JP3934520B2 - Measuring method of elastic force of fluid - Google Patents

Measuring method of elastic force of fluid Download PDF

Info

Publication number
JP3934520B2
JP3934520B2 JP2002290110A JP2002290110A JP3934520B2 JP 3934520 B2 JP3934520 B2 JP 3934520B2 JP 2002290110 A JP2002290110 A JP 2002290110A JP 2002290110 A JP2002290110 A JP 2002290110A JP 3934520 B2 JP3934520 B2 JP 3934520B2
Authority
JP
Japan
Prior art keywords
fluid
elastic force
force
outflow
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002290110A
Other languages
Japanese (ja)
Other versions
JP2003185565A (en
Inventor
富市 長谷川
Original Assignee
富市 長谷川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富市 長谷川 filed Critical 富市 長谷川
Priority to JP2002290110A priority Critical patent/JP3934520B2/en
Publication of JP2003185565A publication Critical patent/JP2003185565A/en
Application granted granted Critical
Publication of JP3934520B2 publication Critical patent/JP3934520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高ひずみ速度域での粘弾性流体の弾性力測定方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
流体の弾性力は寸法などと異なり、直接測定できないので各種の挙動を観察して間接的にその数値が求められる。低ひずみ速度域には多くの測定方法があるが、高ひずみ速度域での粘弾性流体の弾性力測定には問題点が多い。
【0003】
そのような測定法の一つに、流体をノズルから放出したときのジェット直径のふくらみを測定し、弾性力を算定する方法がある。この方法は空気中で行われるため測定値が表面張力や重力の影響を受けること、ジェットが細管から流出してもすぐにはふくらまないことなどから測定そのものが安定して行えない、などの欠点を有していた。
【0004】
ジェットを空中に放出して流体の弾性力による推力の低下を測定する方法では高濃度高分子溶液に必要な高い圧力条件下での測定も可能であるが、流出速度が低い場合は推力の測定が困難であることに加え、ジェットを空気中に放出することから同様に、重力や表面張力の影響を受けていた。
【0005】
一方、ジェットを液体中に吐出して流体の弾性力による反力の低下を測定する方法では表面張力や重力の影響を受けないが、装置の構造上高い圧力を印可することが困難であった。
【0006】
また、従来から、粘弾性流体の弾性力の一つである法線応力差を測定するために、円錐・平板型レオゴニオメータが用いられている。しかし、この装置は低いせん断速度領域の測定しかできず、工業上重要な高いせん断速度領域における測定はできない。また、もう一つの弾性力である伸張応力の測定には実用に耐える装置は考案されていない。このため、法線応力と伸張応力の両方を、特に、高いひずみ速度領域で測定できる簡便な装置が熱望されてきた。
【0007】
本発明は流体を液体中に吐出することで表面張力の影響を無くし、高い圧力で且つ流速の低いジェットの場合にも安定した弾性力の測定が行える測定手段を提供するものである。即ち、本発明は、流体の弾性力を、特に高いひずみ速度領域において力学的に測定するための実用的な装置を提供することを目的とする。ここに、弾性力として、せん断流における第一法線応力差と伸張流における伸張応力を含むものとする。
【0008】
【課題を解決するための手段】
実施例1の添付図面を参照して本発明の要旨を説明する。
【0009】
液体5を入れた容器4にこの液体5中で流体を流出させるノズル2を浸し、その容器4に加わる力を測定器6により測定しながら該ノズル2から流体を吐出させる。流体の吐出(流出)が定常になった時点で吐出する機構を用いて、遮断弁3で流体の吐出を遮断し、遮断前後の観測された力の差を用いて弾性力を算定することを特徴とする流体の弾性力測定方法に係るものである。
【0010】
【発明の実施の形態】
好適と考える本発明の実施の形態(発明をどのように実施するか)を、図1,2に基づいてその作用効果を示して簡単に説明する。
【0011】
容器中に定常的に吐出される流体による力(ジェット推力)と容器中に溜まっていく流体の重力との合計の力を時間的に継続して測定すると、その力は時間とともに直線的に増加する。すなわち、流体流出時に測定器6で測定される力は、容器とあらかじめ入れられていた液体および流入した流体の合計質量による重力の他に、流出ジェットの推力が加わったものである。そこで、ある瞬間にその流れを停止すると測定器が表示するそれまでの力はそこの値で一定になるのではなく、図1のように若干低下して一定になる。その低下した分はジェット推力に相当するので、この低下分を測定すればジェット推力が分かる。このようにして測定された流出ジェットの推力Tは、流出ジェットの単位時間当りの流出運動量(以下、流出運動量と記す)Mと流体の弾性力Eとの間に、運動量の法則によって、
E=M−T (1)
の関係が成り立つ。Mは流量が分かれば流出ジェットの速度分布から計算によって求まるので、Tを測定すれば、Eが求められる。ここで、流体の運動量Mは、M=(流体密度)×(流出流量)×(流出速度)で表される。実際は、細管内等を流れる流体は流出速度が一定ではなく速度分布を有するので上記Mに対応した積分を行う必要があるが、いずれにしても実際のMは流出する流体の速度分布から求めることができる。例えば、細管から流出するニュートン流体(水や油等の低分子液体)の場合、M=1.33(流体密度)×(流出流量)×(平均流出速度)=1.33(流体密度)×(流出流量)÷(細管断面積)で与えられる。
【0012】
また、流れを遮断する前に測定される力の増加率は流量に相当し、従ってこの遮断前の流量から求められるMと前記の力の低下分T(遮断前後の観測された力の差)を用いて式(1)によりこのMとTの差であるその流体の弾性力を求めることができる。以上の測定は流体中で行うことができるので重力や表面張力が弾性力の測定に与える影響を排除することができる。
【0013】
但し、重力や表面張力の影響が弾性力に比し十分に小さいときは、液体中にノズルを浸さなくても良い。
【0014】
【実施例】
本発明の具体的な実施例について図面に基づいて説明する。
【0015】
細管,又はオリフィスやノズルから、ロードセル上に設置された容器に蓄えられた液体中に流体を流出させ、次いでその流出を急遮断することにより減じる力をロードセルを利用して測定し、測定された推力から流体の有する弾性力を算定するもので、本方法は工業的に重要な高いひずみ速度領域における弾性力の測定を可能にする。
【0016】
また、本発明は、高分子融液,高分子溶液,粘性流体,ガラス,各種フィルム,インキ,ペンキ等の塗料,接着剤,磁性材混入液等を扱う分野における計測及び品質管理等に用いられ、溶液の弾性力を測定することにより、弾性力が原因となって発生する種々の問題の解決が可能となる。
【0017】
実施例1
本実施例では、試験流体を細管から流出させる。この際、液体は、流出側に置かれた容器内の同種の溶液かあるいは水や油等の入手し易い液体中に流出させる。流出流量は、流量計を用いるか、定量型ポンプによる流体圧送方式にするか等の手段により予め分っているものとする。または、前出図1の流れ遮断前の傾きから求めてもよい。上記容器をロードセル上に設置しておき、定常状態で流体を流出させると容器内の液体量の増によりロードセルの出力値は時間的に一定の割合で増加する。このとき、ロードセルにより測定される値は容器とその内部に溜まった溶液の重さ、並びに流出ジェットの推力の合計された値である。いま、電磁弁等により流れを急停止すると、ロードセルの値は、流出ジェットの推力分だけ減少し、容器とその内部に溜まった溶液の重さを示す値となる。従って、このロードセルの値の減少分から、流出ジェットの推力が測定できる。
【0018】
上に述べた流出ジェットの推力の測定値は、もし、液体に弾性力があればその弾性力に見合う分だけ流出運動量から理論的に計算されるジェット推力よりも小さくなる(式(1)参照)。従って、流出運動量から計算される推力と測定されるジェット推力の差から弾性力の算定ができる。細管の代わりにオリフィスやノズルを用いれば伸張応力が測定できる。また、測定された弾性力に対応するひずみ速度は流量がわかれば速度分布から計算により求めることができる。
【0019】
従って、非常に簡単で安価な装置により、従来測定が困難であった高ひずみ速度領域における法線応力と伸張応力を含む弾性力の測定が可能である。試験流体の量も少なくて済み、また、短時間で測定が可能である。
【0020】
具体的には、例えば図2に示すように、測定器としてフルスケール100gf,分解能10mgfのロードセル6を用い、500ppmPEO水溶液5を入れたポリエチレン容器4の水溶液5に没するようつり下げたノズル2から、流入口1より流入させた同溶液を4gf/秒の流量で1秒間吐出し、次いで電磁弁3により遮断した。この間のロードセル6からの電気的出力はおおむね図1のようになり、推力に相当する力の低下分は約0.55gfであった。流体を遮断する直前の力は約73gfであるから、測定された低下分の値は信頼できる。あらかじめ容器4に入れる液体5の量を少なくするなどして総質量を減少すれば更に測定値の精度を向上できる。電磁弁3での遮断の際、装置の振動等による瞬間的な出力ピークが現れるが、ダンパーを設置する等の工夫をすることでこのようなノイズを低減することも可能である。この方法のように、500ppmPEO水溶液5の中に同じ溶液を吐出するため空気中に放出する場合に比べて重力と表面張力の影響を考えなくてもすむ。
【0021】
尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。
【0022】
実施例2
流体吐出の遮断は、実施例1の方法に限らず、以下の方法によっても可能である。図3に示すように、ノズルから定常的に吐出されている流体ジェットを支持棒の先に取付けた流れ遮断用小皿によって瞬間的に遮断する。この手段として、図4に示すように遮断前は該小皿をジェットから離れた位置(図4中の点線の位置)に置き、遮断時に支持棒の回転等により該小皿をノズル下に移しジェットの遮断を行う。この場合、流体の吐出そのものを停止する必要がないため、ロードセルによって測定される力は図5のようになる。遮断前の直線の延長線と遮断後の直線との差が推力を示す。尚、上記の方法は、ノズルを液体中に浸さない場合でも有効である。また、該小皿は平板で置換えてもよい。
【0023】
実施例2では、流体がノズルから流出し該小皿に到達するまでの間に周りの液体との摩擦によってジェットの運動量がわずかに失われるので、実施例1に比べ精度がやや落ちる。
【0024】
実施例3
流体が空気中に吐出される場合は、図6に示すように空気中で小カップにより流れを遮断し、流体を小カップ内に貯めてもよい。
【0025】
実施例4
実施例3の小カップは図7に示すように流れ遮断用樋で置き換え、流体を該容器外に誘導させてもよい。
【0026】
実施例3,4の場合、測定される力は図1に示したようになる。
【0027】
【発明の効果】
本発明は上述のように構成したから、簡単な力測定器と遮断弁を有する流体吐出機構および流体を受ける容器があれば、流体の種類,流量,圧力,温度などの諸条件に応じて広範囲にわたり粘弾性流体の弾性力を手軽に測定できる。
【0028】
本発明の方法はバッチ式で測定する場合に限られるのではなく、プラントなどでの連続的監視にも容易に適用できる。
【0029】
ノズルを浸す液体としては通常、測定対象の流体そのものを使うが、異なった液体を用いてもよい。
【0030】
また、空気中にさらすことが危険な流体、衛生面の配慮が必要な場合などにも密閉した環境で安全に測定ができ、もって産業界全体にわたって多大な貢献をすることができる。
【図面の簡単な説明】
【図1】 本実施例1の流体の推力測定原理を示すグラフである。
【図2】 本実施例1の測定装置を示す概略構成説明図である。
【図3】 本実施例2の測定装置を示す概略構成説明正面図である。
【図4】 本実施例2の測定装置を示す概略構成説明平面図である。
【図5】 本実施例2の場合に測定された力から推力を求める説明図である。
【図6】 本実施例3の流体を空気中に吐出す場合において吐出流体を小カップで受ける装置の概略構成図である。
【図7】 本実施例4の流体を空気中に吐出す場合において吐出流体を樋で受ける装置の概略構成図である。
【符号の説明】
2 ノズル
3 遮断弁(電磁弁)
4 容器
5 液体
測定器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the elastic force of a viscoelastic fluid in a high strain rate region.
[0002]
[Prior art and problems to be solved by the invention]
Since the elastic force of a fluid is different from dimensions and cannot be measured directly, various values are obtained indirectly by observing various behaviors. There are many measurement methods in the low strain rate region, but there are many problems in measuring the elastic force of the viscoelastic fluid in the high strain rate region.
[0003]
One such method is to measure the bulge of the jet diameter when the fluid is discharged from the nozzle and calculate the elastic force. Because this method is performed in air, the measurement value is affected by surface tension and gravity, and even if the jet flows out of the narrow tube, it does not swell immediately. Had drawbacks.
[0004]
The method of measuring the drop in thrust due to the elastic force of the fluid by discharging the jet into the air can measure under the high pressure conditions required for high-concentration polymer solutions, but if the outflow speed is low, measure the thrust In addition to being difficult, it was similarly affected by gravity and surface tension from releasing the jet into the air.
[0005]
On the other hand, the method of measuring the drop in the reaction force due to the elastic force of the fluid by discharging the jet into the liquid is not affected by surface tension or gravity, but it was difficult to apply high pressure due to the structure of the device. .
[0006]
Conventionally, in order to measure a normal stress difference which is one of elastic forces of a viscoelastic fluid, a cone / plate type rheometer is used. However, this apparatus can only measure in the low shear rate region, and cannot measure in the industrially important high shear rate region. In addition, a device that can withstand practical use has not been devised for measuring the tensile stress, which is another elastic force. For this reason, a simple apparatus that can measure both normal stress and tensile stress, particularly in a high strain rate region, has been eagerly desired.
[0007]
The present invention provides a measuring means which can eliminate the influence of surface tension by discharging a fluid into a liquid and can stably measure elastic force even in the case of a jet having a high pressure and a low flow velocity. That is, an object of the present invention is to provide a practical apparatus for mechanically measuring the elastic force of a fluid, particularly in a high strain rate region. Here, the elastic force includes the first normal stress difference in the shear flow and the extension stress in the extension flow.
[0008]
[Means for Solving the Problems]
The gist of the present invention will be described with reference to the accompanying drawings of Embodiment 1.
[0009]
The nozzle 2 for allowing the fluid to flow out in the liquid 5 is immersed in the container 4 containing the liquid 5, and the force applied to the container 4 is measured by the measuring device 6 to discharge the fluid from the nozzle 2. Using a mechanism that discharges when the fluid discharge (outflow) becomes steady, shuts off the fluid discharge with the shut-off valve 3, and calculates the elastic force using the difference in the observed force before and after the shut-off. The present invention relates to a fluid elastic force measuring method.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The preferred embodiment of the present invention (how to carry out the invention) will be briefly described with reference to FIGS.
[0011]
When the total force of the force (jet thrust) due to the fluid constantly discharged into the container and the gravity of the fluid accumulated in the container is continuously measured, the force increases linearly with time. To do. In other words, the force measured by the measuring device 6 when the fluid flows out is obtained by adding the thrust of the outflow jet in addition to the gravity due to the total mass of the container and the liquid that has been put in advance and the inflowing fluid. Therefore, if the flow is stopped at a certain moment, the force displayed so far by the measuring instrument is not constant at that value, but it is slightly lowered and constant as shown in FIG. Since the reduced amount corresponds to the jet thrust, the jet thrust can be determined by measuring the reduced amount. The thrust T of the outflow jet measured in this way is determined by the law of momentum between the outflow momentum per unit time of the outflow jet (hereinafter referred to as outflow momentum) M and the elastic force E of the fluid.
E = MT (1)
The relationship holds. Since M can be obtained by calculation from the velocity distribution of the outflow jet if the flow rate is known, E can be obtained by measuring T. Here, the momentum M of the fluid is expressed by M = (fluid density) × (outflow flow rate) × (outflow velocity). Actually, the fluid flowing in the narrow tube or the like does not have a constant outflow velocity but has a velocity distribution, so it is necessary to perform integration corresponding to M. In any case, the actual M is obtained from the velocity distribution of the flowing fluid. Can do. For example, in the case of a Newtonian fluid (low molecular liquid such as water or oil) that flows out from a thin tube, M = 1.33 (fluid density) × (outflow flow rate) × (average outflow velocity) = 1.33 (fluid density) × (Outflow flow rate) 2 ÷ (capillary cross-sectional area).
[0012]
Further, the rate of increase in force measured before the flow is interrupted corresponds to the flow rate. Therefore, M obtained from the flow rate before the interruption and the decrease T of the force (the difference between the observed forces before and after the interruption). Can be used to obtain the elastic force of the fluid, which is the difference between M and T, using equation (1). Since the above measurement can be performed in a fluid, the influence of gravity and surface tension on the measurement of elastic force can be eliminated.
[0013]
However, when the influence of gravity or surface tension is sufficiently smaller than the elastic force, it is not necessary to immerse the nozzle in the liquid.
[0014]
【Example】
Specific embodiments of the present invention will be described with reference to the drawings.
[0015]
The force that is reduced by letting the fluid flow out from the capillary tube, the orifice, or the nozzle into the liquid stored in the container installed on the load cell, and then suddenly blocking the flow is measured using the load cell. The elastic force of the fluid is calculated from the thrust, and this method makes it possible to measure the elastic force in a high strain rate region that is industrially important.
[0016]
In addition, the present invention is used for measurement and quality control in the fields of polymer melts, polymer solutions, viscous fluids, glass, various films, inks, paints such as paint, adhesives, magnetic material mixed liquids, etc. By measuring the elastic force of the solution, various problems caused by the elastic force can be solved.
[0017]
Example 1
In this example, the test fluid is allowed to flow out of the capillary tube. At this time, the liquid is allowed to flow out into the same kind of solution in a container placed on the outflow side or into an easily available liquid such as water or oil. It is assumed that the outflow rate is known in advance by means such as using a flow meter or using a fluid pumping method using a quantitative pump. Or you may obtain | require from the inclination before the flow interruption | blocking of FIG. When the container is placed on the load cell and the fluid is allowed to flow out in a steady state, the output value of the load cell increases at a constant rate due to an increase in the amount of liquid in the container. At this time, the value measured by the load cell is the sum of the weight of the container and the solution accumulated in the container and the thrust of the outflow jet. Now, when the flow is stopped suddenly by a solenoid valve or the like, the value of the load cell decreases by the thrust of the outflow jet and becomes a value indicating the weight of the container and the solution accumulated in the container. Therefore, the thrust of the outflow jet can be measured from the decrease in the load cell value.
[0018]
The measured value of the thrust of the outflow jet described above is smaller than the jet thrust theoretically calculated from the outflow momentum if the liquid has an elastic force, corresponding to the elastic force (see Equation (1)). ). Therefore, the elastic force can be calculated from the difference between the thrust calculated from the outflow momentum and the measured jet thrust. If an orifice or nozzle is used instead of a thin tube, the extension stress can be measured. Further, the strain rate corresponding to the measured elastic force can be obtained by calculation from the velocity distribution if the flow rate is known.
[0019]
Therefore, it is possible to measure an elastic force including normal stress and tensile stress in a high strain rate region, which has been difficult to measure by a very simple and inexpensive apparatus. The amount of the test fluid is small, and the measurement can be performed in a short time.
[0020]
Specifically, for example, as shown in FIG. 2, a load cell 6 having a full scale of 100 gf and a resolution of 10 mgf is used as a measuring device, and the nozzle 2 is suspended so as to be immersed in the aqueous solution 5 of the polyethylene container 4 containing the 500 ppm PEO aqueous solution 5. The solution introduced from the inlet 1 was discharged at a flow rate of 4 gf / second for 1 second, and then shut off by the solenoid valve 3. During this time, the electrical output from the load cell 6 was almost as shown in FIG. 1, and the decrease in the force corresponding to the thrust was about 0.55 gf. Since the force just before blocking the fluid is about 73 gf, the measured drop value is reliable. If the total mass is reduced by reducing the amount of the liquid 5 put in the container 4 in advance, the accuracy of the measured value can be further improved. When the electromagnetic valve 3 is shut off, an instantaneous output peak appears due to the vibration of the device. However, such noise can be reduced by devising such as installing a damper. As in this method, since the same solution is discharged into the 500 ppm PEO aqueous solution 5, it is not necessary to consider the influence of gravity and surface tension as compared with the case where it is released into the air.
[0021]
Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.
[0022]
Example 2
The interruption of fluid discharge is not limited to the method of the first embodiment, and can be performed by the following method. As shown in FIG. 3, the fluid jet that is constantly discharged from the nozzle is momentarily blocked by a flow blocking plate attached to the tip of the support rod. As this means, as shown in FIG. 4, before the shut-off, the small plate is placed at a position away from the jet (dotted line position in FIG. 4), and at the time of shut-off, the small plate is moved under the nozzle by rotating the support rod. Shut off. In this case, since it is not necessary to stop the discharge of the fluid itself, the force measured by the load cell is as shown in FIG. The difference between the extension line of the straight line before breaking and the straight line after breaking shows the thrust. The above method is effective even when the nozzle is not immersed in the liquid. The small plate may be replaced with a flat plate.
[0023]
In the second embodiment, since the momentum of the jet is slightly lost due to friction with the surrounding liquid before the fluid flows out from the nozzle and reaches the small plate, the accuracy is slightly lowered as compared with the first embodiment.
[0024]
Example 3
When the fluid is discharged into the air, as shown in FIG. 6, the flow may be blocked by a small cup in the air, and the fluid may be stored in the small cup.
[0025]
Example 4
The small cup of the third embodiment may be replaced with a flow blocking cage as shown in FIG. 7, and the fluid may be guided out of the container.
[0026]
In the case of Examples 3 and 4, the measured force is as shown in FIG.
[0027]
【The invention's effect】
Since the present invention is configured as described above, if there is a fluid discharge mechanism having a simple force measuring instrument and a shutoff valve and a container for receiving the fluid, a wide range can be selected according to various conditions such as the type of fluid, flow rate, pressure, and temperature. The elastic force of the viscoelastic fluid can be easily measured.
[0028]
The method of the present invention is not limited to batch measurement, and can be easily applied to continuous monitoring in a plant or the like.
[0029]
Usually, the fluid to be measured is used as the liquid for dipping the nozzle, but a different liquid may be used.
[0030]
In addition, it can be safely measured in a sealed environment even when it is dangerous to expose to the air, or when sanitary considerations are necessary, so that it can make a great contribution to the entire industry.
[Brief description of the drawings]
FIG. 1 is a graph showing the principle of fluid thrust measurement in Example 1. FIG.
FIG. 2 is a schematic configuration explanatory view showing a measuring apparatus according to the first embodiment.
FIG. 3 is a front view illustrating a schematic configuration of a measuring apparatus according to a second embodiment.
FIG. 4 is a schematic configuration explanatory plan view showing a measuring apparatus according to a second embodiment;
FIG. 5 is an explanatory diagram for obtaining a thrust from a force measured in the case of the second embodiment.
FIG. 6 is a schematic configuration diagram of an apparatus that receives a discharged fluid with a small cup when the fluid of the third embodiment is discharged into the air.
FIG. 7 is a schematic configuration diagram of an apparatus for receiving a discharge fluid by scissors when discharging a fluid of Example 4 into the air.
[Explanation of symbols]
2 Nozzle 3 Shut-off valve (solenoid valve)
4 Container 5 Liquid
6 measuring instruments

Claims (1)

液体を入れた容器にこの液体中で流体を流出させ、該容器がこの流体吐出によって受ける力を測定しながら、流体の吐出を瞬間的に遮断し、遮断前後の観測された力の差を用いて流体の弾性力を算定することを特徴とする流体の弾性力測定方法。The fluid is allowed to flow out into the container containing the liquid, and the discharge of the fluid is momentarily interrupted while measuring the force that the container receives by the fluid discharge, and the difference in the observed force before and after the interruption is used. And measuring the elastic force of the fluid.
JP2002290110A 2001-10-11 2002-10-02 Measuring method of elastic force of fluid Expired - Fee Related JP3934520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290110A JP3934520B2 (en) 2001-10-11 2002-10-02 Measuring method of elastic force of fluid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-313444 2001-10-11
JP2001313444 2001-10-11
JP2002290110A JP3934520B2 (en) 2001-10-11 2002-10-02 Measuring method of elastic force of fluid

Publications (2)

Publication Number Publication Date
JP2003185565A JP2003185565A (en) 2003-07-03
JP3934520B2 true JP3934520B2 (en) 2007-06-20

Family

ID=27615319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290110A Expired - Fee Related JP3934520B2 (en) 2001-10-11 2002-10-02 Measuring method of elastic force of fluid

Country Status (1)

Country Link
JP (1) JP3934520B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815591B2 (en) * 2006-02-28 2011-11-16 国立大学法人長岡技術科学大学 Fluid analysis method and fluid analysis apparatus

Also Published As

Publication number Publication date
JP2003185565A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
Cramer et al. Drop formation in a co-flowing ambient fluid
KR100491071B1 (en) Predicting logarithmic reduction values
EP2535688B1 (en) Method for generating a diagnostic from a deviation of a flow meter parameter
US7981661B2 (en) Flow cytometer system with sheath and waste fluid measurement
US8738305B2 (en) Method for detecting blockage in a Coriolis flow measuring device
JP2006105957A (en) Liquid flow-meter calibration device
CN101264430B (en) Method and apparatus for providing constant liquid rates and dispensing precisely repeatable liquid volumes
EP3397158B1 (en) Elastic filament velocity sensor
KR20100128346A (en) Real-time non-stationary flowmeter
Bavière et al. Experimental characterization of water flow through smooth rectangular microchannels
Yi et al. Experimental studies on the Taylor instability of dilute polymer solutions
JP3934520B2 (en) Measuring method of elastic force of fluid
Kalotay Density and viscosity monitoring systems using Coriolis flow meters
Goldstein et al. Turbulent and transition pipe flow of dilute aqueous polymer solutions
US20180246024A1 (en) Method and measuring apparatus for determining compressibility of a flowing fluid
Martín-Pérez et al. Real-time particle spectrometry in liquid environment using microfluidic-nanomechanical resonators
WO2003034039A1 (en) Method of measuring elastic force of fluid
Pak et al. Turbulent hydrodynamic behavior of a drag-reducing viscoelastic fluid in a sudden-expansion pipe
JPH11304561A (en) Flow rate measuring apparatus
Lu et al. Characteristics of shallow rain-impacted flow over smooth bed
JP4178122B2 (en) Dispensing device and automatic analyzer equipped with the same
JP6212682B2 (en) Flow rate measuring device for blood viscosity measurement and flow rate measuring method using the device
EP3929541A1 (en) Microfluidic liquid delivery device
Westin et al. Liquid transport properties in sub-micron channel flows
US20220252477A1 (en) Determining an actual value and/or an actual value range of at least one state variable of a fluid in a fluid flow by means of at least one indicator particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees