JP3934518B2 - Electricity supply and demand system - Google Patents

Electricity supply and demand system Download PDF

Info

Publication number
JP3934518B2
JP3934518B2 JP2002278429A JP2002278429A JP3934518B2 JP 3934518 B2 JP3934518 B2 JP 3934518B2 JP 2002278429 A JP2002278429 A JP 2002278429A JP 2002278429 A JP2002278429 A JP 2002278429A JP 3934518 B2 JP3934518 B2 JP 3934518B2
Authority
JP
Japan
Prior art keywords
power
conversion device
storage device
line
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002278429A
Other languages
Japanese (ja)
Other versions
JP2004120845A (en
Inventor
輝雄 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2002278429A priority Critical patent/JP3934518B2/en
Publication of JP2004120845A publication Critical patent/JP2004120845A/en
Application granted granted Critical
Publication of JP3934518B2 publication Critical patent/JP3934518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力系統・電源システムに設置され、直流による電力の送電と蓄積とを複合的に行なう電力需給システムに係り、特に、システムの効率化を図った電力需給システムに関する。
【0002】
【従来の技術】
従来、電力を長距離送電したり、また、異なる周波数の電力系統を接続し、その潮流制御を行なう目的で、いわゆる直流送電システムが用いられてきた。直流送電システムは、交流電力を送電用変換装置で直流電力に変換し、直流線路を経由して送電されてきた交流電力を受電用変換装置で再び交流電力に変換して他の電力系統または負荷系統に電力を供給するシステムである。
【0003】
このように構成された直流送電システムは、離島送電のような長距離送電システムにあっては交流送電より損失の少ない送電ができること、また、周波数の異なる系統同志にあっては、簡単に系統同志の連携が行えることなどのメリットがある。更に、変換装置の制御により、迅速な潮流制御を行なうことができることが共通したメリットである。
【0004】
直流送電システムに適用される変換装置には、従来から、いわゆる他励式変換装置が用いられてきたが、最近になって自励式変換装置も用いられるようになってきた。自励式変換装置を用いると、弱小の交流系統や無電源系統にも安定に送電することができるなどのメリットがある。
【0005】
送電系統の融通性を更に高めるためには、系統内に電力蓄積装置を設置する考え方がある。この考え方は、例えば特許文献1や、特許文献2に示されている。特許文献1においては、受電用変換装置の交流出力側に電力蓄積装置を設置した電力需給システムが示されており、また、特許文献2には、直流線路部分に電力蓄積装置を設置した電力需給システムが示されている。このように、直流送電システムと電力蓄積装置とを組み合わせて使用すると、送電側でのシステム故障などのトラブルに強い電力需給システムの構成が可能となるが、この電力需給システムの効率化、合理化技術についても考慮すべき問題である。
【0006】
【特許文献1】
特開平9−312934号公報(図1)
【0007】
【特許文献2】
特開平5−300658号公報(図1)
【0008】
【発明が解決しようとする課題】
従来の直流送電システムにおいては、送電電力と受電電力とを常に一致させなければならないという制約があった。したがって、受電側負荷系統の電力需要のピーク値に見合った容量を有する設備が送電側に必要であった。
【0009】
また、従来の電力蓄積システムにおいては、電力を送電する電力系統と負荷系統とが交流で連系されており、電力系統と負荷系統とが海で隔てられ遠距離にある場合、あるいは、電力系統と負荷系統の周波数が異なる場合には、電力融通ができないという課題があった。
【0010】
また、上記課題を解決するためには、直流送電と電力蓄積システムの両方を設置すれば良いが、この場合、変換装置が冗長となり、送電ロスが大となるなど、経済性の点で不利になるという問題があった。
【0011】
また、システム経済性の観点から考えると、直流線路の電圧をなるべく高くすることが望ましいが、この場合には、直流部分に設置する電力蓄積装置との電圧マッチングを採る必要がある。
【0012】
更に、このような構成の電力需給システムでは、受電側変換装置の信頼性が極めて重要になるが、稼動率を向上させるような合理的システムをどう実現するか等の課題がある。
【0013】
従って、本発明は上記課題に対して為されたもので、効率的で合理的な電力需給システムを提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明の電力需給システムは、交流電力を直流電力に変換する送電用変換装置と、この送電用変換装置の出力である直流電力を受け、直流線路を介して再び交流に変換する受電用変換装置と、前記直流線路に接続された電力蓄積装置から構成され、前記送電用変換装置の容量を、前記電力蓄積装置及び前記受電用変換装置の容量より小さくしたことを特徴とする。
【0015】
上記目的を達成するために、本発明の電力需給システムは、交流電力を直流電力に変換する送電用変換装置と、この送電用変換装置の出力である直流電力を受け、直流線路を介して再び交流に変換する複数台の受電用変換装置と、前記直流線路に接続された複数台の電力蓄積装置から構成され、電力蓄積装置と受電用変換装置とで複数個の対を形成させ、その複数個の対の直流回路側を夫々直列に接続し、交流側回路は互いに並列に接続したことを特徴とする。
【0016】
上記目的を達成するために、本発明の電力需給システムは、交流電力を直流電力に変換する送電用変換装置と、この送電用変換装置の出力である直流電力を受け、直流線路を介して再び交流に変換する複数台の受電用変換装置と、前記直流線路に接続された複数台の電力蓄積装置から構成され、電力蓄積装置と受電用変換装置とで複数個の対を形成させ、その複数個の対の直流回路側を夫々直列に接続し、交流側回路は夫々の受電用変換装置内の変圧器の2次巻線を夫々直列に接続したことを特徴とする。
【0017】
上記目的を達成するために、本発明の電力需給システムは、交流電力を直流電力に変換する送電用変換装置と、この送電用変換装置の出力である直流電力を受け、直流線路を介して再び交流に変換する複数台の受電用変換装置と、前記直流線路に接続された複数台の電力蓄積装置から構成され、電力蓄積装置と受電用変換装置とで複数個の対を形成させ、その複数個の対の直流回路側及び交流回路側を夫々互いに並列に接続したことを特徴とする。
【0018】
上記目的を達成するために、本発明の電力需給システムは、交流電力を直流電力に変換する送電用変換装置と、この送電用変換装置の出力である直流電力を受け、直流線路を介して再び交流に変換する複数台の受電用変換装置と、前記直流線路に接続された複数台の電力蓄積装置から構成され、電力蓄積装置と受電用変換装置とで複数個の対を形成させ、その複数個の対の直流回路側を互いに並列に接続し、交流回路側は異なる負荷に該当の対が個々に電力を供給する構成としたことを特徴とする。
【0019】
本発明によれば、効率的で合理的な電力需給システムを提供することができる。
【0020】
【発明の実施の形態】
(第1の実施の形態)
以下に本発明による電力需給システムの第1の実施の形態を図1乃至図3を参照して説明する。図1は本発明に係る電力需給システムのブロック構成図である。
【0021】
電力系統1の交流電力を送電用変換装置2で直流に変換し、直流線路3を介して受電用変換装置4で再び交流に変換し、負荷系統5に給電する構成としている。
【0022】
直流線路3には、電力蓄積装置6が接続されている。ここで、送電用変換装置2の変換容量は、受電用変換装置4及び電力蓄積装置6の何れの容量よりも小さく選定する。
【0023】
送電用変換装置2は、変圧器21により所望の電圧を得、複数個のパワーデバイス22をブリッジ接続して構成される変換器によって直流に変換する。この直流出力は直流コンデンサ23によって平滑される。尚、受電用変換装置4の内部構成は、以上説明した送電用変換装置4と基本的に同一であるのでその説明は省略する。これらの変換装置に用いるパワーデバイス22には、IGBTなどの自己消弧デバイスを用い、自励式変換装置を構成するようにしているが、ダイオード整流素子やサイリスタ素子などを用いた他励式変換装置を採用しても良い。また、図1に示したような2レベルの変換装置だけでなく、3レベル以上の変換装置を用いても良い。尚、自励式変換装置や、サイリスタ素子を用いた一部の他励式変換装置を用いれば、電力の流れを逆方向に制御することも可能となる。
【0024】
図2に、二次電池を用いた電力蓄積装置6の一例を示す。ここでは、昇降圧チョッパ61を用いて、二次電池62の充放電を行なう構成を示している。昇降圧チョッパ61は、電圧平滑用の直流コンデンサ63、通電率制御用のパワーデバイス64、及び電流平滑用のリアクトル65から構成されている。
【0025】
図3には、超電導コイルを用いた電力蓄積装置6の他の実施の形態を示してある。この実施の形態にあっても、昇降圧チョッパ61を用いて、超電導コイル66の充放電を行なっている。昇降圧チョッパ61は、電圧平滑用の直流コンデンサ63及び通電率制御用のパワーデバイス64から構成されている。
【0026】
図2及び図3における昇降圧チョッパ61の動作は、「パワーエレクトロニクス回路」(電気学会・半導体電力変換システム調査専門委員会編、オーム社)の第7章「直流変換回路」などに解説されているように、パワーデバイス64の通電率を制御することにより所望の直流電圧を得るようにしている。
【0027】
尚、図1では負荷系統は、3相で給電される構成を示しているが、これは単相給電でも良い。この場合、受電用変換装置4は、単相変換器で構成される。以下の各実施の形態においても、3相給電される構成を示すが、この第1の実施の形態と同様、単相給電の構成でも良い。さらに、電力系統1と負荷系統5の周波数は異なっても良い。
【0028】
以下、図1の電力需給システムの基本動作について説明する。
【0029】
送電用変換装置2は、電力系統1の交流電力を直流電力に変換し、直流線路3に送り出す。この電力は、受電用変換装置4で直流電力から交流電力に変換され、負荷系統5に供給すると同時に、電力蓄積装置6を充電する。これは電力蓄積装置6が充電モードの場合であるが、この逆に電力蓄積装置6が放電モードの場合は、送電用変換装置2からの電力と電力蓄積装置6からの放電電力とを受電用変換装置4を介して、負荷系統5に供給する。
【0030】
負荷系統5が例えば離島にある場合、電力需要の小さい夜間に電力系統1から送電用変換装置2、直流線路3を介して、電力蓄積装置6を充電しておく。負荷系統5の電力需要が増加する昼間には、電力蓄積装置6から放電する。このように運転することで、昼間の電力需要の大きな電力系統1から、さらに送電電力を増加することなく、負荷系統の電力需要増加をまかなうことができる。
【0031】
今、電力需要の小さい夜間に、電力系統1から送電用変換装置2、直流線路3を介して、電力蓄積装置6を、電力蓄積装置の容量のk(k<1)倍の比率で充電しておくものとする。負荷系統5の電力需要が増加する昼間には、電力蓄積装置6から定格電力で放電する。受電時間をtc、放電時間をtdとしたとき、以下の不等式が成立するように運転する。
【0032】
k×tc×η>td… (1)
ただし、ここでηは電力蓄積装置6の効率である。
【0033】
このように運転すれば、送電用変換装置2、及び直流線路3の扱う電力は、常に受電用電力変換装置4、電力蓄積装置6より小さくなる。
【0034】
また、負荷系統5が、例えば頻繁に運転停止を行なう産業プラントのような変動負荷から構成され、間欠的に大電力を消費する特性を有する場合に、瞬時の大電力を電力蓄積装置6からの電力を受電用変換装置4により負荷系統5に供給することで、電力系統1から供給される電力変動を緩和し、電力系統1の電圧変動などの悪影響を受けないようにすることもできる。
【0035】
さらに、電力系統1あるいは送電用変換装置2が故障などで運転できない場合でも、電力蓄積装置6から受電用変換装置4を介して、負荷系統5への電力供給を継続することができる。
【0036】
本発明によれば、常に、遠隔地あるいは周波数の異なる負荷系統5への送電を行なうという条件の下、負荷変動による送電側の電力系統1の擾乱を緩和し、また、送電側の電力系統1における発電設備のピーク容量を低減できる。
【0037】
また、電力系統1あるいは送電用変換装置2が故障などで運転できない場合でも、負荷系統5への電力供給を継続することができ、電力供給の稼動率を向上できる。
【0038】
更に、送電用変換装置2、直流線路3の容量を小さくできるので、経済的なシステムが構築できる。特に、離島への送電などでは送電用のケーブルの定格を小さく選定できるので、経済性向上効果が期待でき、効率的な電力需給システムを提供することができる。
【0039】
(第2の実施の形態)
図4は、本発明の第2の実施の形態に係る電力需給システムのブロック構成図である。この第2の実施の形態の各部について、図1の第1の実施の形態に係る電力需給システムの各部と同一部分は同一符号で示し、その説明は省略する。この第2の実施の形態が、第1の実施の形態と異なる点は、直流線路3の距離が長いシステム構成の場合に、電力蓄積装置6を受電用変換装置4の近傍に配置した点である。
【0040】
離島への送電などの場合、直流線路3(送電用ケーブル)の距離が長くなるので、事故発生確率が高くなる。事故が発生すると、復旧には時間がかかるが、この様に電力蓄積装置6を受電用変換装置4の近傍に配置することにより、その間も電力蓄積装置6から負荷系統5への電力供給を継続できるので、離島の電力供給の稼動率を合理的に向上することができる。
【0041】
(第3の実施の形態)
図5は、本発明の第3の実施の形態に係る電力需給システムのブロック構成図である。この第3の実施の形態の各部について、図1の第1の実施の形態に係る電力需給システムの各部と同一部分は同一符号で示し、その説明は省略する。この第3の実施の形態が、第1の実施の形態と異なる点は、直流線路3と電力蓄積装置6との間に、電圧変換装置7を追加した点である。電圧変換装置7としては、電力蓄積装置6の説明に用いた図2に示したような昇降圧チョッパなどが適用できる。
【0042】
電力蓄積装置6を充電する場合、電圧変換装置7は、直流線路3の定格電圧から電力蓄積装置6の定格電圧に電圧変換を行ない充電する。一般に、電力蓄積装置6の電圧は、直流線路3電圧定格に比較し小さいので、電圧変換としては降圧動作を行なう。
【0043】
この逆に電力蓄積手段6から放電する場合、電圧変換装置7は、直流線路3の定格電圧へ電力蓄積装置6の定格電圧から電圧変換を行なうことになるが、この場合は昇圧動作の電圧変換となる。
【0044】
以上の第3の実施の形態に係る電力需給システムにおいては、送電用変換装置2、直流線路3の電圧を高く設定できるので、送電容量が同じ場合、電流定格を小さく選定できる。電圧を高くしても、直流線路3に使用されるケーブルの経済性への影響は少なく、電流を小さくした方が経済的に良い傾向があるので、離島送電のようにケーブル長が長い場合は電圧変換装置6を追加しても、それ以上にケーブルが廉価になり、システム全体としての経済性向上が期待できる。従って、効率的な直流電源システムを提供することが可能となる。
【0045】
(第4の実施の形態)
図6は、本発明の第4の実施の形態に係る電力需給システムのブロック構成図である。この第4の実施の形態の各部について、図1の第1の実施の形態に係る電力需給システムの各部と同一部分は同一符号で示し、その説明は省略する。この第4の実施の形態が、第1の実施の形態と異なる点は、受電用変換装置4と電力蓄積装置6とを複数個に分割し、その分割された夫々の受電用変換装置4と電力蓄積装置6とで対を形成し、その複数個の対の直流回路側を直列に接続し、交流出力側は受電用変換装置4の出力を並列接続する構成とした点である。
【0046】
この様な構成を採用すると、特に、電力蓄積装置6と受電用変換装置4の各対は、電力送電装置4の出力電圧すなわち直流線路3の電圧を分圧して動作する。従って、n個の対がある場合は、一対当たり扱う電力は、送電電力の1/n倍の電力となる。受電用変換装置4の出力は交流側で並列合成され負荷系統5に供給されるので、その電力は送電電力に電力蓄積装置6からの充放電電力を加味した電力に等しくなる。
【0047】
また、ある一対が事故などで使用できない状態でも、その対をバイパスし、電力送電装置2の運転電圧を(n−1)/n倍に低減し、残りの対により負荷に電力を供給する運転が可能である。
【0048】
以上説明したように、図6に示したような電力蓄積装置6と受電用変換装置4の分割構成を採用すれば、電力送電装置2及び直流線路3の電圧を高く設定できるので、直流線路3の電流容量を低減し、経済性の良い効率的な電力需給システムが得られる。
【0049】
また、ある一対が使用できない状態でも、残りの対により、負荷系統に電力供給を継続するので、合理的にシステムの稼動率を向上することができる。
【0050】
(第5の実施の形態)
図7は、本発明の第5の実施の形態に係る電力需給システムのブロック構成図である。この第5の実施の形態の各部について、図1の第1の実施の形態に係る電力需給システムの各部と同一部分は同一符号で示し、その説明は省略する。この第5の実施の形態が、第1の実施の形態と異なる点は、受電用変換装置4と電力蓄積装置6とを複数個に分割し、その分割された夫々の受電用変換装置4と電力蓄積装置6とで対を形成し、その複数個の対の直流回路側を直列に接続し、交流出力側は受電用変換装置4の出力変圧器の2次側を直列接続する構成とした点である。
【0051】
尚、図7では、分割された受電用変換装置4が夫々変圧器を有する構成としているが、変換装置側にn巻線を有する1台の変圧器で構成しても良い。
【0052】
以上説明したように、図7に示したような電力蓄積装置6と受電用変換装置4の分割構成を採用すれば、電力送電装置2及び直流線路3の電圧を高く設定できるので、直流線路3の電流容量を低減し、経済性の良い効率的な電力需給システムが得られる。
【0053】
また、ある一対が使用できない状態でも、残りの対により、負荷系統に電力供給を継続するので、合理的にシステムの稼動率を向上することができる。
【0054】
(第6の実施の形態)
図8は、本発明の第6の実施の形態に係る電力需給システムのブロック構成図である。この第6の実施の形態の各部について、図1の第1の実施の形態に係る電力需給システムの各部と同一部分は同一符号で示し、その説明は省略する。この第6の実施の形態が、第1の実施の形態と異なる点は、受電用変換装置4と電力蓄積装置6とを複数個に分割し、その分割された夫々の受電用変換装置4と電力蓄積装置6とで対を形成し、その複数個の対の直流回路側は並列に接続し、交流出力側は受電用変換装置4の出力を並列接続する構成とした点である。
【0055】
この第5の実施の形態に係る電力需給システムは、直流回路側が並列接続しているので、送電用変換装置2からの電力は、n台の電力蓄積装置6と受電用変換装置4に分配される。従って、n個の各対は、異なる電力を扱うことができる。また、ある一対が事故などで使用できない状態でも、残りの対により負荷に電力を供給することが可能となる。
【0056】
以上説明したように、図8に示したような電力蓄積装置6と受電用変換装置4の分割構成を採用すれば、電力蓄積装置6と受電用変換装置4の容量を自由に選定できるので、経済性の良い効率的な電力需給システムが得られる。また、ある一対が使用できない状態でも、残りの対により負荷に電力を供給することができるので、合理的にシステムの稼動率を向上することができる。
【0057】
(第7の実施の形態)
図9は、本発明の第7の実施の形態に係る電力需給システムのブロック構成図である。この第7の実施の形態の各部について、図1の第1の実施の形態に係る電力需給システムの各部と同一部分は同一符号で示し、その説明は省略する。この第7の実施の形態が、第1の実施の形態と異なる点は、受電用変換装置4と電力蓄積装置6とを複数個に分割し、その分割された夫々の受電用変換装置4と電力蓄積装置6とで対を形成し、その複数個の対の直流回路側は並列に接続し、交流出力側は、各々の対に1つの負荷系統を個々に接続する構成とした点である。
【0058】
このような構成を採用すると、電力送電装置2に電力蓄積装置6と受電用変換装置4の対が並列接続しているので、送電用変換装置2から供給される電力は、n台の電力蓄積装置6と受電用変換装置4に分配され、対応する個別の負荷に給電される。
【0059】
この第7の実施の形態に係る電力需給システムにおいて、前記各対は、異なる電力を扱うことができると共に、異なる負荷系統5の夫々に必要な電力を供給する。また、各対同志の間で電力を授受することも可能である。例えば、第1の負荷系統で電力消費が大となり、第2の負荷系統で電力消費が小となる場合、第2の負荷系統に送電していた電力を第1の負荷系統に振り向けることもできる。更に、第2の負荷系統に接続する第2の電力蓄積装置6からも第1の負荷系統に電力を放電し、第1の負荷系統の電力消費に対し、供給電力を確保する動作も可能となる。
【0060】
以上説明したように、図9に示したような電力蓄積装置6と受電用変換装置4の分割構成を採用すれば、電力蓄積装置6と受電用変換装置4の容量を複数個の負荷に応じて選定することができ、効率的な電力需給システムが得られる。また、各対の間で電力を授受できるので、複数個の負荷系統の電力需要変動の平均化を行なうことができる合理的な電力需給システムを供給することができる。
【0061】
【発明の効果】
以上説明したように、本発明によれば、効率的で合理的な電力需給システムを提供することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態に係る電力需給システムのブロック構成図。
【図2】 電力蓄積装置の一例を示すブロック図。
【図3】 電力蓄積装置の他の一例を示すブロック図
【図4】 本発明の第2の実施の形態に係る電力需給システムのブロック構成図。
【図5】 本発明の第3の実施の形態に係る電力需給システムのブロック構成図。
【図6】 本発明の第4の実施の形態に係る電力需給システムのブロック構成図。
【図7】 本発明の第5の実施の形態に係る電力需給システムのブロック構成図。
【図8】 本発明の第6の実施の形態に係る電力需給システムのブロック構成図。
【図9】 本発明の第7の実施の形態に係る電力需給システムのブロック構成図。
【符号の説明】
1・・・電力系統
2・・・送電用変換装置
3・・・直流線路
4・・・受電用変換装置
5・・・負荷系統
6・・・電力蓄積装置
7・・・電圧変換装置
21・・・変圧器
22・・・パワーデバイス
23・・・直流コンデンサ
61・・・昇降圧チョッパ
62・・・2次電池
63・・・直流コンデンサ
64・・・パワーデバイス
65・・・リアクトル
66・・・超電導コイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply / demand system that is installed in a power system / power supply system and performs composite transmission and storage of direct-current power, and more particularly to a power supply / demand system that improves system efficiency.
[0002]
[Prior art]
Conventionally, so-called direct current power transmission systems have been used for the purpose of transmitting power over long distances or connecting power systems of different frequencies to control power flow. A DC power transmission system converts AC power into DC power using a converter for power transmission, converts AC power transmitted via a DC line back to AC power using a power converter, and converts it to another power system or load. This system supplies power to the grid.
[0003]
A DC power transmission system configured in this way can transmit power with less loss than AC power transmission in a long-distance power transmission system such as a remote island power transmission system. There are advantages such as being able to cooperate. Furthermore, it is a common merit that rapid flow control can be performed by controlling the conversion device.
[0004]
Conventionally, a so-called separately excited conversion device has been used as a conversion device applied to a DC power transmission system, but recently, a self-excited conversion device has also been used. Using a self-excited conversion device has the advantage that power can be stably transmitted to a weak AC system or a non-power supply system.
[0005]
In order to further increase the flexibility of the transmission system, there is a concept of installing a power storage device in the system. This concept is shown in Patent Document 1 and Patent Document 2, for example. Patent Document 1 discloses a power supply / demand system in which a power storage device is installed on the AC output side of a power receiving conversion device. Patent Document 2 discloses a power supply / demand system in which a power storage device is installed in a DC line portion. The system is shown. As described above, when the DC power transmission system and the power storage device are used in combination, it is possible to configure a power supply and demand system that is resistant to troubles such as a system failure on the power transmission side. It is also a problem to consider.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-312934 (FIG. 1)
[0007]
[Patent Document 2]
JP-A-5-300658 (FIG. 1)
[0008]
[Problems to be solved by the invention]
In the conventional DC power transmission system, there is a restriction that the transmitted power and the received power must always be matched. Therefore, a facility having a capacity corresponding to the peak value of the power demand of the power receiving side load system is required on the power transmission side.
[0009]
In the conventional power storage system, the power system for transmitting power and the load system are interconnected by alternating current, and the power system and the load system are separated by the sea and are at a long distance, or the power system When the frequency of the load system is different from that of the load system, there is a problem that power interchange is not possible.
[0010]
Moreover, in order to solve the above-mentioned problem, it is only necessary to install both direct current power transmission and a power storage system. In this case, however, the conversion device becomes redundant and power transmission loss increases, which is disadvantageous in terms of economy. There was a problem of becoming.
[0011]
From the viewpoint of system economy, it is desirable to make the voltage of the DC line as high as possible. In this case, it is necessary to take voltage matching with a power storage device installed in the DC part.
[0012]
Furthermore, in the power supply and demand system having such a configuration, the reliability of the power receiving side conversion device is extremely important, but there are problems such as how to realize a rational system that improves the operation rate.
[0013]
Accordingly, the present invention has been made to solve the above problems, and an object thereof is to provide an efficient and rational power supply and demand system.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a power supply and demand system according to the present invention receives a power transmission converter that converts AC power into DC power, and DC power that is the output of the power transmission converter, and again through a DC line. A power receiving conversion device that converts to alternating current and a power storage device connected to the DC line, wherein the capacity of the power transmission conversion device is smaller than the capacity of the power storage device and the power receiving conversion device. Features.
[0015]
In order to achieve the above object, a power supply and demand system according to the present invention receives a power transmission converter that converts AC power into DC power, and DC power that is the output of the power transmission converter, and again through a DC line. It is composed of a plurality of power receiving conversion devices that convert to alternating current and a plurality of power storage devices connected to the DC line, and a plurality of pairs are formed by the power storage devices and the power receiving conversion devices. The direct current circuit sides of each pair are connected in series, and the alternating current circuits are connected in parallel to each other.
[0016]
In order to achieve the above object, a power supply and demand system according to the present invention receives a power transmission converter that converts AC power into DC power, and DC power that is the output of the power transmission converter, and again through a DC line. It is composed of a plurality of power receiving conversion devices that convert to alternating current and a plurality of power storage devices connected to the DC line, and a plurality of pairs are formed by the power storage devices and the power receiving conversion devices. The direct current circuit side of each pair is connected in series, and the alternating current side circuit is characterized in that the secondary windings of the transformers in the respective power receiving conversion devices are connected in series.
[0017]
In order to achieve the above object, a power supply and demand system according to the present invention receives a power transmission converter that converts AC power into DC power, and DC power that is the output of the power transmission converter, and again through a DC line. It is composed of a plurality of power receiving conversion devices that convert to alternating current and a plurality of power storage devices connected to the DC line, and a plurality of pairs are formed by the power storage devices and the power receiving conversion devices. The DC circuit side and the AC circuit side of each pair are connected in parallel to each other.
[0018]
In order to achieve the above object, a power supply and demand system according to the present invention receives a power transmission converter that converts AC power into DC power, and DC power that is the output of the power transmission converter, and again through a DC line. It is composed of a plurality of power receiving conversion devices that convert to alternating current and a plurality of power storage devices connected to the DC line, and a plurality of pairs are formed by the power storage devices and the power receiving conversion devices. The DC circuit side of each pair is connected in parallel to each other, and the AC circuit side is configured to supply power individually to different loads to different loads.
[0019]
According to the present invention, an efficient and rational power supply and demand system can be provided.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
A first embodiment of a power supply and demand system according to the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram of a power supply and demand system according to the present invention.
[0021]
The AC power of the power system 1 is converted to DC by the power transmission conversion device 2, converted to AC again by the power receiving conversion device 4 via the DC line 3, and supplied to the load system 5.
[0022]
A power storage device 6 is connected to the DC line 3. Here, the conversion capacity of the power transmission conversion device 2 is selected to be smaller than the capacity of either the power reception conversion device 4 or the power storage device 6.
[0023]
The power transmission converter 2 obtains a desired voltage by the transformer 21 and converts it into direct current by a converter configured by bridge-connecting a plurality of power devices 22. This DC output is smoothed by the DC capacitor 23. Note that the internal configuration of the power receiving conversion device 4 is basically the same as that of the power transmission converting device 4 described above, and a description thereof will be omitted. As the power device 22 used in these converters, a self-extinguishing device such as an IGBT is used to constitute a self-excited converter, but a separately excited converter using a diode rectifier element, a thyristor element, or the like is used. It may be adopted. Further, not only a two-level conversion device as shown in FIG. 1 but also a three-level or higher conversion device may be used. If a self-excited conversion device or a part of a separately excited conversion device using thyristor elements is used, the power flow can be controlled in the reverse direction.
[0024]
FIG. 2 shows an example of the power storage device 6 using a secondary battery. Here, a configuration in which the secondary battery 62 is charged and discharged using the step-up / step-down chopper 61 is shown. The step-up / down chopper 61 includes a DC capacitor 63 for smoothing voltage, a power device 64 for controlling current ratio, and a reactor 65 for smoothing current.
[0025]
FIG. 3 shows another embodiment of the power storage device 6 using a superconducting coil. Even in this embodiment, the superconducting coil 66 is charged and discharged using the step-up / step-down chopper 61. The step-up / step-down chopper 61 includes a voltage smoothing DC capacitor 63 and a power device 64 for controlling the current ratio.
[0026]
The operation of the step-up / step-down chopper 61 in FIGS. 2 and 3 is explained in Chapter 7 “DC conversion circuit” of “Power Electronics Circuit” (Electrical Society / Semiconductor Power Conversion System Research Technical Committee, Ohmsha). As shown, a desired DC voltage is obtained by controlling the power supply rate of the power device 64.
[0027]
1 shows a configuration in which the load system is fed by three phases, but this may be a single-phase feed. In this case, the power receiving conversion device 4 is constituted by a single-phase converter. In each of the following embodiments, a configuration in which three-phase power feeding is performed is shown, but a single-phase power feeding configuration may be used as in the first embodiment. Furthermore, the frequencies of the power system 1 and the load system 5 may be different.
[0028]
Hereinafter, the basic operation of the power supply and demand system in FIG. 1 will be described.
[0029]
The power transmission converter 2 converts the AC power of the power system 1 into DC power and sends it to the DC line 3. This power is converted from DC power to AC power by the power receiving conversion device 4 and supplied to the load system 5, and at the same time, the power storage device 6 is charged. This is the case where the power storage device 6 is in the charging mode. Conversely, when the power storage device 6 is in the discharge mode, the power from the power transmission conversion device 2 and the discharge power from the power storage device 6 are received. This is supplied to the load system 5 via the converter 4.
[0030]
For example, when the load system 5 is on a remote island, the power storage device 6 is charged from the power system 1 through the power transmission converter 2 and the DC line 3 at night when the power demand is small. During the daytime when the power demand of the load system 5 increases, the power storage device 6 discharges. By operating in this way, it is possible to cover the increase in power demand of the load system from the power system 1 with large daytime power demand without further increasing the transmission power.
[0031]
Now, at night when power demand is small, the power storage device 6 is charged from the power system 1 via the power transmission converter 2 and the DC line 3 at a ratio of k (k <1) times the capacity of the power storage device. Shall be kept. During the daytime when the power demand of the load system 5 increases, the power storage device 6 discharges with rated power. When the power reception time is tc and the discharge time is td, the operation is performed so that the following inequality is satisfied.
[0032]
k × tc × η> td (1)
Here, η is the efficiency of the power storage device 6.
[0033]
When operated in this way, the power handled by the power transmission conversion device 2 and the DC line 3 is always smaller than the power reception power conversion device 4 and the power storage device 6.
[0034]
Further, when the load system 5 is composed of a fluctuating load such as an industrial plant that frequently stops operation, and has a characteristic of consuming high power intermittently, instantaneous high power is supplied from the power storage device 6. By supplying electric power to the load system 5 by the power receiving conversion device 4, fluctuations in the electric power supplied from the electric power system 1 can be mitigated so as not to be adversely affected by voltage fluctuations in the electric power system 1.
[0035]
Furthermore, even when the power system 1 or the power transmission conversion device 2 cannot be operated due to a failure or the like, the power supply from the power storage device 6 to the load system 5 via the power reception conversion device 4 can be continued.
[0036]
According to the present invention, the disturbance of the power system 1 on the power transmission side due to load fluctuations is alleviated under the condition that power transmission to the remote system or the load system 5 having a different frequency is always performed. The peak capacity of the power generation equipment at can be reduced.
[0037]
Further, even when the power system 1 or the power transmission converter 2 cannot be operated due to a failure or the like, the power supply to the load system 5 can be continued and the operating rate of the power supply can be improved.
[0038]
Furthermore, since the capacity | capacitance of the converter 2 for power transmission and the DC track 3 can be made small, an economical system can be constructed | assembled. In particular, for power transmission to remote islands and the like, the rating of the power transmission cable can be selected to be small, so an economic improvement effect can be expected, and an efficient power supply and demand system can be provided.
[0039]
(Second embodiment)
FIG. 4 is a block diagram of an electric power supply and demand system according to the second embodiment of the present invention. About each part of this 2nd Embodiment, the same part as each part of the electric power supply-and-demand system which concerns on 1st Embodiment of FIG. 1 is shown with the same code | symbol, and the description is abbreviate | omitted. This second embodiment is different from the first embodiment in that the power storage device 6 is disposed in the vicinity of the power receiving conversion device 4 in the case of a system configuration in which the distance of the DC line 3 is long. is there.
[0040]
In the case of power transmission to a remote island, the distance of the DC line 3 (power transmission cable) becomes long, so the probability of occurrence of an accident increases. When an accident occurs, recovery takes time, but by arranging the power storage device 6 in the vicinity of the power receiving conversion device 4 in this way, power supply from the power storage device 6 to the load system 5 is continued during that time. Therefore, it is possible to rationally improve the operation rate of the power supply on the remote island.
[0041]
(Third embodiment)
FIG. 5 is a block diagram of an electric power supply and demand system according to the third embodiment of the present invention. About each part of this 3rd Embodiment, the same part as each part of the electric power supply-and-demand system which concerns on 1st Embodiment of FIG. 1 is shown with the same code | symbol, and the description is abbreviate | omitted. The third embodiment is different from the first embodiment in that a voltage conversion device 7 is added between the DC line 3 and the power storage device 6. As the voltage converter 7, a step-up / step-down chopper as shown in FIG. 2 used for the description of the power storage device 6 can be applied.
[0042]
When charging the power storage device 6, the voltage conversion device 7 performs voltage conversion from the rated voltage of the DC line 3 to the rated voltage of the power storage device 6 and charges the power storage device 6. In general, since the voltage of the power storage device 6 is smaller than the DC line 3 voltage rating, a step-down operation is performed as voltage conversion.
[0043]
Conversely, when discharging from the power storage means 6, the voltage conversion device 7 performs voltage conversion from the rated voltage of the power storage device 6 to the rated voltage of the DC line 3. In this case, voltage conversion of the boost operation is performed. It becomes.
[0044]
In the power supply and demand system according to the third embodiment described above, since the voltages of the power transmission converter 2 and the DC line 3 can be set high, the current rating can be selected small when the power transmission capacity is the same. Even if the voltage is increased, there is little impact on the economics of the cable used for the DC line 3, and there is a tendency that it is economically better to reduce the current. Even if the voltage conversion device 6 is added, the cost of the cable is further reduced, and the economic efficiency of the entire system can be expected. Therefore, it is possible to provide an efficient DC power supply system.
[0045]
(Fourth embodiment)
FIG. 6 is a block diagram of an electric power supply and demand system according to the fourth embodiment of the present invention. About each part of this 4th Embodiment, the same part as each part of the electric power supply-and-demand system which concerns on 1st Embodiment of FIG. 1 is shown with the same code | symbol, and the description is abbreviate | omitted. The fourth embodiment is different from the first embodiment in that the power receiving conversion device 4 and the power storage device 6 are divided into a plurality of divided power receiving conversion devices 4. The power storage device 6 forms a pair, the plurality of pairs of DC circuit sides are connected in series, and the AC output side is configured to connect the outputs of the power receiving conversion device 4 in parallel.
[0046]
Employing such a configuration, in particular, each pair of the power storage device 6 and the power receiving conversion device 4 operates by dividing the output voltage of the power transmission device 4, that is, the voltage of the DC line 3. Therefore, when there are n pairs, the power handled per pair is 1 / n times the transmitted power. Since the output of the power receiving conversion device 4 is combined in parallel on the AC side and supplied to the load system 5, the power is equal to the power obtained by adding the charge / discharge power from the power storage device 6 to the transmitted power.
[0047]
In addition, even when a certain pair cannot be used due to an accident or the like, the pair is bypassed, the operation voltage of the power transmission device 2 is reduced to (n-1) / n times, and power is supplied to the load by the remaining pairs. Is possible.
[0048]
As described above, if the divided configuration of the power storage device 6 and the power receiving conversion device 4 as shown in FIG. 6 is adopted, the voltages of the power transmission device 2 and the DC line 3 can be set high. Therefore, an efficient power supply and demand system with good economic efficiency can be obtained.
[0049]
Further, even when a certain pair cannot be used, power supply to the load system is continued by the remaining pairs, so that the operating rate of the system can be improved reasonably.
[0050]
(Fifth embodiment)
FIG. 7 is a block diagram of an electric power supply and demand system according to the fifth embodiment of the present invention. About each part of this 5th Embodiment, the same part as each part of the electric power supply-and-demand system which concerns on 1st Embodiment of FIG. 1 is shown with the same code | symbol, and the description is abbreviate | omitted. The fifth embodiment is different from the first embodiment in that the power receiving conversion device 4 and the power storage device 6 are divided into a plurality of divided power receiving conversion devices 4. A pair is formed with the power storage device 6, the DC circuit sides of the plurality of pairs are connected in series, and the secondary side of the output transformer of the power receiving conversion device 4 is connected in series on the AC output side. Is a point.
[0051]
In FIG. 7, each of the divided power receiving conversion devices 4 has a transformer. However, the power receiving conversion device 4 may be composed of one transformer having n windings on the conversion device side.
[0052]
As described above, if the divided configuration of the power storage device 6 and the power receiving conversion device 4 as shown in FIG. 7 is adopted, the voltages of the power transmission device 2 and the DC line 3 can be set high. Therefore, an efficient power supply and demand system with good economic efficiency can be obtained.
[0053]
Further, even when a certain pair cannot be used, power supply to the load system is continued by the remaining pairs, so that the operating rate of the system can be improved reasonably.
[0054]
(Sixth embodiment)
FIG. 8 is a block diagram of an electric power supply and demand system according to the sixth embodiment of the present invention. About each part of this 6th Embodiment, the same part as each part of the electric power supply-and-demand system which concerns on 1st Embodiment of FIG. 1 is shown with the same code | symbol, and the description is abbreviate | omitted. This sixth embodiment is different from the first embodiment in that the power receiving conversion device 4 and the power storage device 6 are divided into a plurality of divided power receiving conversion devices 4. A pair is formed with the power storage device 6, the DC circuit sides of the plurality of pairs are connected in parallel, and the output of the AC output side is connected in parallel with the output of the power receiving conversion device 4.
[0055]
In the power supply and demand system according to the fifth embodiment, since the DC circuit side is connected in parallel, the power from the power transmission conversion device 2 is distributed to the n power storage devices 6 and the power reception conversion device 4. The Thus, each of the n pairs can handle a different power. Further, even when a certain pair cannot be used due to an accident or the like, power can be supplied to the load by the remaining pair.
[0056]
As described above, if the divided configuration of the power storage device 6 and the power receiving conversion device 4 as shown in FIG. 8 is adopted, the capacities of the power storage device 6 and the power receiving conversion device 4 can be freely selected. An economical and efficient power supply and demand system can be obtained. Further, even when a certain pair cannot be used, power can be supplied to the load by the remaining pairs, so that the operating rate of the system can be improved reasonably.
[0057]
(Seventh embodiment)
FIG. 9 is a block diagram of an electric power supply and demand system according to the seventh embodiment of the present invention. About each part of this 7th Embodiment, the same part as each part of the electric power supply-and-demand system which concerns on 1st Embodiment of FIG. 1 is shown with the same code | symbol, and the description is abbreviate | omitted. The seventh embodiment is different from the first embodiment in that the power receiving conversion device 4 and the power storage device 6 are divided into a plurality of divided power receiving conversion devices 4. The power storage device 6 forms a pair, and the DC circuit side of the plurality of pairs is connected in parallel, and the AC output side is configured to connect one load system to each pair individually. .
[0058]
When such a configuration is adopted, since the pair of the power storage device 6 and the power receiving conversion device 4 is connected to the power transmission device 2 in parallel, the power supplied from the power transmission conversion device 2 is stored in n units. The power is distributed to the device 6 and the power receiving conversion device 4 and supplied to the corresponding individual load.
[0059]
In the electric power supply and demand system according to the seventh embodiment, each pair can handle different electric power and supply necessary electric power to each of different load systems 5. It is also possible to exchange power between each other. For example, when the power consumption is large in the first load system and the power consumption is small in the second load system, the power transmitted to the second load system may be directed to the first load system. it can. Furthermore, the second power storage device 6 connected to the second load system can also discharge power to the first load system, and can perform an operation for securing the supplied power with respect to the power consumption of the first load system. Become.
[0060]
As described above, when the divided configuration of the power storage device 6 and the power receiving conversion device 4 as shown in FIG. 9 is adopted, the capacities of the power storage device 6 and the power receiving conversion device 4 are set according to a plurality of loads. An efficient power supply and demand system can be obtained. In addition, since power can be exchanged between each pair, a rational power supply and demand system capable of averaging power demand fluctuations of a plurality of load systems can be supplied.
[0061]
【The invention's effect】
As described above, according to the present invention, an efficient and rational power supply and demand system can be provided.
[Brief description of the drawings]
FIG. 1 is a block configuration diagram of an electric power supply and demand system according to a first embodiment of the present invention.
FIG. 2 is a block diagram illustrating an example of a power storage device.
FIG. 3 is a block diagram showing another example of the power storage device. FIG. 4 is a block configuration diagram of the power supply and demand system according to the second embodiment of the present invention.
FIG. 5 is a block configuration diagram of an electric power supply and demand system according to a third embodiment of the present invention.
FIG. 6 is a block configuration diagram of an electric power supply and demand system according to a fourth embodiment of the present invention.
FIG. 7 is a block configuration diagram of an electric power supply and demand system according to a fifth embodiment of the present invention.
FIG. 8 is a block configuration diagram of an electric power supply and demand system according to a sixth embodiment of the present invention.
FIG. 9 is a block diagram of a power supply and demand system according to a seventh embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electric power system 2 ... Converter for power transmission 3 ... DC line 4 ... Converter for power reception 5 ... Load system 6 ... Power storage device 7 ... Voltage converter 21- ..Transformer 22 ... Power device 23 ... DC capacitor 61 ... Buck-boost chopper 62 ... Secondary battery 63 ... DC capacitor 64 ... Power device 65 ... Reactor 66 ...・ Superconducting coil

Claims (7)

交流電力を直流電力に変換する送電用変換装置と、
この送電用変換装置の出力である直流電力を受け、直流線路を介して再び交流に変換する受電用変換装置と、
前記直流線路に接続された電力蓄積装置から構成され、
前記送電用変換装置の容量を、前記電力蓄積装置及び前記受電用変換装置の容量より小さくしたことを特徴とする電力需給システム。
A transmission converter for converting AC power into DC power;
A power receiving conversion device that receives direct current power that is the output of the power transmission conversion device and converts the power back to alternating current through a direct current line;
Consists of a power storage device connected to the DC line,
A power supply and demand system, wherein a capacity of the power transmission conversion device is smaller than a capacity of the power storage device and the power reception conversion device.
前記電力蓄積装置を前記受電用変換装置の近傍に配置したことを特徴とする請求項1に記載の電力需給システム。The power supply and demand system according to claim 1, wherein the power storage device is disposed in the vicinity of the power receiving conversion device. 前記電力蓄積装置は、電圧変換装置を介して前記直流線路に接続されていることを特徴とする請求項1又は2に記載の電力需給システム。The power supply and demand system according to claim 1 or 2, wherein the power storage device is connected to the DC line via a voltage converter. 交流電力を直流電力に変換する送電用変換装置と、
この送電用変換装置の出力である直流電力を受け、直流線路を介して再び交流に変換する複数台の受電用変換装置と、
前記直流線路に接続された複数台の電力蓄積装置から構成され、
電力蓄積装置と受電用変換装置とで複数個の対を形成させ、その複数個の対の直流回路側を夫々直列に接続し、交流側回路は互いに並列に接続したことを特徴とする電力需給システム。
A transmission converter for converting AC power into DC power;
A plurality of power receiving conversion devices that receive direct current power that is the output of the power transmission conversion device and convert it back to alternating current through a direct current line;
Consists of a plurality of power storage devices connected to the DC line,
A power supply and demand characterized in that a plurality of pairs are formed by a power storage device and a power receiving conversion device, the DC circuit sides of the plurality of pairs are connected in series, and the AC circuits are connected in parallel to each other. system.
交流電力を直流電力に変換する送電用変換装置と、
この送電用変換装置の出力である直流電力を受け、直流線路を介して再び交流に変換する複数台の受電用変換装置と、
前記直流線路に接続された複数台の電力蓄積装置から構成され、
電力蓄積装置と受電用変換装置とで複数個の対を形成させ、その複数個の対の直流回路側を夫々直列に接続し、交流側回路は夫々の受電用変換装置内の変圧器の2次巻線を夫々直列に接続したことを特徴とする電力需給システム。
A transmission converter for converting AC power into DC power;
A plurality of power receiving conversion devices that receive direct current power that is an output of the power transmission conversion device and convert the power to alternating current again through a direct current line;
Consists of a plurality of power storage devices connected to the DC line,
A plurality of pairs are formed by the power storage device and the power receiving conversion device, and the DC circuit sides of the plurality of pairs are respectively connected in series, and the AC side circuit is the transformer 2 in each power receiving conversion device. A power supply and demand system characterized by connecting the next windings in series.
交流電力を直流電力に変換する送電用変換装置と、
この送電用変換装置の出力である直流電力を受け、直流線路を介して再び交流に変換する複数台の受電用変換装置と、
前記直流線路に接続された複数台の電力蓄積装置から構成され、
電力蓄積装置と受電用変換装置とで複数個の対を形成させ、その複数個の対の直流回路側及び交流回路側を夫々互いに並列に接続したことを特徴とする電力需給システム。
A transmission converter for converting AC power into DC power;
A plurality of power receiving conversion devices that receive direct current power that is the output of the power transmission conversion device and convert it back to alternating current through a direct current line;
Consists of a plurality of power storage devices connected to the DC line,
A power supply and demand system, wherein a plurality of pairs are formed by a power storage device and a power receiving conversion device, and the DC circuit side and the AC circuit side of the plurality of pairs are connected in parallel to each other.
交流電力を直流電力に変換する送電用変換装置と、
この送電用変換装置の出力である直流電力を受け、直流線路を介して再び交流に変換する複数台の受電用変換装置と、
前記直流線路に接続された複数台の電力蓄積装置から構成され、
電力蓄積装置と受電用変換装置とで複数個の対を形成させ、その複数個の対の直流回路側を互いに並列に接続し、交流回路側は異なる負荷に該当の対が個々に電力を供給する構成としたことを特徴とする電力需給システム。
A transmission converter for converting AC power into DC power;
A plurality of power receiving conversion devices that receive direct current power that is the output of the power transmission conversion device and convert it back to alternating current through a direct current line;
Consists of a plurality of power storage devices connected to the DC line,
A plurality of pairs are formed by the power storage device and the power receiving conversion device, and the DC circuit sides of the plurality of pairs are connected in parallel to each other, and the AC circuit side supplies power individually to different loads. Electricity supply and demand system characterized by having a configuration to do.
JP2002278429A 2002-09-25 2002-09-25 Electricity supply and demand system Expired - Lifetime JP3934518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278429A JP3934518B2 (en) 2002-09-25 2002-09-25 Electricity supply and demand system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278429A JP3934518B2 (en) 2002-09-25 2002-09-25 Electricity supply and demand system

Publications (2)

Publication Number Publication Date
JP2004120845A JP2004120845A (en) 2004-04-15
JP3934518B2 true JP3934518B2 (en) 2007-06-20

Family

ID=32273704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278429A Expired - Lifetime JP3934518B2 (en) 2002-09-25 2002-09-25 Electricity supply and demand system

Country Status (1)

Country Link
JP (1) JP3934518B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030558A1 (en) 2009-09-10 2011-03-17 Abe Rikiya Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
JP2012010530A (en) * 2010-06-27 2012-01-12 Rikiya Abe Multiple terminal type electric power conversion device, electric power system and control program of the same
JP2013138612A (en) * 2011-05-18 2013-07-11 Rikiya Abe Multi-terminal type asynchronous interconnection device, power apparatus control terminal device and power network system, and control method for the same
WO2014185035A1 (en) * 2013-05-17 2014-11-20 日本電気株式会社 Power network system and power adjustment device and method
WO2014185036A1 (en) * 2013-05-17 2014-11-20 日本電気株式会社 Power network system and power adjustment device and method
WO2019102547A1 (en) 2017-11-22 2019-05-31 東芝三菱電機産業システム株式会社 Power conversion system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996131B2 (en) * 2006-05-11 2012-08-08 株式会社東芝 Single-phase inverter control method
DE102010022043A1 (en) * 2010-05-26 2011-12-01 Siemens Aktiengesellschaft Energy storage in the field of electrical energy transmission and distribution
JP2014241721A (en) * 2010-06-27 2014-12-25 国立大学法人 東京大学 Multiple terminal type electric power conversion device, electric power system and control program of the same
JP6627026B2 (en) * 2017-10-20 2020-01-08 エクセルギー・パワー・システムズ株式会社 DC power interconnection system and secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030558A1 (en) 2009-09-10 2011-03-17 Abe Rikiya Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
JP2011182641A (en) * 2009-09-10 2011-09-15 Rikiya Abe Multi-terminal asynchronous link device, power equipment control terminal device, power network system, and method for controlling the same
JP2012010530A (en) * 2010-06-27 2012-01-12 Rikiya Abe Multiple terminal type electric power conversion device, electric power system and control program of the same
JP2013138612A (en) * 2011-05-18 2013-07-11 Rikiya Abe Multi-terminal type asynchronous interconnection device, power apparatus control terminal device and power network system, and control method for the same
WO2014185035A1 (en) * 2013-05-17 2014-11-20 日本電気株式会社 Power network system and power adjustment device and method
WO2014185036A1 (en) * 2013-05-17 2014-11-20 日本電気株式会社 Power network system and power adjustment device and method
US9935459B2 (en) 2013-05-17 2018-04-03 Nec Corporation Power network system, and power adjustment apparatus and method
WO2019102547A1 (en) 2017-11-22 2019-05-31 東芝三菱電機産業システム株式会社 Power conversion system

Also Published As

Publication number Publication date
JP2004120845A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
Dahale et al. An overview of DC-DC converter topologies and controls in DC microgrid
Pires et al. Power converter interfaces for electrochemical energy storage systems–A review
US6369461B1 (en) High efficiency power conditioner employing low voltage DC bus and buck and boost converters
US20200350768A1 (en) Combination wind/solar dc power system
US8824179B2 (en) Soft-switching high voltage power converter
Kwasinski et al. A microgrid-based telecom power system using modular multiple-input dc-dc converters
US20110273917A1 (en) Intelligent photovoltaic interface and system
EP2815913A1 (en) Recharging system for electric vehicles
JP2011521606A (en) Electrical network
Huber et al. Comparative evaluation of MVAC-LVDC SST and hybrid transformer concepts for future datacenters
US20230352934A1 (en) Power grid
JP3934518B2 (en) Electricity supply and demand system
WO2018158453A1 (en) Battery charger for traction vehicle
US11929664B2 (en) Multi-port power converter
US20190106001A1 (en) Energy supply device to supply electrical energy for at least one terminal device and method for operating an energy supply device
CN105659488A (en) Charging circuit for an energy storage device and method for charging an energy storage device
CN115362610B (en) SST system with multiple LVDC outputs
US20230115752A1 (en) Supply unit for a high-power load and arrangement including the supply unit
WO2013031934A1 (en) Interconnected power system
US20230318435A1 (en) Power Grid
Roggia et al. Comparison between full-bridge-forward converter and DAB converter
Kishore et al. Improving the performance of hybrid microgrid using isolated three-port converter
US11916493B2 (en) Power converter
CN216929693U (en) Charging device and system
EP3301800A1 (en) A power converter system for connection to an electric power distribution grid

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3934518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term