるが、等面積法を誘導発電機の安定解析へ適用することの妥当性を確認するするために発電機の再投入は故障消滅から数サイクル後とした。
【0038】
図6(a)に各機械的入力トルクに対する臨界再閉路時間CRTの解析式による計算結果(実線)及び数値計算プログラムを用いたシミュレーション結果(鎖線)を表3に、また表3をプロットした結果を図6に示す。
【0039】
【表3】
Figure 0003935057
【0040】
また、図6(b)にCRTの解析エラーを示す。図6より等面積法を用いた誘導発電機の安定性解析結果(実線)は数値計算プログラムによるシミュレーション結果(鎖線)で得られた機械的入力トルク−CRTの特性とよく一致していることが確認できる。
II.実施形態
本発明の実施形態に係る等面積法による三相地絡故障時おける誘導発電機の安定性解析方法について説明する。この安定性解析は上記(10)、(12)〜(14)式を用い図7の手順で行う。まず、定常状態における誘導発電機出力電力Pssを与える共に故障発生時間tf=0とする。そして、故障期間中の誘導発電機の回転子角速度ωfを近似式(10)式を用いて誘導発電機の定数から求め、次に誘導発電機の出力電力−すべり特性式(12)式を用いて故障発生からPsc=Pssまでの時間t′fを求める。次いで(13)、(14)式を用いて故障期間中に発電機に加えられ回転子を加速するエネルギーAacと再閉路後に発電機速度を減少させるエネルギーAdeを算出し、Aac=Adeを解いて安定限界再閉路時間t′crを求める。
【0041】
この等面積法による誘導発電機の安定性解析方法によれば、三相地絡故障時おける誘導発電機の安定度を簡単に求めることができる。この方法による誘導発電機の過渡安定度解析結果は上述したように数値計算プログラムを用いたシミュレーション結果と比較することでその妥当性が確認された。この等面積法による誘導発電機の安定性解析は三相地絡故障時における誘導発電機の安定度を評価する上で有効である。
【0042】
【発明の効果】
以上の説明で明らかなように、本発明によれば、三相地絡故障時おける誘導発電機の安定性解析時間を短縮できる。また、等面積法に基づく安定限界式から数値積分などを必要とせずに誘導発電機の安定限界再閉路時間を算出することができる。
【図面の簡単な説明】
【図1】 対象とする誘導発電機が接続された一機無限大母線系統図。
【図2】 一機無限大母線系統三相地絡故障時のq軸等価回路図。
【図3】(a)は回転子速度の解析式の計算結果及びシミュレーション結果を示す回転子の角速度時間−時間特性図、(b)は出力電力の解析式の計算結果及びシミュレーション結果を示す出力電力−時間特性図。
【図4】(a)は故障発生後の誘導発電機の出力電力をゼロと仮定した場合の出力電力−スリップ特性図、(b)は故障発生後の誘導発電機の出力電力をゼロと仮定した場合の出力電力−時間特性図。
【図5】(a)は再投入後誘導発電機が安定な動作を継続する場合の出力波形図、(b)は再投入後不変定な場合の出力波形図。
【図6】(a)は誘導発動機の機械的入力トルクに対するCRT(臨界再閉路時間)の解析式による計算結果及びシミュレーション結果を示す機械的入力トルク−CRT特性図、(b)はその計算結果とシミュレーション結果と差を示す機械的入力トルク−CRT解析エラー特性図。
【図7】本発明のシステム概念図。
【符号の説明】
1…無限大母線
2…送電線路
4…かご型誘導発電機
F…三相地絡故障点
P…誘導発電機の極数
ss…定常状態における誘導発電機出力電力
IG…誘導発電機出力電力
sc…誘導発電機回転子角速度の変化に対する出力特性
CRT…臨界再閉路時間[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction generator stability analysis method.
[0002]
[Prior art]
In recent years, the effective use of wind energy and other natural energy has been promoted by raising awareness of environmental issues. In Japan, a private large-scale wind park (capacity 20 MW, 1 MW x 20 aircraft) was constructed in November 1999 in Sakuma-cho, Hokkaido. Wind power generation is attracting attention as an environmentally friendly energy source. Wind energy is rare among natural energies, but it is a clean energy that does not use fossil fuels. In addition, since wind energy is purely domestic energy, it is important from the viewpoint of energy security in Japan, where most of the energy resources depend on foreign countries.
[0003]
[Problems to be solved by the invention]
In general, a squirrel-cage induction generator is often used for wind power generation because it has a simple structure and is robust so that it is easy to maintain, is inexpensive, and does not require phase adjustment when the systems are parallel. However, since the induction generator does not have an excitation source, an inrush current 6 to 7 times the generator rated current flows when the system is in parallel. In addition, when a short circuit fault or a ground fault occurs when the induction generator is connected to the grid and operating, an excessive fault current flows and greatly affects the grid. In this induction generator, the rotor starts to accelerate when a short circuit fault or ground fault occurs in the system, so the generator operates stably when it is re-entered into the system in a relatively short time after the failure occurs. Maintain, but if the re-input time becomes longer, it will become unstable. Therefore, failure current analysis or transient stability analysis of induction generators has become an important issue.
[0004]
From such a background, the present inventors have so far derived analytical formulas regarding the fault current and each output of the induction generator at the time of a three-phase ground fault, and using these analytical formulas, the induction generator at the time of transition Has been analyzed (for example, see Non-Patent Document 1).
[0005]
In addition, we have been conducting transient stability analysis of synchronous generators by the equal area method. The transient stability analysis of this synchronous generator consists of generator mechanical input other than the final disturbance occurrence time input, generator internal voltage, infinite bus voltage, generator transient reactance, transformer reactance, transmission line reactance, power generation Fix all the inputs such as unit inertia constant, generator rated angular velocity, accident occurrence time, accident interruption time, etc., find the stability limit phase difference angle by the equal area method, then all the inputs including the final disturbance occurrence time The phase difference angle at the time of the final disturbance is obtained from the fluctuation equation at the time of the disturbance generation, and the stability determination is performed by comparing the stability limit phase difference angle with the phase difference angle at the time of the disturbance generation (for example, patent Reference 1).
[0006]
[Non-Patent Document 1]
Toshinobu Senju, Yoshihide Sueyoshi, Katsumi Kamisato, Hideki Fujita “Analysis of transient phenomena in induction generators during three-phase ground faults”, IEEJ Power Technology Power System Technology Joint Study Group, PE-02-16, PSE-2-26, 2002.
[0007]
[Patent Document 1]
However, these stability analysis methods are intended for synchronous generators and cannot be applied to stability analysis of induction generators.
[0008]
The present invention has been made in view of the above problems, and the stability by the equal area method that has been used for the stability analysis of the synchronous generator by using the analytical expression relating to the fault current of the induction generator and each output. The stability analysis method of the induction generator which applied the analysis to the stability analysis of the induction generator is provided.
[0009]
[Means for Solving the Problems]
The method for analyzing the stability of an induction generator according to the present invention uses the output power-time characteristics of the induction generator to reduce the energy applied to the generator during the failure period to accelerate the rotor and the generator speed after reclosing. Since the energy is calculated and the two are equal, the stability limit reclosing time is calculated.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As described in the section “Problems to be Solved by the Invention”, the operation of an induction generator is divided into a stable state and an unstable state depending on the time from the occurrence of a failure to the re-input. In other words, there is a stability limit reclosing time for the induction generator to maintain a stable operation after recharging. In the present invention, this stability limit time is defined as "critical reclosing time", and this value is obtained by the equal area method. At this time, generally known slip-output power characteristics of an induction generator are used.
I. Derivation of Analytical Formula First, the derivation of the analytical formula used for the stability analysis method of the induction generator according to the present invention will be described.
[0011]
1. Transient analysis formula for three-phase ground faults Figure 1 shows the one-machine infinite bus system with the target induction generators connected. This one-machine infinite bus system includes a power transmission line 2 connected to the infinite bus 1 and a cage induction generator 4 connected to the load-side bus 3 of the power transmission line 2. In the figure, F is a three-phase ground fault point occurring in the transmission line 2 , R 1 , R 30-1 and L 1 , L 30-1 are the resistance and inductance of the transmission line 2 , CB1, CB2, and CB3 are The lower case letter L of the circuit breaker, the resistance and the inductance indicates the distance from the induction generator to the failure point. Table 1 shows the system parameters used for the simulation.
[0012]
[Table 1]
System parameter Rated power 674kVA
Rated line voltage 690V
Rated frequency 50Hz
Number of poles P 4 pole Rotor resistance R s 0.0118 p. u.
Rotor leakage inductance L ls 0.217 p. u.
Rotor resistance r 'r 0.0156p. u.
Excitation inductance L ′ m 7.28 p. u.
Line resistance R l 0.000195 p. u. / Km
Line inductance L l 0.0195 p. u. / Km
Inertia constant J 18.03kgm 2
In the one-machine infinite bus system using the squirrel-cage induction generator 4 of FIG. 1, a stability analysis of the induction generator 4 was performed assuming that a three-phase ground fault F occurs on the transmission line 3. Figure 2 is an equivalent circuit of the induction generator 4 when three-phase ground fault, in the drawing, V f is the voltage at the fault point F, R l, L l is the line of resistance and inductance, r r ', L r ′ Is the resistance and inductance of the induction generator rotor, ω r is the rotor angular velocity, and λ ′ dr is the d-axis flux linkage number. Q-axis than 2 when three-phase ground fault, d-axis current assuming the rotor angular velocity omega r is constant, q-axis current i qs, i 'qr and the d-axis current i ds, i' dr is ( 1) to (4).
[0013]
[Expression 1]
Figure 0003935057
[0014]
Where ω rss in the equation is the angular velocity of the rotor in the steady state, θ s is the phase angle of the a-phase stator current when the three-phase ground fault occurs, and “” is attached to the time t in the equation This shows the elapsed time when the three-phase ground fault occurrence time is considered to be zero. Other constants are shown in Table 2.
[0015]
[Table 2]
Figure 0003935057
[0016]
Further, the output torque T em and the power P IG of the induction generator are expressed by (5) and (6 formula).
[0017]
[Expression 2]
Figure 0003935057
[0018]
By substituting (1) to (4) into (5) and rearranging, (7) is obtained.
[0019]
[Equation 3]
Figure 0003935057
[0020]
2. Equation of motion Derivation of a velocity equation expressing the rotor angular velocity at the time of a three-phase ground fault will be described using the transient analysis equations (equations (1) to (7)). The equation of motion of the rotor is expressed by equation (8).
[0021]
[Expression 4]
Figure 0003935057
[0022]
Here, ω f ; rotor angular velocity during the failure period, T mech ; mechanical input torque, T damp ; braking torque. here,
[0023]
[Equation 5]
Figure 0003935057
[0024]
Then, when equation (8) is solved for the rotor angular velocity ω f , equation (9) is obtained.
[0025]
[Formula 6]
Figure 0003935057
[0026]
[Expression 7]
Figure 0003935057
[0027]
It is. Here, from (2α / ω rss ) 2 << 1, Z A ≈1, and when L m >> L′ l r , θ A ≈θ B and A≈B hold. Therefore, the first term on the right side of equation (9) is sufficiently smaller than the second term and can be approximated as in equation (10).
[0028]
[Equation 8]
Figure 0003935057
[0029]
By using the equation (10), it is possible to express the output power of the induction generator in consideration of the rotor speed change during the three-phase ground fault period. When the expression (10) is used, the output power of the induction generator during the failure period is rewritten as the expression (11).
[0030]
[Equation 9]
Figure 0003935057
[0031]
The validity of the expressions (10) and (11) is verified by comparing with the results of simulation using a numerical calculation program. The simulation model in the numerical calculation program is constructed using system equations considering the nonlinearity of the induction generator.
FIGS. 3A and 3B show the calculation results (solid line) based on the analytical expressions of the rotor angular velocity and output power (solid line) and the simulation results (dotted line) using the numerical calculation program. However, FIG. 3 is a simulation result when a three-phase ground fault occurs in the center of the transmission line (t f = 4.0 sec) during steady operation of the induction generator.
[0032]
From FIG. 3, the calculation result by the analytical expression is in good agreement with the simulation result using the numerical calculation program, and the validity of the analytical expression can be confirmed. In FIG. 3, in the simulation result using the numerical calculation program, vibration is observed in the angular velocity of the rotor immediately after the ground fault, which is a component shown in the first term on the right side of equation (9). The error relating to the simulation result of the output power is due to an error in the value of the coefficient Z in the equation (11) due to the influence of the approximation used when deriving the analytical equation.
3. Analysis of stability of induction generator by equal area method Output power-slip characteristic, which is usually used for display of output characteristics of induction generator, is converted to time domain using equation (10), and stability analysis is performed by equal area method. The derivation of the necessary equations is performed.
3.1 Output power-slip characteristics The output characteristics with respect to the change in the rotor angular speed of the induction generator are expressed by equation (12).
[0033]
[Expression 10]
Figure 0003935057
[0034]
Here, ω e is the angular velocity of the power supply voltage. From the equation (12), the output power-slip characteristic of the induction generator is as shown in FIG. However, the characteristic of FIG. 4 is a case where the output power of the induction generator after the failure is assumed to be zero. In the figure, s f is the generator speed in the steady state, and s cr is the generator speed at the time of reclosing. Here, if the loss of the generator is ignored, A ′ ac in the figure is energy that is added to the generator during the failure period and accelerates the rotor, and A ′ de is energy that decreases the generator speed after recharging. is there. Therefore, the slip s cr where A ′ ac = A ′ de is the stability limit of the induction generator.
3.2 Output power-time characteristics The output characteristics of the induction generator in the time domain will be described. When the expression (10) is substituted into the expression (12), the output power-time characteristic of the induction generator in the failure period is as shown in FIG. However, FIG. 4 shows a case where the output power of the induction generator after the occurrence of the failure is assumed to be zero, and in the actual analysis, a stability analysis is performed in consideration of the output shown in Equation (11). Therefore, if the generator output during the failure period is taken into account, A ac and A dc in the figure can be obtained by equations (13) and (14).
[0035]
## EQU11 ##
Figure 0003935057
[0036]
Where P ss is the generator output power in the steady state. In the equal area method, the stability limit is when A ac = A dc , the stability is stable when A ac > A dc , and the stability is stable when A ac <A dc . By using the equations (13) and (14), the stability limit time t ′ cr obtained by A ac = A dc can be calculated.
4). Simulation results When a three-phase ground fault occurs on the transmission line, the reclosing time t cr that becomes the stability limit for each mechanical input torque is obtained using the equations (13) and (14). The validity of the results is verified by comparing with the simulation results using a numerical calculation program. The reclosing time t cr , which is the stability limit, is evaluated by fixing the transmission line length l = 30 km, the failure occurrence time t f = 4.00 sec, the failure duration t cont = 0.10 sec, and changing only the recharging time. In this case, whether or not the induction generator operates stably after being re-introduced. 5 (a) and 5 (b) are output waveforms of the rotational speed and active power at that time, FIG. 5 (a) is an output waveform when the induction generator continues a stable operation after recharging, and FIG. 5 (b). ) Is the output waveform when invariable after re-input. The reclosing time that becomes the stability limit is defined as a critical reclosing time (CRT) and is defined by the equation (15).
[0037]
[Expression 12]
CRT = t cr −t f (15)
Here, t f and t cr are fault occurrence time and the reclosing time, respectively. The failure sequence is that the induction generator is in steady operation and a three-phase ground fault occurs on the transmission line (t = t f ), then the line breaker is opened (t = t o ), and the generator is restored to the grid after the failure is restored. Input (t = t cr ). Usually, re-introduction of the wind generator into the grid is about a few minutes after the failure is removed, but in order to confirm the validity of applying the equal area method to the stability analysis of the induction generator, Input was made several cycles after the failure disappeared.
[0038]
FIG. 6 (a) shows the results of calculation of the critical reclosing time CRT with respect to each mechanical input torque (solid line) and the results of simulation using the numerical calculation program (dashed line) in Table 3, and the results of plotting Table 3. Is shown in FIG.
[0039]
[Table 3]
Figure 0003935057
[0040]
FIG. 6B shows a CRT analysis error. From FIG. 6, it can be seen that the stability analysis result (solid line) of the induction generator using the equal area method is in good agreement with the mechanical input torque-CRT characteristic obtained from the simulation result (dashed line) by the numerical calculation program. I can confirm.
II. Embodiment A method for analyzing the stability of an induction generator in the case of a three-phase ground fault by the equal area method according to an embodiment of the present invention will be described. This stability analysis is performed according to the procedure of FIG. 7 using the above equations (10), (12) to (14). First, the induction generator output power P ss in the steady state is given and the failure occurrence time t f = 0. Then, the rotor angular velocity ω f of the induction generator during the failure period is obtained from the constant of the induction generator using the approximate expression (10), and then the output power-slip characteristic expression (12) of the induction generator is expressed as The time t ′ f from the occurrence of the failure to P sc = P ss is obtained. Next, using Equations (13) and (14), energy A ac that is applied to the generator during the failure period to accelerate the rotor and energy A de that reduces the generator speed after reclosing is calculated, and A ac = A Solve de to find the stability limit reclosing time t ' cr .
[0041]
According to the stability analysis method of the induction generator by this equal area method, the stability of the induction generator in the event of a three-phase ground fault can be easily obtained. The validity of the transient stability analysis result of the induction generator by this method was confirmed by comparing with the simulation result using the numerical calculation program as described above. This stability analysis of the induction generator by the equal area method is effective in evaluating the stability of the induction generator during a three-phase ground fault.
[0042]
【The invention's effect】
As is clear from the above description, according to the present invention, it is possible to shorten the time for analyzing the stability of the induction generator in the event of a three-phase ground fault. Further, the stability limit reclosing time of the induction generator can be calculated from the stability limit formula based on the equal area method without requiring numerical integration.
[Brief description of the drawings]
FIG. 1 is a system diagram of a one-machine infinite bus connected to a target induction generator.
FIG. 2 is a q-axis equivalent circuit diagram at the time of one-machine infinite bus system three-phase ground fault.
3A is a rotor angular velocity time-time characteristic diagram showing calculation results and simulation results of rotor speed analysis, and FIG. 3B is an output showing output power analysis formula calculation results and simulation results. Power-time characteristic diagram.
4A is an output power-slip characteristic diagram when the output power of the induction generator after the occurrence of a failure is assumed to be zero, and FIG. 4B is an assumption that the output power of the induction generator after the occurrence of the failure is zero. The output power-time characteristic figure at the time of doing.
FIG. 5A is an output waveform diagram when the induction generator continues stable operation after re-input, and FIG. 5B is an output waveform diagram when invariable after re-input.
6A is a mechanical input torque-CRT characteristic diagram showing calculation results and simulation results of CRT (critical reclosing time) with respect to the mechanical input torque of the induction motor, and FIG. 6B is a calculation result thereof; The mechanical input torque-CRT analysis error characteristic figure which shows a difference with a result and a simulation result.
FIG. 7 is a system conceptual diagram of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Infinite bus 2 ... Transmission line 4 ... Cage type induction generator F ... Three-phase ground fault P ... Number of induction generator poles ss ... Steady state induction generator output power PIG ... Induction generator output Electric power P sc ... Output characteristics against changes in the induction generator rotor angular velocity
CRT ... Critical reclosing time

Claims (3)

誘導発電機の出力電力−時間特性を用いて故障期間中に発電機に加えられ回転子を加速するエネルギーと再閉路後に発電機速度を減少させるエネルギーを算出し、その両者が等しいことから安定限界再閉路時間を算出することを特徴とする誘導発電機の安定度解析方法。Using the output power-time characteristics of the induction generator, the energy that is applied to the generator during the failure period to accelerate the rotor and the energy that decreases the generator speed after reclosing are calculated, and the stability limit is reached because both are equal. A method for analyzing the stability of an induction generator, characterized by calculating a reclosing time. 請求項1において、
上記誘導発電機の出力電力−時間特性を求める場合に、誘導発電機の出力電力−すべり特性式から求めることを特徴とする誘導発電機の安定度解析方法。
In claim 1,
A method for analyzing the stability of an induction generator, wherein the output power-time characteristic of the induction generator is obtained from an output power-slip characteristic equation of the induction generator.
請求項2において、
上記誘導発電機の出力電力−すべり特性式から上記誘導発電機の出力電力−時間特性を求める場合に、故障期間中の誘導発電機の回転子角速度を回転子角速度の近似式を用いて誘導発電機の定数から求めることを特徴とする誘導発電機の安定度解析方法。
In claim 2,
When the output power-time characteristic of the induction generator is obtained from the output power-slip characteristic equation of the induction generator, the induction generator power generation using the approximate equation of the rotor angular velocity is calculated using the rotor angular velocity of the induction generator during the failure period. A method for analyzing the stability of an induction generator, characterized in that it is obtained from a constant of the machine.
JP2002344821A 2002-11-28 2002-11-28 Stability analysis method of induction generator Expired - Fee Related JP3935057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344821A JP3935057B2 (en) 2002-11-28 2002-11-28 Stability analysis method of induction generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002344821A JP3935057B2 (en) 2002-11-28 2002-11-28 Stability analysis method of induction generator

Publications (2)

Publication Number Publication Date
JP2004180435A JP2004180435A (en) 2004-06-24
JP3935057B2 true JP3935057B2 (en) 2007-06-20

Family

ID=32706159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344821A Expired - Fee Related JP3935057B2 (en) 2002-11-28 2002-11-28 Stability analysis method of induction generator

Country Status (1)

Country Link
JP (1) JP3935057B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8164312B1 (en) * 2011-01-27 2012-04-24 General Electric Company Reduction in generator-sourced fault current contribution
CN106842021B (en) * 2016-12-29 2022-03-25 国家电网公司 Method and device for judging transient voltage stability

Also Published As

Publication number Publication date
JP2004180435A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
Brekken et al. A novel doubly-fed induction wind generator control scheme for reactive power control and torque pulsation compensation under unbalanced grid voltage conditions
Liang et al. Feed-forward transient current control for low-voltage ride-through enhancement of DFIG wind turbines
Pannell et al. Analytical study of grid-fault response of wind turbine doubly fed induction generator
Luna et al. Simplified modeling of a DFIG for transient studies in wind power applications
Zhang et al. Steady‐state performance evaluations of three‐phase brushless asynchronous excitation system for aircraft starter/generator
Karaagac et al. Synchronous machine modeling precision and efficiency in electromagnetic transients
Choo et al. Analysis of subsynchronous torsional interaction of HVDC system integrated hydro units with small generator-to-turbine inertia ratios
Gholizadeh et al. An analytical study for low voltage ride through of the brushless doubly-fed induction generator during asymmetrical voltage dips
JP4350998B2 (en) Transient stability analysis method for induction generator
Staudt et al. An optimization-oriented sizing model for brushless doubly fed reluctance machines: Development and experimental validation
Potgieter et al. Modeling and stability analysis of a direct-drive direct-grid slip–synchronous permanent-magnet wind generator
Hernández et al. A step forward in the modeling of the doubly-fed induction machine for harmonic analysis
Guha et al. Saturation modeling and stability analysis of synchronous reluctance generator
JP3935057B2 (en) Stability analysis method of induction generator
Aller et al. Voltage behind reactance model of the doubly fed induction generator using space vectors
Dineley et al. Synchronous Generator Transient Control: Part I-Theory and Evaluation of Alternative Mathematical Models
Zhang et al. Novel rotor-side control scheme for doubly fed induction generator to ride through grid faults
Livadaru et al. FEM-based analysis on the operation of three-phase induction motor connected to six-phase supply system: Part 2—Study on fault-tolerance capability
Rahimian et al. Modeling of synchronous machines with damper windings for condition monitoring
Su et al. Current control strategy for six-phase PMSM based on MPC under open-circuit fault condition
Abu-Jalala et al. Performance improvement of simplified synchronous generators using an active power filter
Noorcheshma et al. Low Voltage Ride through (LVRT) of DFIG and PMSM wind turbine
Ogunjuyigbe et al. Wind driven self excited reluctance generator for rural electrification
Holik et al. A finite-element model for induction machines incorporating winding faults
Zhang et al. Numerical calculation and experimental verification of subtransient-and transient reactances of a pumped storage machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees