JP3934580B2 - Contaminated ground purification method using both in-situ agitation and air injection suction, and purification device used therefor - Google Patents

Contaminated ground purification method using both in-situ agitation and air injection suction, and purification device used therefor Download PDF

Info

Publication number
JP3934580B2
JP3934580B2 JP2003176390A JP2003176390A JP3934580B2 JP 3934580 B2 JP3934580 B2 JP 3934580B2 JP 2003176390 A JP2003176390 A JP 2003176390A JP 2003176390 A JP2003176390 A JP 2003176390A JP 3934580 B2 JP3934580 B2 JP 3934580B2
Authority
JP
Japan
Prior art keywords
ground
contaminated
purification
gas
purification method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003176390A
Other languages
Japanese (ja)
Other versions
JP2005007344A (en
Inventor
修二 磯谷
和昭 日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2003176390A priority Critical patent/JP3934580B2/en
Publication of JP2005007344A publication Critical patent/JP2005007344A/en
Application granted granted Critical
Publication of JP3934580B2 publication Critical patent/JP3934580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、飽和砂質地盤、不飽和砂質地盤、飽和粘性質地盤又は不飽和粘性質地盤のいずれの汚染地盤にも適用できる、原位置攪拌と空気注入吸引を併用した汚染地盤浄化工法及びこれに用いる浄化装置に関するものである。
【0002】
【従来の技術】
半導体製造工場などの洗浄工程において多量に使用されるトリクロロエチレン等の揮発性有機化合物は、漏れなどにより土壌又は地下水を汚染する可能性があり、この場合、工場跡地の再利用の障害となったり、地下水の利用が制限されたりする問題がある。
【0003】
このような汚染土壌や汚染地下水を浄化する方法としては、従来、汚染地盤区域の周囲に井戸を掘ってポンプで揚水し、この揚水した地下水に溶解した汚染物質を地上のばっ気処理装置や活性炭吸着処理装置で回収する地下水揚水法、地下水位が低く、該地下水位より上方の地盤に存在するガス状の汚染物質を吸引し地上の活性炭吸着処理装置で汚染物質を回収する土壌ガス吸引法(非特許文献1)、生石灰を土壌に混合することにより生じる水和熱を利用して揮発性有機化合物をガス化して回収する生石灰混合攪拌工法(特許文献1の特開平8−112586号公報)、地上から帯水層に達する注入管に空気を注入し、揮発性汚染物質を取り込んだ気泡を不飽和層に別途設置された抽出管により吸引し地上の活性炭吸着処理装置で汚染物質を回収するエアースパージング(非特許文献2)がある。
【0004】
また、水和反応性粉粒体材料を地盤中に貫入された管軸内に設けた輸送通路を介し気体輸送し該管軸に付設された攪拌翼内の回転領域内に噴射して土壌と攪拌し該土壌と水和反応させ、その反応熱により土壌中の有害成分を揮発させ、輸送気体と共に地上に揚昇させて無害化処理する土壌浄化施工方法(特許文献2の特開平10−5737号公報)、軸と、該軸の端部に固定された攪拌具とを有する攪拌装置を用いて、土壌を攪拌する工程と、攪拌された土壌から流体を吸引する工程とを有し、該軸として、貫通孔が形成された中空管が用いられ、該吸引工程において、該中空管の中空部から流体を吸引する土壌浄化方法、又は当該土壌浄化方法において、更に攪拌土壌中に気体吸引井戸と気体供給井戸をそれぞれ設け、両井戸間の土壌を曝気する方法(特許文献3の特開2000−202425号公報)がある。
【非特許文献1】
小暮敬二著,「地盤環境の汚染と浄化修復システム」,技報堂発行,第174頁〜第177頁
【特許文献1】
特開平8−112586号公報(特許請求の範囲)
【非特許文献2】
「土壌における難分解性有機化合物・重金属汚染の浄化技術」,エヌ・ティー・エス発行,吉田隆発行者、第179頁〜第193頁
【特許文献2】
特開平10−5737号公報(請求項1)
【特許文献3】
特開2000−202425号公報(請求項1〜4)
【0005】
【発明が解決しようとする課題】
しかしながら、地下水揚水法や土壌ガス吸引法の適用範囲及び浄化効率は地盤条件により大きく左右される。すなわち、地下水揚水法や土壌ガス吸引法は通水性又は通気性の高い砂礫地盤や砂質地盤においては、浄化効率もよく有効な方法であるものの、通水性又は通気性の低い粘性質地盤では、揚水あるいはガス吸引の影響範囲が小さく浄化効率が悪いため処理費用が膨大となったり、適用さえ困難な場合がある。特に、丘のような海抜が高い地盤では、地下水位が地盤の深部にあり、地下水位より上方にガス状の汚染物質が存在することがあり、このままでは当該地盤が例え砂質地盤であっても地下水揚水法は適用できない。
【0006】
また、生石灰混合攪拌工法は、生石灰混合攪拌により、飽和度を低下させ透気性の改善を図った後、土壌ガス吸引を実施するため、浄化効率が悪く、処理コストを押し上げる。また、飽和度の低下が小さく、透気性が十分に改善されない場合もあり、ガスの回収効率が悪い。更に飽和粘性質地盤に適用する場合には、生石灰の混合量が膨大となり、生石灰混合地盤の強度が著しく高くなり跡地利用が制限されると共に、アルカリ汚染の問題がある。
【0007】
また、エアースパージングは、空気注入口とガス吸引口の距離が近接しているとは言えず、例えば注入空気が地下水中、水平方向に移動したり、不飽和層に達した後において十分に回収されないことがある。この場合、地下水汚染を拡大したり、汚染ガスが大気に放出される恐れがある。注入空気が水平方向に移動し、汚染物質が拡散する恐れがある場合には、汚染地盤の周囲を止水壁等により囲むことも必要であり、不経済となる。また、一本の注入管から気泡の及ぶ範囲は注入空気量、注入深さ、帯水層の土質等により異なり、気泡の及ぶ範囲が小さい粘性質地盤では不経済となるだけではなく、適用さえ困難な場合がある。このように、従来の工法においては、汚染地盤が飽和砂質地盤、不飽和砂質地盤、飽和粘性質地盤、不飽和粘性質地盤のいずれの地盤にも適用できる工法とは言い難く、汚染土壌の土質に影響されず、汚染物質の浄化効率が高い工法の開発が望まれていた。なお、本明細書において、飽和地盤とは、汚染地盤又は汚染層が地下水位より下方にある地盤を言いい、不飽和地盤とは地下水位より上方にある地盤を言う。
【0008】
また、特開平10−5737号公報記載の浄化方法は、水和反応性粉粒体材料を輸送する輸送気体と揮発性有害成分の揚昇は管軸の周りの隙間を利用するものであり、地上への回収は確実とは言えない。また水和反応性粉粒体材料の供給が停止すると、輸送気体の圧送も停止するため、揮発性有害成分の揚昇が十分に行われない場合がある。また、特開2000−202425号公報記載の土壌浄化方法は、攪拌された土壌から揮発性有害物を吸引するため、揮発性有害物の回収効率が十分であるとは言えない。揮発性有害物の回収効率を高めるため、攪拌土壌中に気体吸引井戸と気体供給井戸をそれぞれ設けてはいるものの、供給空気が水平方向に移動する距離が長いため、吸引井戸に十分に回収されないことがある。また攪拌工程、井戸埋設工程及び気体供給吸引工程をそれぞれ単独で行うため、工期が長引くという問題がある。
【0009】
従って、本発明の目的は、上記従来の課題を解決するものであって、汚染地盤が飽和砂質地盤、不飽和砂質地盤、飽和粘性質地盤又不飽和粘性質地盤のいずれの地盤にも適用が可能で、浄化効率が高く、処理期間の大幅短縮を図ることができる汚染地盤浄化工法及びこれに用いる浄化装置を提供することにある。
【0010】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意検討を行った結果、回転軸の下方に放射状に付設された1以上の攪拌翼と、該攪拌翼の回転域内の所定箇所に付設された空気注入口と、該攪拌翼の回転域内であって該空気注入口より上方の所定箇所に付設されたガス吸引口またはフィン付きガス吸引管とを備える攪拌装置を用い、原位置攪拌と空気注入吸引を併用した浄化工法を採用すれば、汚染地盤の土質に影響されず、浄化効率が高まり、処理期間の大幅短縮を図ることができるため処理コストを低減できることなどを見出し、本発明を完成するに至った。
【0011】
すなわち、本発明(1)は、回転軸の下方に放射状に付設された1以上の攪拌翼と、該攪拌翼の回転域内の所定箇所に付設された空気注入口と、該攪拌翼の回転域内であって該空気注入口及び上部の攪拌翼より上方の所定箇所に付設されたガス吸引口とを備える攪拌装置を用い原位置の汚染地盤を浄化する方法であって、該攪拌翼による原位置土の攪拌と、該攪拌翼の回転域内への空気の注入を同時に行ない、汚染物質を該ガス吸引口から地上に回収することを特徴とする汚染地盤浄化工法を提供するものである。この汚染地盤浄化工法によれば、攪拌された土壌に空気を注入するため、水分が効率的に飛ばされ透気性が高まり、汚染物質の揮発が促進されると共に、攪拌がガス拡散を助長するためガス吸引効果が一層高まる。攪拌と空気注入とガス吸引を同時に行うため、浄化効率が高く、処理期間の大幅短縮を図ることができる。またこの汚染地盤浄化工法は、飽和砂質地盤、不飽和砂質地盤、飽和粘性質地盤、不飽和粘性質地盤のいずれの地盤にも適用が可能であるが、特に不飽和砂質地盤に適する。
【0013】
また、本発明()は、回転軸の下方に放射状に付設された1以上の攪拌翼と、該攪拌翼の回転域内の所定箇所に付設された空気注入口と、該攪拌翼の回転域内であって該空気注入口及び上部攪拌翼より上方の所定箇所に付設されたガス吸引口とを備える、原位置の汚染地盤の浄化に用いる浄化装置を提供するものである。この浄化装置を用いれば、前記(1)の汚染地盤浄化工法を確実に実施できる。
【0015】
【発明の実施の形態】
次に、本発明の第1の実施の形態における汚染地盤浄化工法及びこれに用いる浄化装置(攪拌装置)を図1〜図3を参照して説明する。図1は本例の汚染地盤浄化工法を説明する模式図、図2は図1の汚染地盤浄化工法を実施する浄化装置の概略図、図3は図1の汚染地盤浄化工法を実施する他の浄化装置の概略図をそれぞれ示す。
【0016】
本第1の実施の形態例の汚染地盤浄化工法で用いる浄化装置10は、例えば2本の回転軸1、1の下方に放射状に付設された1軸に付き3本の攪拌翼2、2、2と、攪拌翼2、2、2の回転域内の最下段の攪拌翼の一側の翼に付設された空気注入口3、3と、攪拌翼2、2、2の回転域内であって最上段の攪拌翼の上方に付設されたガス吸引口4とを備えるものである。また、最下段の攪拌翼の他側の翼には任意の構成要素である揮発促進剤注入口7、7を更に備える。また、中空管である回転軸1、1内の空間部には空気供給管5と揮発性促進剤供給管6が付設され、空気供給管5の一端は空気注入口3に連通し、他端は圧縮空気供給手段20に接続している。揮発性促進剤供給管6の一端は揮発性促進剤注入口7に連通し、他端は揮発性促進剤供給手段30に接続している。ガス吸引口4の中央下部には、任意の構成要素である攪拌土壌の温度を測定する温度計14を備える。なお、空気注入口3、3の設置場所は、浄化装置10の攪拌翼2、2、2の回転域内にあればよく、攪拌翼以外の、例えは回転軸1、1の下方部に直接付設されたものでもよい。図中、符号13はオーガーであり、符号9は先端掘削ビット、符号15は汚染層を含む不飽和砂質地盤である。
【0017】
本発明において、ガス吸引口4の設置形態としては、特に制限されず、2本の回転軸1、1間に差し渡し状に付設された逆3角形断面の横部材で、該横部材の両側面の開口にフィルターを設置すると共に、上側面中央部にはガス吸引管8を接続してなる設置形態(図2)、及び2本の回転軸1、1の一部を開口4a、4aとし、該開口にフィルターを付けた設置形態(図3)等が挙げられる。図2の設置形態では、ガス吸引口4は攪拌翼2、2、2の回転域を横断する配設形態であり、且つガス吸引口4の開口面もほぼ下方に向いているためガスを回収し易くなる。図3の設置形態ではガス吸引管8の設置が省略でき、これに伴いガスの流路は回転軸1、1内の空間部となる。ガス吸引部4、4aは、空気注入口3、3の上方位置であると共に、出来る限り近接していることが、空気を大量に注入しても、汚染ガスと共に大量注入空気の吸引が確実に行なわれ、その結果、従来問題であった注入空気の水平方向への拡散を防止すると共に、浄化効率が顕著に向上し、工期の短縮にも繋がる点で好ましい。また、空気注入口3、3とガス吸引口4、4aは近接且つ固定されているため、浄化装置10を深度方向に移動あるいは原位置を移動(水平方向に移動)させても、その配置関係は一定であり、ガスの拡散を生じることなく確実なガス吸引を行なうことができる。
【0018】
浄化装置10に供給される空気は、地上の圧縮空気供給手段20から供給され、浄化装置10に供給される揮発促進剤は、地上の揮発促進剤供給手段30から供給され、浄化装置10のガス吸引口4、4aからの汚染ガスは汚染ガス回収手段50により回収され、浄化装置10の攪拌翼の回転域を上昇してくる汚染ガスは残部汚染ガス浄化回収手段40により回収される。
【0019】
圧縮空気供給手段20は、ドライコンプレッサー21と、地上の配管22とを備え、地上の配管22は浄化装置10の空気供給管5に繋がり一体化している。汚染地盤に供給される圧縮空気としては、特に制限されず、常温風、温風及び熱風等が挙げられる。また、空気注入量は、特に制限されず、空気注入口とガス吸引口とが近接しているため、従来のエアースパージングの注入量に対して、最大数百倍まで注入が可能である。
【0020】
揮発促進剤供給手段30は、ドライコンプレッサー31と、揮発促進剤供給機32と、地上の配管33を備え、地上の配管33は浄化装置10の揮発促進剤供給管6に繋がり一体化している。揮発促進剤としては、特に制限されず、例えば生石灰のような水和反応性材料が挙げられる。揮発促進とは、当該薬剤を土壌に混合することで生じる水和熱が汚染物質の揮発性を高める作用を言う。また、生石灰は水分を吸収するため、通気性が高まり、通気性改善剤としての効果も奏し、ガス吸引効率が一層向上する。また、揮発促進剤と併用又は単独で、砂、砕石等の通気性改善剤を該攪拌翼の回転域内に注入してもよい。
【0021】
汚染ガス回収手段50は、汚染地盤中の汚染物質の大部分を含む大量の排出空気と僅かの水分の混合体を処理して、処理水と清浄ガスに分離するものである。すなわち、汚染ガス回収手段50は分離塔51と、排水貯槽52と、真空ブロアー53と、ポンプ54と、地上の配管55と、ガス吸着塔56を備え、地上の配管55は図2の浄化装置10の場合、ガス吸引管8に繋がり一体化している。
【0022】
残部汚染ガス回収手段40は、浄化装置10のガス吸引口4、4aから吸引されず、攪拌翼2の回転域を上昇してくる残部の汚染物質を回収して処理するものであり、本発明においては、任意の構成要素である。すなわち、残部汚染ガス回収手段40は、地中から上昇してくるガスを採取するガス回収フード12と、バグフィルター43と、ブロアー42と、ガス吸着塔41を備えるものである。汚染ガス回収手段50と残部汚染ガス回収手段40を併用することで、汚染地盤中の汚染物質をほぼ完全に回収することができる。
【0023】
温度計14の設置場所としては、浄化装置の攪拌翼回転域及びその近傍であればよく、上記の位置の他、例えばガス吸引口4の両側板面、2つの回転軸1、1を連結する連れ回り防止板19などが挙げられる。温度計14は地上の監視手段に接続され、地上で攪拌土壌の温度が判るようになっている。これにより、生石灰のような水和反応性材料の供給の停止、注入量の増減、攪拌翼2の回転速度の調整などを行い、汚染物質の揮発状況を監視すると共に制御することができる。
【0024】
第1の実施の形態例の浄化装置10を用いた汚染地盤浄化工法は、飽和砂質地盤、不飽和砂質地盤、飽和粘性質地盤又は不飽和粘性質地盤のいずれにも適用できる。また、これらの地盤は砂質地盤が好ましい。また、本例の浄化装置10は回転軸が1軸型の浄化装置であってもよい。また、本例の浄化装置10は揮発促進剤供給手段30を利用し、発熱促進剤を揮発促進剤と共に又は発熱促進剤を単独で別途に注入してもよい。また、発熱促進剤の単独注入の場合、発熱促進剤供給手段を別途に設け、当該手段から注入してもよい。別途の発熱促進剤供給手段としては、揮発促進剤供給手段30と同様の構成装置でよく、同様に回転軸内の空間部に発熱促進剤供給配管を設けるようにしてもよい。発熱促進剤は、これを生石灰等の揮発性促進剤と併用すれば、発熱効果を維持しつつ生石灰の注入量を抑制することができる。これにより、生石灰の過剰注入に伴う地盤強度が必要以上に高くなり跡地利用が制限されることがなく、アルカリ溶出も少なくなる。
【0025】
次に、前記浄化装置10を用いて原位置の汚染地盤を浄化する方法を説明する。先ず所定位置に浄化装置10及びこれに付帯する各種手段20、30、40、50を設置する。浄化装置10の貫入又は引抜きの際、攪拌翼2による原位置土の攪拌と、攪拌翼2の回転域内への空気の注入を同時に行ない、必要により揮発促進剤を注入して、汚染物質をガス吸引口4、4aから地上に回収するか、又は必要によりガス回収フード12に回収する。また、揮発促進剤として生石灰を用いた場合、温度計14をONとし、攪拌土壌の温度を監視する。すなわち、生石灰を注入しても温度上昇がなく、間隙水がない地盤と判断された場合、生石灰の注入を停止して、原位置土の攪拌と空気の注入とで汚染物質を回収する。一方、攪拌温度が上昇し、間隙水の存在にもかかわらず、その温度が上昇しない場合、攪拌翼2の回転速度を高めたり、生石灰の注入量を増加したりする。このように、温度計14を地上で監視して汚染物質の揮発状態をモニタリングできる。なお、浄化装置10の水平方向の移動は一旦浄化装置10を地上に引き上げ、所定の位置に水平移動させることで行われる。本実施の形態例の汚染地盤浄化工法によれば、攪拌された土壌に空気を注入するため、水分が効率的に飛ばされ透気性が高まり、汚染物質の揮発が促進されると共に、攪拌がガス拡散を助長するためガス吸引効果が一層高まる。また、ガスの回収はガス吸引口4、4aと、地上のガス回収フード12の双方で行なうため、汚染物質を地上に拡散させることはない。また、この汚染地盤浄化工法は、飽和砂質地盤、不飽和砂質地盤、飽和粘性質地盤又は不飽和粘性質地盤のいずれの地盤にも適用が可能であるが、特に不飽和砂質地盤に適する。
【0026】
次に、第2の実施の形態における汚染地盤浄化工法を図4を参照して説明する。図4は本例の汚染地盤浄化工法を説明する模式図である。図4中、図1と同一構成要素には同一符号を付してその説明を省略し、異なる点について主に説明する。すなわち、第2の実施の形態例は第1の実施の形態例と同様の浄化装置10を用いて飽和砂質地盤16を浄化するのに好適な方法である。具体的には、飽和砂質地盤に対して、予め揚水手段を用いて地下水位が汚染層よりも下方になるように低下させておき、次いで、図1を参照して説明した方法で汚染地盤を浄化する。地下水位を低下させるには、汚染地盤区域の周囲に揚水井61を掘ってディープウェルなどの吸引ポイント62で揚水すればよい。本第2の実施の形態例によれば、従来の地下水揚水法を併用することにより、飽和砂質汚染地盤に対しても、第1の実施の形態例と同様の効果を奏する。
【0027】
次に、第3の実施の形態における汚染地盤浄化工法を図5を参照して説明する。図5は本例の汚染地盤浄化工法を説明する模式図である。図5中、図1と同一構成要素には同一符号を付してその説明を省略し、異なる点について主に説明する。すなわち、第3の実施の形態例は第1の実施の形態例と同様の浄化装置10を用いて飽和粘性質汚染地盤を浄化するのに好適な方法である。具体的には、飽和粘性質地盤16aに対して、予め揚水手段を用いて地下水位が汚染層よりも下方になるように低下させておき、次いで、図1を参照して説明した方法で汚染地盤を浄化する。粘性質地盤16aは、例えば粘性土層16bの下方に通水層17を有する。飽和粘性質の地盤15の地下水位を低下させるには、砂杭や砕石杭など通水柱71を適宜のピッチで多数造成して粘性土層16bの透水性の改善を図り、次いで、揚水井61の通水層部分63にディープウェルなどの吸引ポイント62を設置し、揚水井61から地下水を汲み上げる方法が適用できる。本第3の実施の形態例によれば、従来の地下水揚水法を併用することにより、飽和粘性質汚染地盤に対しても、第1の実施の形態例と同様の効果を奏する他、汚染物質はガス吸収口4、ガス回収フード12及び揚水井61の3経路から回収することができる。
【0028】
次に、本発明の参考の形態における汚染地盤浄化工法及びこれに用いる浄化装置を図6及び図7を参照して説明する。図6は本参考例の汚染地盤浄化工法を説明する模式図、図7は図6の汚染地盤浄化工法を実施する浄化装置の概略図をそれぞれ示す。図7において、図2と同一構成要素には、同一符号を付してその説明を省略し、異なる点についてのみ主に説明する。すなわち本参考例の浄化装置10bにおいて、第1の実施の形態例の浄化装置10と異なる点は、浄化装置10のガス吸引口4及びガス吸引管8を省略し、回転軸1、1間であって空気注入口3より上方位置にフィン82、83付きガス回収軸81を設けた点である。このようなフイン82、83付きガス回収軸81は、浄化装置10bの貫入又は引抜きの際、回動するためガス回収軸81周りにフインの幅寸法分の空隙が形成され、この空隙がガスの流路となる。このため、浄化装置10bは飽和粘性質汚染地盤に好適に用いることができる。この場合、図6に示すように、地上の汚染ガス回収手段50は省略することができる。
【0029】
次に、浄化装置10bを用いて原位置の汚染地盤を浄化する方法を説明する。先ず所定位置に浄化装置10b及びこれに付帯する各種手段20、30、40を設置する。浄化装置10bの貫入又は引抜きの際、攪拌翼2による原位置土の攪拌と、攪拌翼2の回転域内への空気の注入を同時に行ない、汚染物質をフィン82、83付きガス回収管81周りの空隙部を通して、ガス回収フード12に回収する。本参考例の汚染地盤浄化工法においては、生石灰等の揮発促進剤を注入することが、粘性質地盤の通気性を改善することができる点で特に好ましい。本参考例によれば、飽和粘性質汚染地盤に対しても、第1の実施の形態例と同様の効果を奏する他、攪拌された土壌に大量の空気を注入できるため、汚染物質を含んだガスの排出量も多く、当該排出ガスをフィン付きガス回収管81周りに形成された空隙を通して、地上に確実に回収することができる。
【0030】
【発明の効果】
本発明の汚染地盤浄化工法によれば、攪拌された土壌に空気を注入するため、水分が効率的に飛ばされ透気性が高まり、汚染物質の揮発が促進されると共に、攪拌がガス拡散を助長するためガス吸引効果が一層高まる。攪拌と空気注入とガス吸引を同時に行うため、浄化効率が高く、処理期間の大幅短縮を図ることができる。また、この汚染地盤浄化工法は、飽和砂質地盤、不飽和砂質地盤、飽和粘性質地盤又は不飽和粘性質地盤のいずれの地盤にも適用が可能である。また、生石灰等の揮発促進剤の注入を併用すれば、生石灰と土壌の混合により生じる水和熱を利用して揮発性汚染物質のガス化を促進することができると共に、生石灰の水分吸収能から、通気性も高まり、ガス吸引効率が一層向上する。また、地下水揚水法を併用すれば、飽和汚染地盤の浄化にも適用することができる。また、本発明の浄化装置は、従来の地盤改良工法で用いる機械式攪拌混合処理装置を若干改良するだけでよいため、設備コストの上昇を抑制することができる。
【図面の簡単な説明】
【図1】第1の実施の形態例の汚染地盤浄化工法を説明する模式図である。
【図2】図1の汚染地盤浄化工法を実施する浄化装置の概略図である。
【図3】図1の汚染地盤浄化工法を実施する他の浄化装置の概略図である。
【図4】第2の実施の形態における汚染地盤浄化工法を説明する模式図である。
【図5】第3の実施の形態における汚染地盤浄化工法を説明する模式図である。
【図6】第4の実施の形態における汚染地盤浄化工法を説明する模式図である。
【図7】図6の汚染地盤浄化工法を実施する浄化装置の概略図である。
【符号の説明】
1 回転軸
2 攪拌翼
3 空気注入口
4、4a ガス吸引口
5 空気供給管
6 揮発促進剤供給管
7 揮発促進剤注入口
8 ガス吸引管
9 先端掘削ビット
10、10a、10b 浄化装置
11 フィン
12 ガス回収フード
13 オーガー
14 温度計
15 不飽和砂質地盤
16 飽和砂質地盤
16a 粘性質地盤
16b 粘性土層
17 通水層
20 圧縮空気供給手段
21、31 ドライコンプレッサー
22 、33、44、55 配管
30 揮発促進剤供給手段
32 揮発促進剤供給機
40 残部汚染ガス浄化回収手段
41、56 ガス吸着塔
42、53 ブロアー
43 バグフィルター
50 汚染ガス回収手段
51 分離塔
52 排水貯槽
54 ポンプ
61 揚水井
62 吸引ポイント
71 通水柱
81 ガス回収管
82、83 フィン
WL 地下水位
[0001]
BACKGROUND OF THE INVENTION
The present invention is applicable to any contaminated ground of saturated sandy ground, unsaturated sandy ground, saturated viscous ground or unsaturated viscous ground, and a contaminated ground purification method using both in-situ agitation and air injection suction. The present invention relates to a purification device used for this.
[0002]
[Prior art]
Volatile organic compounds such as trichlorethylene, which are used in large quantities in the cleaning process of semiconductor manufacturing plants, etc., may contaminate the soil or groundwater due to leakage, etc. There is a problem that the use of groundwater is restricted.
[0003]
As a method for purifying such contaminated soil and contaminated groundwater, conventionally, a well is dug around the contaminated ground area and pumped to pump the pollutant dissolved in the pumped groundwater to an aeration treatment device or activated carbon on the ground. Groundwater pumping method to collect with the adsorption treatment device, soil gas suction method to suck the gaseous pollutants existing in the ground above the groundwater level with low groundwater level and collect the contaminants with the activated carbon adsorption treatment device on the ground ( Non-patent document 1), quick lime mixed stirring method for recovering by gasifying and recovering volatile organic compounds using heat of hydration generated by mixing quick lime with soil (JP-A-8-112586 of Patent Document 1), Air is injected into the injection pipe that reaches the aquifer from the ground, and bubbles that have taken in volatile pollutants are sucked by an extraction pipe separately installed in the unsaturated layer, and then polluted by the activated carbon adsorption treatment device on the ground. Recovery for air sparging (Non Patent Document 2).
[0004]
Further, the hydrate-reactive granular material is gas-transported through a transport passage provided in the tube shaft penetrating into the ground, and sprayed into the rotating region in the stirring blade attached to the tube shaft, and the soil and A soil purification construction method in which the soil is hydrated with the agitation, volatilizes harmful components in the soil by the reaction heat, and is lifted to the ground together with the transport gas to render it harmless (Japanese Patent Laid-Open No. 10-5737 of Patent Document 2). Gazette), using a stirrer having a shaft and a stirrer fixed to the end of the shaft, the step of stirring the soil, and the step of sucking fluid from the stirred soil, As the shaft, a hollow tube having a through hole is used, and in the suction step, a soil purification method for sucking fluid from the hollow portion of the hollow tube, or in the soil purification method, further gas in the agitated soil A suction well and a gas supply well are provided to expose the soil between the two wells. A method (JP-2000-202425 Patent Document 3) for.
[Non-Patent Document 1]
Koji Kogure, "Contamination and purification system of the ground environment", published by Gihodo, pages 174-177 [Patent Document 1]
JP-A-8-112586 (Claims)
[Non-Patent Document 2]
"Purification technology of persistent organic compounds and heavy metal contamination in soil", issued by NTS, Takashi Yoshida, pp. 179-193 [Patent Document 2]
JP 10-5737 A (Claim 1)
[Patent Document 3]
JP 2000-202425 A (Claims 1 to 4)
[0005]
[Problems to be solved by the invention]
However, the application range and purification efficiency of the groundwater pumping method and soil gas suction method are greatly affected by the ground conditions. That is, the groundwater pumping method and the soil gas suction method are effective methods with good purification efficiency in sandy gravel ground or sandy ground with high water permeability or air permeability, but in viscous ground with low water permeability or air permeability, Since the range of influence of pumping water or gas suction is small and the purification efficiency is poor, the processing cost may be enormous or even difficult to apply. In particular, in ground with a high altitude such as a hill, the groundwater level is deep in the ground, and gaseous pollutants may be present above the groundwater level, and the ground is, for example, sandy ground. However, the groundwater pumping method is not applicable.
[0006]
In addition, the quick lime mixing and stirring method reduces soil saturation and improves air permeability by quick lime mixing and stirring, and then implements soil gas suction, so that the purification efficiency is poor and the processing cost is increased. In addition, the decrease in saturation is small, and the gas permeability may not be sufficiently improved, and the gas recovery efficiency is poor. Furthermore, when applied to saturated viscous ground, the mixing amount of quicklime becomes enormous, the strength of the quicklime mixed ground becomes remarkably high, and the use of the ruins is restricted, and there is a problem of alkali contamination.
[0007]
Also, air sparging cannot be said that the distance between the air inlet and the gas inlet is close. For example, the air is sufficiently recovered after the injected air moves horizontally in the ground water or reaches the unsaturated layer. It may not be done. In this case, there is a risk of expanding groundwater contamination or releasing pollutant gas to the atmosphere. When the injected air moves in the horizontal direction and there is a risk that the pollutant may diffuse, it is necessary to surround the contaminated ground with a water blocking wall or the like, which is uneconomical. In addition, the range of bubbles from a single injection tube varies depending on the amount of injected air, the injection depth, the soil quality of the aquifer, etc. It can be difficult. Thus, in the conventional construction method, it is difficult to say that the contaminated ground can be applied to any of the saturated sandy ground, unsaturated sandy ground, saturated viscous ground, and unsaturated viscous ground. Development of a construction method that has high purification efficiency of pollutants without being affected by the soil quality is desired. In the present specification, the saturated ground refers to the ground where the contaminated ground or the contaminated layer is below the groundwater level, and the unsaturated ground refers to the ground above the groundwater level.
[0008]
In addition, the purification method described in JP-A-10-5737 uses a gap around the tube axis for lifting the transport gas transporting the hydration reactive granular material and the volatile harmful component, Recovery to the ground is not certain. Further, when the supply of the hydration reactive granular material is stopped, the pumping of the transport gas is also stopped, so that the volatile harmful component may not be sufficiently lifted. Moreover, since the soil purification method of Unexamined-Japanese-Patent No. 2000-202425 attracts volatile harmful substances from the agitated soil, it cannot be said that the collection efficiency of volatile harmful substances is sufficient. In order to increase the recovery efficiency of volatile harmful substances, a gas suction well and a gas supply well are provided in the agitated soil. However, the supply air is not recovered sufficiently in the suction well because of the long distance traveled horizontally. Sometimes. Moreover, since the stirring process, the well burying process, and the gas supply / suction process are performed independently, there is a problem that the construction period is prolonged.
[0009]
Therefore, the object of the present invention is to solve the above-mentioned conventional problems, and the contaminated ground is any of saturated sandy ground, unsaturated sandy ground, saturated viscous ground or unsaturated viscous ground. It is an object of the present invention to provide a contaminated ground purification method that can be applied, has high purification efficiency, and can greatly reduce the treatment period, and a purification device used therefor.
[0010]
[Means for Solving the Problems]
In such a situation, the present inventors have intensively studied, and as a result, one or more stirring blades radially attached below the rotation shaft, and an air inlet provided at a predetermined location in the rotation region of the stirring blade, , Using a stirrer provided with a gas suction port or a finned gas suction pipe provided at a predetermined location within the rotation region of the stirring blade and above the air injection port, in-situ stirring and air injection suction were used in combination By adopting the purification method, the present inventors have found that the purification efficiency can be increased and the treatment period can be greatly shortened without being influenced by the soil quality of the contaminated ground, and the treatment cost can be reduced, thereby completing the present invention.
[0011]
That is, the present invention (1) includes one or more stirring blades radially attached below the rotation shaft, an air inlet provided at a predetermined location in the rotation region of the stirring blade, and the rotation region of the stirring blade. a method of purifying contaminated soil in situ with a stirrer and a air inlet and attached above the predetermined portion from the stirring blade of the top gas suction port there is, the original position by the stirring拌翼It is an object of the present invention to provide a contaminated ground purification method characterized in that the agitation of soil and the injection of air into the rotation region of the agitation blade are simultaneously performed to collect the contaminants from the gas suction port to the ground. According to this contaminated ground purification method, since air is injected into the agitated soil, moisture is efficiently blown off, air permeability is increased, volatilization of pollutants is promoted, and agitation promotes gas diffusion. The gas suction effect is further enhanced. Since the stirring, air injection, and gas suction are simultaneously performed, the purification efficiency is high, and the processing period can be greatly shortened. This contaminated ground purification method can be applied to any of the saturated sandy ground, unsaturated sandy ground, saturated viscous ground, and unsaturated viscous ground, but is particularly suitable for unsaturated sandy ground. .
[0013]
Further, the present invention ( 2 ) includes one or more stirring blades provided radially below the rotating shaft, an air inlet provided at a predetermined location in the rotation region of the stirring blade, and the rotation region of the stirring blade. In addition, the present invention provides a purification device for purification of contaminated ground in the original position, comprising the air inlet and a gas suction port attached to a predetermined location above the upper stirring blade . If this purification apparatus is used, the contaminated ground purification method (1) can be carried out reliably.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, a contaminated ground purification method and a purification device (stirring device) used in the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram for explaining the contaminated ground purification method of this example, FIG. 2 is a schematic diagram of a purification apparatus for performing the contaminated ground purification method of FIG. 1, and FIG. 3 is another example for implementing the contaminated ground purification method of FIG. The schematic of a purification apparatus is shown, respectively.
[0016]
The purification apparatus 10 used in the contaminated ground purification method according to the first embodiment includes, for example, three stirring blades 2, 2, 1 shaft attached radially below the two rotating shafts 1, 1, 2, the air inlets 3, 3 attached to one blade of the lowermost stirring blade in the rotation region of the stirring blades 2, 2, and the rotation region of the stirring blades 2, 2, 2 And a gas suction port 4 provided above the upper stirring blade. Further, the other side blades of the lowermost stirring blade are further provided with volatilization promoter inlets 7 and 7 which are optional components. In addition, an air supply pipe 5 and a volatile promoter supply pipe 6 are attached to a space in the rotary shafts 1 and 1 which are hollow pipes, and one end of the air supply pipe 5 communicates with the air inlet 3 and others. The end is connected to the compressed air supply means 20. One end of the volatile accelerator supply pipe 6 communicates with the volatile accelerator inlet 7, and the other end is connected to the volatile accelerator supply means 30. A thermometer 14 for measuring the temperature of the agitated soil, which is an optional component, is provided at the lower center of the gas suction port 4. The installation place of the air inlets 3 and 3 only needs to be within the rotation region of the stirring blades 2, 2 and 2 of the purification device 10, and is directly attached to the lower part of the rotating shafts 1 and 1 other than the stirring blades. It may be done. In the figure, reference numeral 13 denotes an auger, reference numeral 9 denotes a tip excavation bit, and reference numeral 15 denotes an unsaturated sandy ground including a contaminated layer.
[0017]
In the present invention, the installation form of the gas suction port 4 is not particularly limited, and is a transverse member having an inverted triangular cross section provided in a stretched manner between the two rotary shafts 1 and 1, and both side surfaces of the transverse member. In addition, a filter is installed in the opening and a gas suction pipe 8 is connected to the central portion of the upper surface (FIG. 2), and a part of the two rotary shafts 1 and 1 are formed as openings 4a and 4a. The installation form (FIG. 3) etc. which attached the filter to this opening are mentioned. In the installation form of FIG. 2, the gas suction port 4 is arranged so as to cross the rotation region of the stirring blades 2, 2, and 2, and the opening surface of the gas suction port 4 is also directed substantially downward, so that the gas is recovered. It becomes easy to do. In the installation form of FIG. 3, the installation of the gas suction pipe 8 can be omitted, and the gas flow path becomes a space portion in the rotary shafts 1, 1. The gas suction parts 4 and 4a are located above the air inlets 3 and 3 and are as close as possible, so that even when a large amount of air is injected, a large amount of injected air is reliably sucked together with the contaminated gas. As a result, it is preferable in that it prevents diffusion of the injected air in the horizontal direction, which has been a problem in the prior art, and significantly improves the purification efficiency and shortens the construction period. Further, since the air inlets 3 and 3 and the gas suction ports 4 and 4a are close and fixed, even if the purification device 10 is moved in the depth direction or moved to the original position (moved in the horizontal direction), the arrangement relationship Is constant, and reliable gas suction can be performed without causing gas diffusion.
[0018]
The air supplied to the purification device 10 is supplied from the compressed air supply means 20 on the ground, and the volatilization promoter supplied to the purification device 10 is supplied from the ground volatilization promoter supply means 30. Contaminated gas from the suction ports 4, 4 a is recovered by the contaminated gas recovery means 50, and the contaminated gas rising in the rotating region of the stirring blade of the purification device 10 is recovered by the remaining contaminated gas purification and recovery means 40.
[0019]
The compressed air supply means 20 includes a dry compressor 21 and a ground pipe 22. The ground pipe 22 is connected to and integrated with the air supply pipe 5 of the purification device 10. The compressed air supplied to the contaminated ground is not particularly limited, and examples include normal temperature air, warm air, and hot air. Further, the air injection amount is not particularly limited, and since the air injection port and the gas suction port are close to each other, the injection can be performed up to several hundred times as much as the conventional air sparging injection amount.
[0020]
The volatilization promoter supply means 30 includes a dry compressor 31, a volatilization promoter supply machine 32, and a ground pipe 33. The ground pipe 33 is connected to and integrated with the volatilization promoter supply pipe 6 of the purification device 10. The volatilization promoter is not particularly limited, and examples thereof include a hydration reactive material such as quicklime. Volatilization promotion refers to the action of heat of hydration generated by mixing the drug with soil increasing the volatility of the pollutant. Moreover, since quicklime absorbs a water | moisture content, air permeability improves, there exists an effect as an air permeability improvement agent, and gas suction efficiency improves further. Further, an air permeability improving agent such as sand and crushed stone may be injected into the rotation region of the stirring blade in combination with or alone with the volatilization promoter.
[0021]
The polluted gas recovery means 50 processes a mixture of a large amount of exhaust air containing most of the pollutants in the contaminated ground and a small amount of water, and separates it into treated water and clean gas. That is, the contaminated gas recovery means 50 includes a separation tower 51, a drainage storage tank 52, a vacuum blower 53, a pump 54, a ground pipe 55, and a gas adsorption tower 56, and the ground pipe 55 is the purifier shown in FIG. In the case of 10, it is connected to the gas suction pipe 8 and integrated.
[0022]
The remaining pollutant gas collecting means 40 collects and processes the remaining pollutant that is not sucked from the gas suction ports 4 and 4a of the purifier 10 and rises in the rotating region of the stirring blade 2, and is thus treated in the present invention. Is an optional component. That is, the remaining pollutant gas recovery means 40 includes a gas recovery hood 12 that collects gas rising from the ground, a bag filter 43, a blower 42, and a gas adsorption tower 41. By using the pollutant gas recovery means 50 and the remaining pollutant gas recovery means 40 in combination, the pollutants in the contaminated ground can be recovered almost completely.
[0023]
The installation location of the thermometer 14 may be in the vicinity of the rotation region of the stirring blade of the purifier and in the vicinity thereof. For example, both the plate surfaces of the gas suction port 4 and the two rotary shafts 1 and 1 are connected in addition to the above position. The accompanying prevention board 19 etc. are mentioned. The thermometer 14 is connected to the monitoring means on the ground so that the temperature of the agitated soil can be known on the ground. Thereby, the supply of the hydration reactive material such as quicklime is stopped, the injection amount is increased and decreased, the rotation speed of the stirring blade 2 is adjusted, and the volatilization state of the pollutant can be monitored and controlled.
[0024]
The contaminated ground purification method using the purification device 10 of the first embodiment can be applied to any of saturated sandy ground, unsaturated sandy ground, saturated viscous ground, or unsaturated viscous ground. These grounds are preferably sandy ground. Further, the purification device 10 of this example may be a purification device having a single-axis rotation shaft. Moreover, the purification apparatus 10 of this example may use the volatilization promoter supply means 30 and separately inject the heat generation accelerator together with the volatilization promoter or the heat generation accelerator separately. In the case of single injection of the heat generation accelerator, a heat generation accelerator supply means may be provided separately and injected from the means. The separate heat generation accelerator supply means may be the same device as the volatilization promoter supply means 30, and similarly, a heat generation accelerator supply pipe may be provided in the space in the rotating shaft. If this exothermic accelerator is used in combination with a volatile accelerator such as quicklime, the amount of quicklime injected can be suppressed while maintaining the exothermic effect. Thereby, the ground strength accompanying the excessive injection | pouring of quicklime becomes high more than necessary, and there is no restriction | limiting of use of a ruins, and alkali elution decreases.
[0025]
Next, a method for purifying the contaminated ground in the original position using the purification device 10 will be described. First, the purification device 10 and various means 20, 30, 40, 50 attached thereto are installed at predetermined positions. When the purifier 10 is inserted or withdrawn, the in-situ soil is stirred by the stirring blade 2 and air is injected into the rotation region of the stirring blade 2 at the same time. It collect | recovers on the ground from the suction ports 4 and 4a, or collect | recovers to the gas collection | recovery hood 12 as needed. Moreover, when quick lime is used as a volatilization promoter, the thermometer 14 is turned ON and the temperature of the stirred soil is monitored. In other words, when it is determined that the ground has no rise in temperature even when quick lime is injected and there is no pore water, the quick lime injection is stopped, and the pollutant is recovered by stirring the in situ soil and injecting air. On the other hand, when the stirring temperature rises and the temperature does not rise despite the presence of interstitial water, the rotational speed of the stirring blade 2 is increased or the amount of quicklime injected is increased. Thus, the volatilization state of the pollutant can be monitored by monitoring the thermometer 14 on the ground. The purification device 10 is moved in the horizontal direction by once lifting the purification device 10 to the ground and horizontally moving it to a predetermined position. According to the contaminated ground purification method of the present embodiment, since air is injected into the agitated soil, moisture is efficiently blown off, air permeability is increased, volatilization of pollutants is promoted, and agitation is performed by gas. The gas suction effect is further enhanced to promote diffusion. Further, since the gas is collected at both the gas suction ports 4 and 4a and the gas recovery hood 12 on the ground, the pollutant is not diffused on the ground. In addition, this contaminated ground purification method can be applied to any of the saturated sandy ground, unsaturated sandy ground, saturated viscous ground or unsaturated viscous ground, but especially to unsaturated sandy ground. Suitable.
[0026]
Next, the contaminated ground purification method in 2nd Embodiment is demonstrated with reference to FIG. FIG. 4 is a schematic diagram for explaining the contaminated ground purification method of this example. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. That is, the second embodiment is a method suitable for purifying the saturated sandy ground 16 using the purification device 10 similar to the first embodiment. Specifically, the saturated sandy ground is previously lowered using a pumping means so that the groundwater level is below the contaminated layer, and then the contaminated ground by the method described with reference to FIG. To purify. In order to lower the groundwater level, a pumping well 61 may be dug around the contaminated ground area and pumped at a suction point 62 such as a deep well. According to the second embodiment, by using the conventional groundwater pumping method, the same effect as that of the first embodiment can be obtained for the saturated sandy contaminated ground.
[0027]
Next, the contaminated ground purification method in the third embodiment will be described with reference to FIG. FIG. 5 is a schematic diagram for explaining the contaminated ground purification method of this example. In FIG. 5, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and different points will be mainly described. That is, the third embodiment is a method suitable for purifying saturated viscous contaminated ground using the purification device 10 similar to the first embodiment. Specifically, the saturated viscous ground 16a is lowered in advance by using a pumping means so that the groundwater level is below the contaminated layer, and then contaminated by the method described with reference to FIG. Purify the ground. The viscous ground 16a has, for example, a water flow layer 17 below the viscous soil layer 16b. In order to lower the groundwater level of the saturated viscous ground 15, a large number of water flow columns 71 such as sand piles and crushed stone piles are formed at an appropriate pitch to improve the permeability of the viscous soil layer 16b. A method of installing a suction point 62 such as a deep well in the water flow layer portion 63 and pumping up groundwater from the pumping well 61 can be applied. According to the third embodiment, by using the conventional groundwater pumping method, the same effects as in the first embodiment can be obtained on the saturated viscous contaminated ground, and the pollutant Can be recovered from the three paths of the gas absorption port 4, the gas recovery hood 12 and the pumping well 61.
[0028]
Next, a contaminated ground purification method and a purification device used therefor according to a reference embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a schematic diagram for explaining the contaminated ground purification method of the present reference example, and FIG. 7 is a schematic view of a purification device for implementing the contaminated ground purification method of FIG. In FIG. 7, the same components as those in FIG. 2 are denoted by the same reference numerals, description thereof is omitted, and only different points will be mainly described. That is, the purification device 10b of the present reference example is different from the purification device 10 of the first embodiment in that the gas suction port 4 and the gas suction pipe 8 of the purification device 10 are omitted, and between the rotary shafts 1 and 1. Thus, a gas recovery shaft 81 with fins 82 and 83 is provided at a position above the air inlet 3. Since the gas recovery shaft 81 with such fins 82 and 83 rotates when the purification device 10b is inserted or pulled out, a gap corresponding to the width of the fin is formed around the gas recovery shaft 81. It becomes a flow path. For this reason, the purification apparatus 10b can be suitably used for saturated viscous contaminated ground. In this case, as shown in FIG. 6, the ground pollutant gas recovery means 50 can be omitted.
[0029]
Next, a method for purifying the contaminated ground in the original position using the purification device 10b will be described. First, the purification device 10b and various means 20, 30, and 40 attached thereto are installed at predetermined positions. When the purification device 10b is inserted or withdrawn, the in situ soil is stirred by the stirring blade 2 and air is injected into the rotation region of the stirring blade 2 at the same time. The gas is recovered in the gas recovery hood 12 through the gap. In the contaminated ground purification method of this reference example, it is particularly preferable to inject a volatilization accelerator such as quicklime from the viewpoint that the air permeability of the viscous ground can be improved. According to this reference example, the saturated viscous contaminated ground has the same effect as the first embodiment, and a large amount of air can be injected into the agitated soil. A large amount of gas is discharged, and the exhaust gas can be reliably recovered on the ground through the gap formed around the finned gas recovery pipe 81.
[0030]
【The invention's effect】
According to the contaminated ground purification method of the present invention, since air is injected into the agitated soil, moisture is efficiently blown off, air permeability is increased, volatilization of contaminants is promoted, and agitation promotes gas diffusion. Therefore, the gas suction effect is further enhanced. Since the stirring, air injection, and gas suction are simultaneously performed, the purification efficiency is high, and the processing period can be greatly shortened. Further, this contaminated ground purification method can be applied to any ground of saturated sandy ground, unsaturated sandy ground, saturated viscous ground, or unsaturated viscous ground. In addition, if combined with the injection of a volatilization accelerator such as quicklime, the heat of hydration generated by the mixing of quicklime and soil can be used to promote gasification of volatile pollutants, and from the ability of quicklime to absorb moisture Further, the air permeability is increased, and the gas suction efficiency is further improved. Moreover, if the groundwater pumping method is used in combination, it can also be applied to the purification of saturated contaminated ground. Moreover, since the purification apparatus of the present invention only needs to slightly improve the mechanical stirring and mixing treatment apparatus used in the conventional ground improvement method, it is possible to suppress an increase in equipment cost.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining a contaminated ground purification method according to a first embodiment.
FIG. 2 is a schematic view of a purification apparatus that implements the contaminated ground purification method of FIG. 1;
FIG. 3 is a schematic view of another purification apparatus that implements the contaminated ground purification method of FIG. 1;
FIG. 4 is a schematic diagram for explaining a contaminated ground purification method according to a second embodiment.
FIG. 5 is a schematic diagram for explaining a contaminated ground purification method according to a third embodiment.
FIG. 6 is a schematic diagram for explaining a contaminated ground purification method according to a fourth embodiment.
7 is a schematic view of a purification apparatus for implementing the contaminated ground purification method of FIG. 6. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2 Stirring blade 3 Air injection port 4, 4a Gas suction port 5 Air supply pipe 6 Volatilization promoter supply pipe 7 Volatilization promoter injection port 8 Gas suction pipe 9 Tip excavation bits 10, 10a, 10b Purification device 11 Fin 12 Gas recovery hood 13 Auger 14 Thermometer 15 Unsaturated sandy ground 16 Saturated sandy ground 16a Viscous ground 16b Viscous soil layer 17 Water flow layer 20 Compressed air supply means 21, 31 Dry compressors 22, 33, 44, 55 Piping 30 Volatilization promoter supply means 32 Volatilization promoter supply machine 40 Remaining contaminated gas purification and recovery means 41, 56 Gas adsorption towers 42, 53 Blower 43 Bag filter 50 Contaminant gas recovery means 51 Separation tower 52 Drainage tank 54 Pump 61 Pumping well 62 Suction point 71 Water flow column 81 Gas recovery pipe 82, 83 Fin WL Groundwater level

Claims (8)

回転軸の下方に放射状に付設された1以上の攪拌翼と、該攪拌翼の回転域内の所定箇所に付設された空気注入口と、該攪拌翼の回転域内であって該空気注入口及び上部の攪拌翼より上方の所定箇所に付設されたガス吸引口を備える攪拌装置を用い原位置の汚染地盤を浄化する方法であって、該攪拌翼による原位置土の攪拌と、該攪拌翼の回転域内への空気の注入を同時に行ない、汚染物質を該ガス吸引口から地上に回収することを特徴とする汚染地盤浄化工法。One or more stirring blades attached radially below the rotating shaft; an air inlet provided at a predetermined location in the rotating region of the stirring blade; and the air inlet and the upper portion in the rotating region of the stirring blade A method for purifying contaminated ground in situ using a stirrer provided with a gas suction port attached to a predetermined location above the agitating blade, the agitating of the in situ soil by the agitating blade, and rotation of the agitating blade A contaminated ground purification method characterized by simultaneously injecting air into the area and collecting the pollutant from the gas suction port to the ground. 汚染物質の地上への回収が、前記ガス吸引口から回収する方法以外に、更に地上に設置されたガス回収フードから回収する方法を併用するものであることを特徴とする請求項1記載の汚染地盤浄化工法。  2. The contamination according to claim 1, wherein the collection of the pollutant to the ground uses a method of collecting from a gas collection hood installed on the ground in addition to the method of collecting from the gas suction port. Ground purification method. 前記攪拌翼の回転域内の所定箇所に、揮発促進剤注入口を更に付設した攪拌装置を用い、該攪拌翼の回転域内への揮発促進剤の注入を更に行なうことを特徴とする請求項1又は2記載の汚染地盤浄化工法。A predetermined position of the rotation region of the stirring blade, with further attached to the stirrer volatile promoter inlet claim 1 or, characterized in further carrying out the injection of the volatile promoter to rotation of the stirring拌翼region 2. Contaminated ground purification method described in 2 . 前記揮発促進剤が水和反応性材料であって、該攪拌翼の回転域内への水和反応性材料の注入を行なうと共に、該攪拌装置の攪拌翼回転域及びその近傍に付設された温度計の温度の監視を更に行うことを特徴とする請求項記載の汚染地盤浄化工法。The volatilization accelerator is a hydration-reactive material, injects the hydration-reactive material into the rotation region of the stirring blade, and a thermometer attached to and around the rotation region of the stirring blade of the stirring device 4. The contaminated ground purification method according to claim 3 , further comprising monitoring the temperature of the soil. 前記汚染地盤が、飽和砂質地盤、不飽和砂質地盤、飽和粘性質地盤又は不飽和粘性質地盤であることを特徴とする請求項1記載の汚染地盤浄化工法。  The contaminated ground purification method according to claim 1, wherein the contaminated ground is a saturated sandy ground, an unsaturated sandy ground, a saturated viscous ground, or an unsaturated viscous ground. 飽和地盤を浄化する方法であって、予め揚水手段を用いて地下水位を汚染層よりも下方になるように低下させておき、次いで、請求項1記載の汚染地浄化工法を行なうことを特徴とする汚染地浄化工法。  A method for purifying saturated ground, characterized in that the groundwater level is lowered in advance below a contaminated layer using a pumping means, and then the contaminated site purification method according to claim 1 is performed. Contaminated site purification method. 回転軸の下方に放射状に付設された1以上の攪拌翼と、該攪拌翼の回転域内の所定箇所に付設された空気注入口と、該攪拌翼の回転域内であって該空気注入口及び上部の攪拌翼より上方の所定箇所に付設されたガス吸引口とを備える、原位置の汚染地盤の浄化に用いることを特徴とする浄化装置。One or more stirring blades attached radially below the rotating shaft; an air inlet provided at a predetermined location in the rotating region of the stirring blade; and the air inlet and the upper portion in the rotating region of the stirring blade And a gas suction port attached to a predetermined location above the agitating blade , the purification device used for purification of the contaminated ground in the original position. 前記攪拌翼の回転域内の所定箇所に、更に揮発促進剤注入口を付設することを特徴とする請求項記載の浄化装置。8. The purification apparatus according to claim 7 , further comprising a volatilization promoter injection port provided at a predetermined position in the rotation region of the stirring blade.
JP2003176390A 2003-06-20 2003-06-20 Contaminated ground purification method using both in-situ agitation and air injection suction, and purification device used therefor Expired - Fee Related JP3934580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176390A JP3934580B2 (en) 2003-06-20 2003-06-20 Contaminated ground purification method using both in-situ agitation and air injection suction, and purification device used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176390A JP3934580B2 (en) 2003-06-20 2003-06-20 Contaminated ground purification method using both in-situ agitation and air injection suction, and purification device used therefor

Publications (2)

Publication Number Publication Date
JP2005007344A JP2005007344A (en) 2005-01-13
JP3934580B2 true JP3934580B2 (en) 2007-06-20

Family

ID=34099285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176390A Expired - Fee Related JP3934580B2 (en) 2003-06-20 2003-06-20 Contaminated ground purification method using both in-situ agitation and air injection suction, and purification device used therefor

Country Status (1)

Country Link
JP (1) JP3934580B2 (en)

Also Published As

Publication number Publication date
JP2005007344A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP2618579B2 (en) Method and apparatus for removing contaminants
KR100983532B1 (en) A Deep-Site Biopile Method for Simultaneous Remediation of polluted soil and ground-water by disturbing soil layer
JP4657008B2 (en) Contaminated ground purification system and purification method of contaminated ground
JP2009045558A (en) In-situ purification method of polluted groundwater
JP3567435B2 (en) Contaminated soil cleaning system and cleaning method using it
JP3934580B2 (en) Contaminated ground purification method using both in-situ agitation and air injection suction, and purification device used therefor
JP2002143828A (en) Countermeasure method for cleaning of soil and soil cleaning system
JP2001017954A (en) Method for cleaning polluted soil
CA2549596C (en) Process for removing contaminants from contaminated soil
JP2006043602A (en) Treatment system for contaminated soil
JP2006314979A (en) Construction method for detoxifying soil contaminated with voc in situ
JP4375592B2 (en) Soil and groundwater purification methods
JP4480169B2 (en) Soil purification method
JP2006320842A (en) Method and device for cleaning contaminated soil
JP2004313815A (en) Method and apparatus for cleaning polluted soil at site
JP2000263030A (en) Method for purifying soil polluted with volatile compound
JP3634849B2 (en) Method and apparatus for treating contaminated soil with volatile organic compounds
JP4413197B2 (en) Soil purification method
JP3841339B2 (en) Viscous ground purification structure and purification method
JP2005270963A (en) Purification method for contaminated soil and apparatus therefor
JP2007245052A (en) In situ oil recovery method of oil contaminated soil
CN109078973A (en) A kind of hyposmosis contaminated area underground water aeration restorative procedure
JP2002001296A (en) Method for decontaminating contaminated ground and strengthening ground at the same time
JP3830606B2 (en) Purification method for contaminated ground
JP3607152B2 (en) Contaminated water purification apparatus and method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees