JP3934024B2 - Operation method of open cooling tower during freezing and freezing cooling tower used for freezing - Google Patents

Operation method of open cooling tower during freezing and freezing cooling tower used for freezing Download PDF

Info

Publication number
JP3934024B2
JP3934024B2 JP2002300252A JP2002300252A JP3934024B2 JP 3934024 B2 JP3934024 B2 JP 3934024B2 JP 2002300252 A JP2002300252 A JP 2002300252A JP 2002300252 A JP2002300252 A JP 2002300252A JP 3934024 B2 JP3934024 B2 JP 3934024B2
Authority
JP
Japan
Prior art keywords
cooling tower
cooling
temperature
blower
wet bulb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002300252A
Other languages
Japanese (ja)
Other versions
JP2003194492A (en
Inventor
亮 塚田
功 藤沢
三善 黒澤
晋 橋本
和隆 鳥井
重次郎 小宮
文雄 沼田
雄二 菊池
成信 國近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Shinryo Corp
Shin Nippon Air Technologies Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Shinryo Corp
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd, Shinryo Corp, Shin Nippon Air Technologies Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2002300252A priority Critical patent/JP3934024B2/en
Publication of JP2003194492A publication Critical patent/JP2003194492A/en
Application granted granted Critical
Publication of JP3934024B2 publication Critical patent/JP3934024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、フリークーリングにおける氷結時の開放式冷却塔の運転方法とこれに使用される開放式冷却塔に関する。
【0002】
【従来の技術】
従来においては、冷却塔設置場所の外気湿球温度が氷点近傍以下において冷却塔を運転する場合、運転中であっても冷却塔の内部や外周部が凍結することがある。
開放式冷却塔では充填板やルーバが、密閉式冷却塔では熱交換器内が凍結する。対策としては、形式を密閉式として不凍液を含む循環冷却水を流し、所定出口温度の冷却水を得ている。(例えば、本願の原出願後に公開された特許文献1、び特許文献2参照)。
【0003】
【特許文献1】
特開2002-213898号公報(段落【0004】乃至段落【0017】)
【0004】
【特許文献2】
特開平4-270897号公報(段落【0011】)
【0005】
また、形式を開放式とした場合、空気取入れ口にヒータを取付けるが、冷却のために加熱することになり、省エネルギー・省コストに反する。特に24時間連続運転する必要のある冷却塔では問題が顕著である。
一方冷却塔の運転方法の一態様として、例えば空調設備において冷凍機の運転を停止して冷却塔のみを運転し、冷却塔により低温となった冷却水を用いて冷房を行うフリークーリング方法が採用されている。この方法は外気湿球温度が低いとそれだけ冷却水の温度を降下させられる。
そして冬期には冷却塔設置場所の外気湿球温度が氷点下近傍においてこの冷却塔が運転がされることも多い。そして厳寒地では、冷却水が流動していても冷却塔塔内で凍るという現象も知られている。
【0006】
【発明が解決しようとする課題】
前記密閉式冷却塔の使用に関して、不凍液が注入された循環冷却水が外気流と直接接触しないため、循環冷却水が汚染される恐れはないが、前記不凍液の使用により冷却能力が充分に発揮されない恐れがあるとともに、前記密閉式冷却塔は間接冷却方式のため、熱交換効率が開放式に比べて悪く、イニシャルコストも高い。また、不凍液の注入に手間を要し、そのメンテナンスコスト及びランニングコストが嵩む。このため熱交換効率のよりよい開放式冷却塔を用いた低温冷却水の製造方法が望まれている。
【0007】
しかし、外気湿球温度が氷点近傍以下で開放式冷却塔を運転した場合には、開放式熱交換器である波板状の充填板上に冷却水が氷結し始め、この氷結の進行に伴い、通風量が減少し、前記冷却水の出口温度が上昇する傾向をとり、開放式冷却塔を連続運転し所望の冷却性能を発揮するには支障をきたす。
この発明は、加熱設備を改めて設置しなくとも氷結した氷を融解でき、冷却塔を停止することなく連続運転でき、結果として安価な開放式冷却塔を採用でき、省スペース・省コストで効果的な冷却と、冷却塔の外気取り入れ口や充填板上にある程度結氷が発生している状態でもほぼ所定の出口温度の冷却水が得られる、フリークーリングにおける氷結時の開放式冷却塔の運転方法とこれに使用される開放式冷却塔を提供することを目的とする。
この発明の他の目的は、前記フリークーリングにおいて、散水量を外気湿球温度パターンに応じて予め段階的に区分し設定しておき、かつ、送風機の正逆回転を制御することで、効果的な冷却と、冷却塔の外気取り入れ口や充填板間にある程度結氷が発生している状態でも所定の出口温度の循環冷却水が得られるフリークーリングにおける氷結時の開放式冷却塔の運転方法とこれに使用される開放式冷却塔を提供することである。
【0008】
【課題を解決するための手段】
前記課題を解決するために、開放式冷却塔のみを運転して得られる冷却水を使用して冷却負荷の冷却を行うフリークーリングにおける氷結時の開放式冷却塔の運転方法において、
前記冷却塔の送風機を回転数及び回転方向を制御可能とし、
前記冷却塔の設置場所周囲空気の外気湿球温度が氷点近傍以下であるとき、前記冷却塔に設けた上部水槽から充填板上へ流す前記冷却水の散水量を、設置場所周囲空気の外気湿球温度が低いほど散水量を多く、外気湿球温度が高いほど散水量が少なくなるように前記上部水槽からの散水量を設定し、
A)前記冷却塔の冷却水出口温度を設定値に保つように前記送風機の正回転回転数を制御するステップ。
B)この後、前記充填板上での氷結により、冷却水出口温度が上昇して設定値より少し高目に設定された第1目標値に達したとき、前記送風機を正回転から逆回転に切換えるステップ。
C)次いで、前記送風機の逆回転中、冷却水出口温度が、一旦降下後に再び上昇して、前記設定値より高く、前記第1目標値より少し低めに設定された第2目標値に達したときに、前記送風機を逆回転から正回転に切換えるステップ。
前記充填板上での氷結状態による冷却水出口温度の変化に伴い、前記A)乃至C)のステップを繰り返すことを特徴とするフリークーリングにおける氷結時の開放式冷却塔の運転方法しとしてある。
前記冷却負荷の冷却とは、冷房のほか、液体の冷却、物品の保管、発熱機器の冷却を含む。
前記冷却塔のみを運転するとは,冷熱供給の熱源として冷却塔系統のみを採用し、他の熱源例えば冷凍機からの冷水系統による冷却によらずに冷却負荷の冷却運転をすることを意味する。冷却塔系統(配管系)にはポンプ,水処理装置,冷却配管に付設された自動弁などの付属機器を含むが、これら機器も当然に冷却塔とともに運転される。
前記氷点近傍とは、水の凍る温度である湿球温度0℃を基準としたその近傍の温度を意味し、前記氷点近傍以下とはその範囲の温度以下の外気湿球温度を指す。
前記氷点近傍以下の外気湿球温度の範囲は、例えば−10℃乃至+1℃の範囲とする。
例えば外気湿球温度0℃になることを予測して若干高い外気湿球温度(1.5℃など)で本件発明の運転方法を開始したり、あるいは水の過冷却などの現象があり外気湿球温度−0.5℃以下で運転を始めても良い場合もある。
【0009】
前記課題を解決するために、この発明の開放式冷却塔の運転方法における前記充填板上への前記上部水槽からの循環冷却水の散水量を、前記外気湿球温度に応じて、数段階に区分し設定しておき、外気湿球温度が低い程水量を多く、外気湿球温度が高い程水量を少なく段階的に設定することを特徴とする。このように循環冷却水の散水量を段階的に設定することは、ポンプ、送風機のモータのハンチングを防止する上から好ましい。
【0010】
前記課題を解決するために、この発明の開放式冷却塔の運転方法における前記送風機の正回転時間を逆回転時間より長く設定し、外気湿球温度との関係から1サイクルの合計時間を約20分から60分とすることを特徴とする。このように前記送風機の正回転時間を逆回転時間より長く設定し、外気湿球温度との関係から1サイクルの合計時間を約20分から60分とすることで、外気湿球温度が低めの場合には1サイクルの時間を長めに取り、氷の融解を促進し、外気湿球温度が高めの場合には1サイクルの時間を短めに取り、冷却塔本体内に充分な風量を得にくい逆転時間をやたらに長くすることは冷却塔の本来の機能を殺すこととなり、正回転時間を充分に取り、前記冷却塔の本来の冷却性能を従来のものに比べ大幅に低下することなく、前記冷却性能を発揮する。
【0011】
前記課題を解決するために、この発明の開放式冷却塔の運転方法における前記充填板内の空気通路の氷結による閉塞率を平均40%乃至80%として、前記開放式冷却塔を運転することを特徴とする。このような氷による閉塞状態でも送風機の正、逆転運転により所望出口温度の循環冷却水を得る。
ここで、前記閉塞率とは、外気取り入れ部近傍で充填板の空気通路全正面面積に対する氷により閉塞される空気通路正面面積の比率を示し、視覚的に認定する場合と、前記送風機に設けたモータの定格電流に対する負荷電流値の比率で示され、電流計で計測されることが例示できる。
【0012】
前記課題を解決するために、この発明の開放式冷却塔の運転方法における氷結による送風機の駆動モータの送風抵抗を負荷電流として測定し、この負荷電流が氷結による閉塞率80%相当値以上の場合の測定信号と前記出口温度の上限値を越えた場合の測定信号のオア信号を前記送風機の停止及び逆転指令信号とし、前記負荷電流が氷結による閉塞率40%相当値以下の場合の測定信号と前記出口温度の設定値以下の場合の測定信号のオア信号により前記送風機の回転方向を正転に戻すことが望ましい。
【0013】
前記課題を解決するために、この発明の開放式冷却塔の運転方法における前記外気湿球温度がそれぞれの段階の外気湿球温度を越える変動があったときは、そのときの外気湿球温度に対応した予め定められた散水量に変化させるものとしてある。
【0014】
前記課題を解決するために、この発明の開放式冷却塔の運転方法における前記設定された散水量の各区分の範囲で、その区分内の設定された散水量に応じて水膜を充填板上に形成する。その際、前記出口温度の変化に基づいて前記送風機のモータの回転数、その正逆回転を前記散水量と連動して制御する。
【0015】
前記課題を解決するために、この発明の開放式冷却塔の運転方法における外気湿球温度を−10℃乃至+1℃の範囲で、少なくとも3段階、好ましくは5段階に区分し、各区分における外気湿球温度の範囲内において予め前記散水量を所定値に設定し、冷却水の充填板上に完全結氷することを阻止する。
【0016】
前記課題を解決するために、この発明の開放式冷却塔の運転方法における前記散水量の変更により、散水状態例えば散水域を調整し、冷却水の充填板上に完全結氷することを阻止する。
【0017】
前記課題を解決するために、関連発明は、開放型冷却塔設置場所の外気湿球温度が氷点近傍以下において開放型冷却塔のみを運転して得られる冷却した循環冷却水を用いるフリークーリングに使用する開放式冷却塔とし、
前記循環冷却水系の冷却塔の入口温度を検出する温度センサーと、前記循環冷却水系の冷却塔の出口温度を検出する温度センサーが設けてあると共に、前記冷却塔の設置場所の外気湿球温度を求めるために、この冷却塔の外気取り入れ部近傍の相対湿度を測定する相対湿度計と、乾球温度を測定する温度計が各々設置され、
前記冷却塔の排気口に送風機が設置され、この送風機のモータは可変速制御型で、その回転方向が正逆回転可能のものとし、
前記循環冷却水系に配置された循環ポンプのモータは可変速制御型としてあり、
データ演算部には、少なくとも前記温度センサーと、相対湿度計および、温度計が電気的に接続され、更に前記冷却水の散水量を、設置場所周囲空気の外気湿球温度が低いほど散水量を多く、外気湿球温度が高いほど散水量が少なくなるように散水量を連続的に設定する散水量設定部が設けてあり、
前記冷却塔設置場所での湿球温度が氷点下近傍において、この冷却塔の出口温度の設定値と、この設定値を境にその出口温度の上限値、下限値、及び設定値よりやや高めの目標値が設定される温度設定部と共に、
前記データ演算部には、更に前記出口温度に応じた前記送風機の回転方向のタイムテーブルが予め設定される設定部が各々設けてあり、
このデータ演算部により前記出口温度に基づいて前記送風機のモータの回転数を制御すると共にその回転方向を前記設定部に設定されているタイムテーブルに従い正逆回転制御する制御部が前記データ演算部とモータ用駆動制御回路とに電気的に接続されていることを特徴とする開放式冷却塔としてある。
【0018】
前記課題を解決するために、関連発明は、開放型冷却塔設置場所の外気湿球温度が氷点近傍以下において冷却塔のみを運転して得られる冷却した循環冷却水を用いるフリークーリングに使用する開放式冷却塔とし、
前記循環冷却水系の入口温度を検出する温度センサーと、前記循環冷却水系の出口温度を検出する温度センサーが設けてあると共に、前記冷却塔の設置場所の外気湿球温度を求めるために、この冷却塔の外気取り入れ部近傍の相対湿度を測定する相対湿度計と、乾球温度を測定する温度計が各々設置され、
前記冷却塔の排気口に送風機が設置され、この送風機のモータは可変速制御型でその回転方向が正逆回転可能のものとし、
前記循環冷却水系に配置された循環ポンプのモータは可変速制御型としてあり、
データ演算部には、少なくとも前記温度センサーと、相対湿度計および、温度計が電気的に接続され、前記充填板上への前記上部水槽からの循環冷却水の散水量を、前記外気湿球温度に応じて、数段階に区分し、湿球温度が低い程水量を多く、外気湿球温度が高い程水量を少なく段階的に設定する散水量設定部と、前記出口温度に応じた前記送風機の回転方向のタイムテーブルが予め設定される設定部とが各々設けてあり、
このデータ演算部により前記外気湿球温度範囲に基づいて前記循環ポンプのモータの回転数を制御し、前記段階的に設定されている数区分の散水量のうち対応する区分の散水量を選択し、更に前記出口温度に基づいて前記送風機のモータの回転数を制御すると共にその回転方向を前記設定部に設定されているタイムテーブルに従い正逆回転制御する制御部が前記データ演算部と各モータ用駆動制御回路とに電気的に接続されていることを特徴とする開放式冷却塔としてある。
【0019】
前記課題を解決するために、関連発明は、開放型冷却塔設置場所の外気湿球温度が氷点下近傍において冷凍機の運転を停止し、冷却塔のみを運転して得られる冷却した循環冷却水を間接的に用いるフリークーリングに使用する開放式冷却塔とし、
前記循環冷却水系の冷却塔の入口温度を検出する温度センサーと、前記循環冷却水系の冷却塔の出口温度を検出する温度センサーが設けてあると共に、前記冷却塔の設置場所の外気湿球温度を求めるために、この冷却塔の外気取り入れ部近傍の相対湿度を測定する相対湿度計と、乾球温度を測定する温度計が各々設置され、
前記冷却塔の排気口に設けられた送風機のモータは可変速制御型でその回転方向が正逆回転可能のものとし、
前記循環冷却水系に配置された循環ポンプのモータは可変速制御型としてあり、
データ演算部には、少なくとも前記温度センサーと、相対湿度計および、温度計が電気的に接続され、前記充填板上への前記上部水槽からの循環冷却水の散水量を、前記外気湿球温度に応じて、数段階に区分し、湿球温度が低い程水量を多く、外気湿球温度が高い程水量を少なく段階的に設定する散水量設定部と、前記出口温度に応じた前記送風機の回転方向のタイムテーブルが予め設定される設定部とが各々設けてあり、
このデータ演算部により前記外気湿球温度範囲に基づいて前記循環ポンプのモータの回転数を制御し、前記段階的に設定されている数区分の散水量のうち対応する区分の散水量を選択し、更に前記出口温度に基づいて前記送風機のモータの回転数を制御すると共にその回転方向を前記設定部に設定されているタイムテーブルに従い正逆回転制御する制御部が前記データ演算部と各モータ用駆動制御回路とに電気的に接続されていることを特徴とする開放式冷却塔としてある。
前記氷点下近傍とは、氷点下すなわち湿球温度0℃を下回る外気湿球温度の範囲に加え、氷点近傍の外気湿球温度を含む。具体的には外気湿球温度1℃以下を指す。
【0020】
なお、前記送風機の正回転から逆回転への切換えにおいて、正回転から停止までにかける時間、停止状態の継続時間、および停止から定常逆回転までにかける時間を各々タイマにより設定し、 前記送風機の逆回転から正回転への切換えにおいて、定常逆回転から停止までにかける時間、停止状態の継続時間、および停止から定常正回転までにかける時間を各々タイマにより設定することが好ましい。
【0021】
【発明の実施の形態】
実施の形態1
この形態は請求項8、9記載の開放式冷却塔の発明の代表的な実施の形態である。
図1において、Aは直交流型の開放式冷却塔を示し、上部水槽10の下方に、合成樹脂製の波板からなる充填板11が前記冷却塔A内に装填されている。
この充填板11上に散布された循環冷却水を受ける下部水槽13の落とし込み水槽14は、冷却負荷としての空調装置に冷却水配管され、フリークーリング時に冷凍機を介すことなく空調装置に連なる熱交換器(図示せず)に選択的に連通可能としてある。
前記フリークーリング時に循環冷却水は前記熱交換器に供給された空調装置側の冷水(二次側循環冷却水)と間接或いは直接に接触し、これを冷却した後は前記上部水槽10に供給され、外気流と直接接触して再び冷却され、循環して使用される循環冷却水系が構成されている。
【0022】
前記循環冷却水系の冷却塔出口温度を検出する温度センサー16が設けてあると共に、前記冷却塔Aの設置場所の外気湿球温度を求めるために、この冷却塔Aの外気取り入れ部17近傍の相対湿度を測定する相対湿度計18と、乾球温度を測定する乾球温度計19がそれぞれ設置されている。
前記循環冷却水系の戻り管20には前記循環冷却水流量を測定する流量計21が設置されている。
前記流量計21で検出された循環冷却水の流量と設定値との差を求め、その差に基づいて循環ポンプPのモータは回転数を増減する装置、例えばインバータを使用し、インバータ回路22の周波数を増減する流量調節器(図示せず)が設けてある。
データ演算部27には、少なくとも前記センサー16と、相対湿度計18と、乾球温度計19と流量計21が電気的に接続されているとともに、相対湿度計18の測定値と乾球湿度計19の測定値とをもとに湿球温度を求める演算機構を有し、前記冷却塔Aの設置場所での外気湿球温度が0℃以下であるとき、この冷却塔Aの循環冷却水出口温度の設定値t2℃、この設定値より高めの第1目標値t4℃及び前記設定値より高く前記第1目標値より少し低めに第2目標値t3℃が予め設定されている。
【0023】
また、前記外気取り入れ部17から充填板11を通り、この充填板11の表面上を流下する循環冷却水との直接接触で循環冷却水を冷却した外気流を混合室23を通して排気口24から前記冷却塔A外に排気するための送風機25がこの排気口24に設置されている。
この送風機25は回転数を増減する装置、例えばインバータを使用し、インバータ回路26によりモータを駆動制御されるとともに、その回転方向を正逆回転制御される方式のものとしてある。なお、このモータはギアドモータまたはギアボックスを敷設したモータであることが好ましい。
【0024】
更に、前記充填板11上への前記上部水槽10からの循環冷却水の散水量を、前記外気湿球温度に応じて、データ演算部27に記憶されたプログラムのパラメータとして、数段階に区分し、外気湿球温度が低い程水量を多く、外気湿球温度が高い程水量を少なく、階段状に制御されるよう予め設定してある(図2)。
好ましくは、前記外気湿球温度を−10℃〜+1℃の範囲で、前記散水量を5段階に区分し、各区分における外気湿球温度の範囲内において予め前記散水量を所定値に設定する。
前記外気湿球温度がそれぞれの段階の外気湿球温度を越える変動があったときは、そのときの外気湿球温度に対応した予め定められた散水量に変化させる。
前記データ演算部27には、このデータ演算部27により演算された結果に基づいて前記モータのインバータ回路22の周波数を増減し、各モータの回転数を制御するとともに、前記送風機25の回転方向を正、逆回転制御する制御部28が接続されている。またデータ演算部27は循環ポンプPの回転数を制御するためのインバータ回路26の周波数の増減も行い、前記制御部28を前記インバータ回路22と共有している。
【0025】
前記のように構成した開放式冷却塔の作用を、請求項1乃至3、6記載のフリークーリングにおける氷結時の開放式冷却塔の運転方法の発明の代表的な実施の形態と併せて説明する。
前記冷却塔A内で氷結が起きたときには、この冷却塔Aの送風機25を逆回転させて循環冷却水自身の温熱や送風機25のモータの熱を氷結個所に送って氷を融解する。
【0026】
更に詳述すれば、冷却塔Aの外気取り入れ部17近傍の外気相対湿度と乾球温度を前記湿度計18および前記温度計19により測定し、これら測定値を前記データ演算部27に入力し、これら測定値に基づいて外気湿球温度を演算して求める。
この求められた外気湿球温度がフリークーリング可能温度以下の場合には、前記冷凍機の運転を停止し、この冷却塔Aを運転して、前記フリークーリングを行う。その運転パターンは図3の通りである。
前記データ演算部27にこの冷却塔Aの循環冷却水出口温度の設定値t2、この設定値よりやや高めの第1目標値t4及び前記設定値より高く前記第1目標値より少し低めに第2目標値t3を予め設定する。
さらに前記データ演算部27に、充填板11上への上部水槽10からの循環冷却水の散水量を、前記湿球温度に応じて、数段階に区分し設定しておき、湿球温度が低い程水量を多く、湿球温度が高い程水量を少なく、5段階に予め設定する(図2参照)。
前記冷却塔Aの運転開始時点の前記冷却塔Aの設置場所の外気湿球温度を氷点近傍以下、例えば1℃とする。
【0027】
この際、求められた外気湿球温度に対応した散水量の区分が前記設定された数区分のうちから選択され、この選択された区分の散水量になるように、循環ポンプP用のインバータ回路22に制御部28から指令信号が発せられ、このインバータ回路22の周波数を変更し、循環ポンプPのモータの回転数を調整し、循環冷却水の散水量を選択された区分の数値とする。図2に例示したものは2℃刻みで散水量を設定してある。
この選択後の散水量の流量は前記流量計21により常時測定され、同一区分での散水量の変動を監視し、インバータ回路22の周波数をフィードバック制御する。
【0028】
前記区分を選択し、散水量を設定値に設定した後、前記出口温度に応じて送風機25のインバータ回路26に制御部28から指令信号が発せられ、このインバータ回路26の周波数制御と送風機25の正逆転制御を下記の通り行う(図3参照)。
前記単一の区分内毎の湿球温度範囲では、予めそれぞれ設定されている前記散水量を維持した状態において、冷却水出口温度を設定値に保つようにインバータ回路26の周波数制御により、送風機25の正転回転数を制御する。前記充填板11上での氷結に伴い空気通路の閉塞が進み、送風機25の回転数が増加し、定常回転数に達しても前記出口温度が上昇する。この温度の上昇は、冷却塔の外周部すなわち外気取り入れ部17の近傍で氷結が起こり、被冷却水に対して冷却熱源となる屋外空気の取り入れが妨げられるためである。そして前記出口温度が前記設定値より少し高めの第1目標値に達するまでは冷却塔Aに設けた送風機25を正回転運転し続ける。
この後、前記出口温度が前記第1目標値に達した時に、前記送風機25の回転を、正回転から所定時間かけ停止する(図3の符号A参照)。停止状態を所定時間継続する(図3の符号B参照)。
【0029】
前記所定停止時間終了後、前記送風機25を低速逆回転で運転開始し、所定時間かけて定常逆回転まで増速する(図3の符号D参照)。冷却塔の側方(ルーバ12)から外気を取入れ、前記排気口24から排気していた運転であったものが、空気流れを逆方向にした運転となる。すなわち、それまで外気取り入れ口に最も近かった部位は熱交換後の暖気の吐出口に最も近い部位になる。散水は停止していないため、冷却負荷で加熱された冷却水の温熱と冷却塔の送風機25のモータ発熱とが相俟って、氷結部であるルーバ12側の充填板に暖気を送り、当該個所の氷結を融解することになる。
【0030】
この送風機25の逆回転運転中、前記出口温度が急降下した後、再び上昇する。ここでは冷却塔の内周部すなわち混合室23の近傍の部位で氷結が起こる。その際前述のように屋外空気の導入が不足し、これを補償すべく送風機25の回転数を予め設定した設定値に従って増加させるが、なお温度が上昇し前記第2目標値に達した時に、前記送風機25の回転を逆回転から設定された所定時間かけて停止する(図3の符号E参照)。
停止状態を設定された所定時間継続する(図3の符号F参照)。
前記所定停止時間終了後、前記送風機25の回転を低速正回転で運転開始し、設定された所定時間かけて定常正回転するまで増速する(図3の符号H参照)。
【0031】
この後、前記出口温度が急激に低下し、設定値に達する。
再び前記充填板11での氷結に伴い前記出口温度が上昇し、前記第1目標値に達する毎に前記送風機25の停止、逆転、停止、正転を1サイクルとして繰り返し行い、前記出口温度を設定値近傍に維持する。
このような運転中に、前記外気湿球温度が0℃から例えば−4℃に低下した場合には、使用中の区分を変更し、0℃の場合より散水量が多めに予め設定してある−4℃に対応する区分を使用し、この新たに指定された区分の散水量を充填板11上に散布し、前記同様の運転を行う。
なお、当初から前記外気湿球温度が氷点下のある温度例えば−4℃であれば、この−4℃に対応する区分を選択し、前記同様の運転を行うこともある。
【0032】
実施の形態2
この形態は、請求項7記載の開放式冷却塔の代表的な実施の形態であり、実施の形態1と異なる構成は、データ演算部には、少なくとも前記温度センサーと、相対湿度計および、温度計が電気的に接続され、更に前記冷却水の散水量を、設置場所周囲空気の外気湿球温度が低いほど散水量を多く、外気湿球温度が高いほど散水量が少なくなるように散水量を連続的に設定する散水量設定部が設けてあり、実施の形態1と異なる作用は循環冷却水の散水量の設定は、前記外気湿球温度に応じて、外気湿球温度が低い程水量を多く、外気湿球温度が高い程水量を少なく、連続的に予め設定する(請求項1記載の発明の代表的な実施の形態に対応)。その他は実施の形態1と同じである。
【0033】
実施の形態3
この形態は、請求項4乃至5記載の発明の代表的な実施の形態であり、実施の形態1と異なる構成は充填板11上における氷結による空気通路の閉塞率を40%乃至80%として、前記冷却塔Aの運転を行う。具体的には、空気通路の閉塞率の下限、上限が所定の率、例えば40%、80%で前記冷却塔Aの送風機25の運転状態を変更する。より好ましくは、前記送風機25の送風抵抗を前記モータの負荷電流として測定し、この負荷電流が氷結による閉塞率80%相当値以上の場合の測定信号と、循環冷却水出口温度が第1目標値を超えた場合の測定信号のオア信号を正回転から逆回転への指令信号とし、前記送風機25を正回転から逆回転にする。前記負荷電流が氷結による閉塞率40%相当値以下の場合の測定信号と前期出口温度の設定値以下の場合の測定信号のオア信号により前記送風機25の回転方向を正転に戻す。以上のようにすることにより、所定出口温度の安定化が図られ前記冷却塔の運転の確実性が増す。
その他は実施の形態1と同様である。
このようにして前記外気湿球温度が0℃以下での充填板11上及び外気取り入れ口17での氷結による空気通路の密閉を回避しながら循環冷却水の出口温度を設定値にほぼ維持し、所望温度の冷却水を供給する。
また冷却塔は開放式冷却塔で送風機があれば型式を問わず実施でき、向流型にももちろん適用できる。
なお、前記循環冷却水の供給先は空調装置、冷却装置、保管・保存装置、その他5℃乃至10℃程度の冷熱を必要とする設備であり、空調装置(図示せず)としては熱交換器を介さずに空調機やファンコイルユニットに配管を通じて連通することもある。
【0034】
【発明の効果】
請求項1乃至6記載の運転方法の発明において、散水量を外気湿球温度により変化するよう設定し、送風機の回転数及び回転方向を制御することで、冷却塔の外気取り入れ口や充填板上にある程度氷結が発生している状態でも効果的な冷却が可能となり、所望の冷却水出口温度を得ることができる。また、前記冷却塔を運転できる外気湿球温度の範囲を拡大でき、この開放式冷却塔を北海道、東北、北陸などの厳冬地でも使用することができる。
【0035】
殊に請求項2記載の発明においては、前記フリークーリング時に散水量を温度パターンに応じて段階的に区分し設定し、かつ、送風機の回転方向を制御することで、ポンプ、送風機のモータのハンチングを防止できると共に、効果的な冷却と、冷却塔の外気取り入れ口や充填板間にある程度氷結が発生している状態でも目標値の冷却水出口温度を得ることが出来る。また、前記冷却塔が運転できる外気湿球温度の範囲を拡大でき、この開放型冷却塔を北海道、東北、北陸などの厳冬地でも使用することができる。
なお、前記送風機の駆動モータ及び冷却水循環ポンプの駆動モータを、前記外気湿球温度に基づいてインバータ制御することで、前記外気湿球温度の変化に応答して、確実にこれらモータを制御でき、前記効果をより顕著に発揮できる。
【0036】
殊に請求項3記載の発明においては、前記送風機の正回転時間を逆回転時間より長く設定することにより、外気湿球温度が低めの場合には1サイクルの時間を長めに取り、氷の融解を促進し、外気湿球温度が高めの場合には1サイクルの時間を短めに取り、冷却塔本体内に充分な風量を得にくい逆転時間をやたらに長くすることは本来の冷却塔の機能を殺すこととなり、正回転時間を充分に取り、前記冷却塔の本来の冷却性能を汎用の物に比べ大幅に低下することなく、前記冷却性能を発揮することができる。
【0037】
請求項4記載の発明においては、前記充填板内の空気通路の氷結による閉塞率を平均40%乃至80%として、前記開放式冷却塔を運転することにより、氷による閉塞状態を許容しながら送風機の正、逆転運転により所望出口温度の循環冷却水を得ることができると共に、冷却塔の運転を適切に自動化できる。
請求項5記載の発明においては、氷結による送風機の駆動モータの送風抵抗を負荷電流が氷結による閉塞率80%相当値以上の場合の測定信号と前記出口温度の上限値を越えた場合の測定信号のオア信号が前記送風機の停止及び逆転指令信号とし、前記負荷電流が氷結による閉塞率40%相当値以下の場合の測定信号と前記出口温度の設定値以下の場合の測定信号のオア信号により前記送風機の回転方向を正転に戻すことにより、氷結が解凍することに伴い循環冷却水を効率よく冷却し、氷結をある程度許容した状態で、前記効果を発揮できる。
【0038】
請求項6記載の発明においては、前記設定された散水量の各区分の範囲で、前記出口温度の変化に基づいて前記送風機のモータの回転数を制御すると共にその回転方向を正逆回転制御するものとすることにより、外気湿球温度の変化にかかわらず、常に所定の出口温度をフリークーリングにおいて得ることが出来る。
【0039】
請求項7記載の開放式冷却塔の発明においては、請求項1乃至6記載の運転方法を実施でき、その効果を発揮できる。
請求項8記載の開放式冷却塔の発明においては、請求項2乃至6記載の運転方法を実施でき、その効果を発揮できる。
請求項9記載の開放式冷却塔の発明においては、請求項2乃至6記載の運転方法を実施でき、その効果を発揮できる。
【図面の簡単な説明】
【図1】実施の形態の全体を示す概略図である。
【図2】図1における散水量の制御パターンを示す概略図である。
【図3】図1における送風機の運転パターン概略図である。
【符号の説明】
A 開放式冷却塔
P 循環ポンプ
10 上部水槽
11 充填板
12 ルーバ
15、16 温度センサー
18 相対湿度計
19 乾球温度計
21 流量計
22、26 インバータ回路
23 混合室
25 送風機
27 データ演算部
28 制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating an open cooling tower during freezing and freezing, and an open cooling tower used therefor.
[0002]
[Prior art]
Conventionally, when the cooling tower is operated when the temperature of the outdoor wet bulb at the place where the cooling tower is installed is below the freezing point, the inside and outer periphery of the cooling tower may freeze even during operation.
In the open cooling tower, the packed plates and louvers freeze, and in the closed cooling tower, the heat exchanger freezes. As a countermeasure, the cooling water having a predetermined outlet temperature is obtained by flowing a circulating cooling water containing an antifreeze liquid with a sealed type. (For example, see Patent Document 1 and Patent Document 2 published after the original application of the present application).
[0003]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2002-213898 (paragraphs [0004] to [0017])
[0004]
[Patent Document 2]
JP-A-4-270897 (paragraph [0011])
[0005]
In addition, when the type is an open type, a heater is attached to the air intake, but it is heated for cooling, which is contrary to energy saving and cost saving. The problem is particularly remarkable in a cooling tower that needs to be operated continuously for 24 hours.
On the other hand, as an aspect of the operation method of the cooling tower, for example, a free cooling method is adopted in which only the cooling tower is operated by stopping the operation of the refrigerator in the air conditioning equipment, and the cooling water cooled by the cooling tower is used for cooling. Has been. In this method, the temperature of the cooling water can be lowered as the outside wet bulb temperature is lowered.
In winter, the cooling tower is often operated when the temperature of the outside air wet bulb at the place where the cooling tower is installed is near freezing point. In extreme cold regions, it is also known that the cooling tower freezes even when the cooling water is flowing.
[0006]
[Problems to be solved by the invention]
With regard to the use of the above-mentioned hermetic cooling tower, the circulating cooling water into which the antifreezing liquid is injected does not come into direct contact with the external airflow, so there is no fear that the circulating cooling water is contaminated, but the cooling capacity is not sufficiently exhibited by the use of the antifreezing liquid. In addition, there is a fear that the hermetic cooling tower is an indirect cooling method, so that the heat exchange efficiency is lower than that of the open type and the initial cost is high. Further, it takes time and effort to inject the antifreeze liquid, and the maintenance cost and running cost increase. Therefore, a method for producing low-temperature cooling water using an open cooling tower with better heat exchange efficiency is desired.
[0007]
However, when the open-type cooling tower is operated when the temperature of the outside air wet bulb is below the freezing point, the cooling water begins to freeze on the corrugated packed plate that is an open-type heat exchanger. The air flow rate decreases and the outlet temperature of the cooling water tends to increase, which hinders the continuous operation of the open cooling tower and the desired cooling performance.
This invention can melt frozen ice without installing a new heating facility, and can operate continuously without stopping the cooling tower. As a result, an inexpensive open-type cooling tower can be adopted, which is effective in saving space and cost. Cooling system and operating method of open-type cooling tower during freezing in free cooling, which can obtain cooling water with almost a predetermined outlet temperature even when some freezing occurs on the outside air intake and packed plate of the cooling tower. It aims at providing the open type cooling tower used for this.
Another object of the present invention is that, in the free cooling, the watering amount is divided and set stepwise in advance according to the outside air wet bulb temperature pattern, and the forward / reverse rotation of the blower is controlled effectively. Operation of an open-type cooling tower during freezing and free cooling that can provide circulating cooling water with a predetermined outlet temperature even when freezing occurs to some extent between the outside air intake and packed plate of the cooling tower. It is to provide an open-type cooling tower used in the above.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, in the operation method of the open-type cooling tower at the time of freezing in free cooling in which cooling load is cooled using cooling water obtained by operating only the open-type cooling tower,
The number of rotations and the direction of rotation of the cooling tower fan can be controlled,
When the outside air wet bulb temperature of the ambient air around the installation location of the cooling tower is below the freezing point, the sprinkling amount of the cooling water flowing from the upper water tank provided on the cooling tower onto the packing plate is the outside air humidity of the ambient air around the installation location. Set the watering amount from the upper water tank so that the watering amount is higher as the bulb temperature is lower, and the watering amount is lower as the outdoor wet bulb temperature is higher.
A) A step of controlling the rotational speed of the blower so as to keep the cooling water outlet temperature of the cooling tower at a set value.
B) After that, when the cooling water outlet temperature rises due to icing on the filling plate and reaches the first target value set slightly higher than the set value, the blower is changed from normal rotation to reverse rotation. Switching step.
C) Next, during the reverse rotation of the blower, the cooling water outlet temperature once rose and then rose again, and reached the second target value set higher than the set value and slightly lower than the first target value. Sometimes switching the blower from reverse to forward rotation.
As the cooling water outlet temperature changes due to the icing state on the packed plate, the steps A) to C) are repeated, and the operation method of the open cooling tower during freezing in free cooling is provided.
The cooling of the cooling load includes cooling of the liquid, storage of articles, and cooling of the heat generating equipment in addition to cooling.
Operating only the cooling tower means that only the cooling tower system is employed as a heat source for supplying cold heat, and the cooling operation is performed without cooling by another heat source such as a cooling water system from a refrigerator. The cooling tower system (piping system) includes auxiliary equipment such as a pump, a water treatment device, and an automatic valve attached to the cooling pipe, and these equipments are naturally operated together with the cooling tower.
The vicinity of the freezing point means a temperature in the vicinity of the wet bulb temperature of 0 ° C., which is the temperature at which water freezes, and the vicinity of the freezing point indicates an outside air wet bulb temperature below the range temperature.
The range of the outside air wet bulb temperature below the freezing point is, for example, -10 ° C to + 1 ° C.
For example, the operating method of the present invention is started at a slightly high outside air wet bulb temperature (such as 1.5 ° C.) by predicting that the outside air wet bulb temperature becomes 0 ° C., or there is a phenomenon such as water supercooling. The operation may be started at a sphere temperature of −0.5 ° C. or lower.
[0009]
In order to solve the above-described problem, the amount of circulating cooling water sprayed from the upper water tank onto the packed plate in the operation method of the open cooling tower of the present invention is divided into several stages according to the outside air wet bulb temperature. The water volume is increased as the outdoor wet bulb temperature is lower, and the water volume is set stepwise as the outdoor wet bulb temperature is higher. In this way, it is preferable to set the amount of sprinkled cooling water stepwise in order to prevent hunting of the motors of the pump and the blower.
[0010]
In order to solve the above problems, the forward rotation time of the blower in the operation method of the open cooling tower of the present invention is set longer than the reverse rotation time, and the total time of one cycle is about 20 from the relationship with the outside air wet bulb temperature. It is characterized by being 60 minutes from minutes. In this way, when the forward rotation time of the blower is set longer than the reverse rotation time, and the total time of one cycle is about 20 to 60 minutes from the relationship with the outside air wet bulb temperature, the outside air wet bulb temperature is low Takes longer time for one cycle, promotes melting of ice, and takes longer time for one cycle when the outside air wet bulb temperature is high, so it is difficult to obtain sufficient air volume in the cooling tower body. If the length of the cooling tower is prolonged, the original function of the cooling tower will be killed, sufficient time will be taken for normal rotation, and the cooling performance of the cooling tower will not be significantly reduced compared to the conventional one. Demonstrate.
[0011]
In order to solve the above-mentioned problem, the open cooling tower is operated with an average blocking rate of 40% to 80% due to freezing of the air passage in the packed plate in the operation method of the open cooling tower of the present invention. Features. Even in such a closed state with ice, circulating cooling water having a desired outlet temperature is obtained by forward and reverse operation of the blower.
Here, the blockage rate indicates the ratio of the front area of the air passage that is closed by ice to the total front area of the air passage of the filling plate in the vicinity of the outside air intake portion. It can be exemplified by the ratio of the load current value to the rated current of the motor, which is measured by an ammeter.
[0012]
In order to solve the above-mentioned problem, when the blowing current of the drive motor of the blower due to icing in the operation method of the open cooling tower of the present invention is measured as a load current, and the load current is equal to or more than a value corresponding to an occlusion ratio of 80% And the OR signal of the measurement signal when the upper limit value of the outlet temperature is exceeded is used as the blower stop and reverse command signal, and the measurement signal when the load current is equal to or less than the value corresponding to a blockage rate of 40% due to freezing It is desirable that the rotation direction of the blower be returned to normal rotation by an OR signal of a measurement signal when the outlet temperature is equal to or lower than a set value.
[0013]
In order to solve the above-mentioned problem, when the outside air wet bulb temperature in the operating method of the open cooling tower of the present invention fluctuates beyond the outside air wet bulb temperature in each stage, the outside wet bulb temperature at that time is changed. It is supposed to change to a corresponding predetermined watering amount.
[0014]
In order to solve the above-mentioned problem, a water film is placed on a packed plate in the range of each set watering amount in the operating method of the open cooling tower of the present invention in accordance with the set watering amount in that section. To form. At that time, based on the change in the outlet temperature, the rotational speed of the motor of the blower and its forward / reverse rotation are controlled in conjunction with the amount of water spray.
[0015]
In order to solve the above-mentioned problems, the temperature of the outside wet bulb in the operation method of the open type cooling tower of the present invention is divided into at least 3 stages, preferably 5 stages in the range of -10 ° C to + 1 ° C. Within the range of the outside air wet bulb temperature, the water spray amount is set to a predetermined value in advance to prevent complete freezing on the cooling water filling plate.
[0016]
In order to solve the above-mentioned problem, by changing the water spray amount in the operation method of the open type cooling tower of the present invention, the water spray state, for example, the water spray area is adjusted to prevent complete freezing on the cooling water filling plate.
[0017]
In order to solve the above-mentioned problem, the related invention is used for free cooling using cooled circulating cooling water obtained by operating only the open type cooling tower when the temperature of the outside air wet bulb at the open type cooling tower installation site is below the freezing point temperature. An open cooling tower
A temperature sensor for detecting the inlet temperature of the cooling tower of the circulating cooling water system and a temperature sensor for detecting the outlet temperature of the cooling tower of the circulating cooling water system are provided, and the outside wet bulb temperature at the place where the cooling tower is installed is determined. In order to obtain, a relative hygrometer that measures the relative humidity in the vicinity of the outside air intake of the cooling tower and a thermometer that measures the dry bulb temperature are installed,
A blower is installed at the exhaust port of the cooling tower, and the motor of this blower is a variable speed control type whose rotation direction can be rotated forward and backward.
The motor of the circulating pump arranged in the circulating cooling water system is a variable speed control type,
At least the temperature sensor, a relative hygrometer, and a thermometer are electrically connected to the data calculation unit, and the water spray amount is further reduced as the outside air wet bulb temperature of the air around the installation site is lower. There is a sprinkling amount setting unit that continuously sets the sprinkling amount so that the sprinkling amount decreases as the outdoor wet bulb temperature increases.
When the wet bulb temperature at the cooling tower installation location is near freezing point, the set value of the outlet temperature of the cooling tower, and the upper limit value, the lower limit value, and the target value slightly higher than the set value with respect to this set value as a boundary Along with the temperature setting part where the value is set,
Each of the data calculation units is further provided with a setting unit in which a time table in the rotation direction of the blower according to the outlet temperature is preset.
A control unit that controls the rotation speed of the motor of the blower based on the outlet temperature by the data calculation unit and controls the rotation direction according to the time table set in the setting unit is the data calculation unit. The open cooling tower is electrically connected to a motor drive control circuit.
[0018]
In order to solve the above-mentioned problem, the related invention is an open circuit used for free cooling using cooled circulating cooling water obtained by operating only the cooling tower when the outside air wet bulb temperature at the open-type cooling tower installation site is below the freezing point temperature. A cooling tower,
A temperature sensor for detecting the inlet temperature of the circulating cooling water system and a temperature sensor for detecting the outlet temperature of the circulating cooling water system are provided, and this cooling is performed in order to obtain the outdoor wet bulb temperature at the place where the cooling tower is installed. A relative hygrometer that measures the relative humidity near the outside air intake of the tower and a thermometer that measures the dry bulb temperature are installed, respectively.
A blower is installed at the exhaust port of the cooling tower, and the motor of this blower is a variable speed control type whose rotation direction can rotate forward and backward,
The motor of the circulating pump arranged in the circulating cooling water system is a variable speed control type,
At least the temperature sensor, a relative hygrometer, and a thermometer are electrically connected to the data calculation unit, and the amount of circulating cooling water sprayed from the upper water tank onto the filling plate is determined as the temperature of the outside wet bulb temperature. In accordance with the above, it is divided into several stages, the lower the wet bulb temperature, the greater the amount of water, the higher the outdoor wet bulb temperature, the lower the amount of water, and the lower the amount of water set stepwise, and the blower according to the outlet temperature. A setting unit in which a time table in the rotation direction is set in advance,
The data calculation unit controls the number of rotations of the motor of the circulation pump based on the outside air wet bulb temperature range, and selects the watering amount of the corresponding category among the watering amounts of the several categories set in stages. Further, a control unit that controls the rotation speed of the motor of the blower based on the outlet temperature and controls the rotation direction according to a time table set in the setting unit is provided for the data calculation unit and each motor. The open cooling tower is electrically connected to a drive control circuit.
[0019]
In order to solve the above-mentioned problem, the related invention is directed to the cooling circulating cooling water obtained by stopping the operation of the refrigerator when the temperature of the outside air wet bulb at the open-type cooling tower installation site is near the freezing point and operating only the cooling tower. As an open cooling tower used for free cooling indirectly,
A temperature sensor for detecting the inlet temperature of the cooling tower of the circulating cooling water system and a temperature sensor for detecting the outlet temperature of the cooling tower of the circulating cooling water system are provided, and the outside wet bulb temperature at the place where the cooling tower is installed is determined. In order to obtain, a relative hygrometer that measures the relative humidity in the vicinity of the outside air intake of the cooling tower and a thermometer that measures the dry bulb temperature are installed,
The blower motor provided at the exhaust port of the cooling tower is a variable speed control type whose rotation direction can be rotated forward and reverse,
The motor of the circulating pump arranged in the circulating cooling water system is a variable speed control type,
At least the temperature sensor, a relative hygrometer, and a thermometer are electrically connected to the data calculation unit, and the amount of circulating cooling water sprayed from the upper water tank onto the filling plate is determined as the temperature of the outside wet bulb temperature. In accordance with the above, it is divided into several stages, the lower the wet bulb temperature, the greater the amount of water, the higher the outdoor wet bulb temperature, the lower the amount of water, and the lower the amount of water set stepwise, and the blower according to the outlet temperature. A setting unit in which a time table in the rotation direction is set in advance,
The data calculation unit controls the number of rotations of the motor of the circulation pump based on the outside air wet bulb temperature range, and selects the watering amount of the corresponding category among the watering amounts of the several categories set in stages. Further, a control unit that controls the rotation speed of the motor of the blower based on the outlet temperature and controls the rotation direction according to a time table set in the setting unit is provided for the data calculation unit and each motor. The open cooling tower is electrically connected to a drive control circuit.
The vicinity below freezing includes the outside wet bulb temperature in the vicinity of freezing, in addition to the range of outside freezing bulb temperature below freezing, that is, below the wet bulb temperature of 0 ° C. Specifically, it refers to an outdoor wet bulb temperature of 1 ° C. or less.
[0020]
In the switching from the normal rotation to the reverse rotation of the blower, the time taken from the normal rotation to the stop, the duration of the stop state, and the time taken from the stop to the steady reverse rotation are set by timers, respectively. In switching from reverse rotation to normal rotation, it is preferable that the time taken from the steady reverse rotation to the stop, the duration of the stopped state, and the time taken from the stop to the normal forward rotation are respectively set by timers.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
This form is a typical embodiment of the invention of the open type cooling tower according to claims 8 and 9.
In FIG. 1, A indicates a cross-flow type open cooling tower, and a packing plate 11 made of a synthetic resin corrugated plate is loaded in the cooling tower A below the upper water tank 10.
The dropped water tank 14 of the lower water tank 13 that receives the circulating cooling water sprayed on the filling plate 11 is piped to the air conditioner as a cooling load, and is connected to the air conditioner without passing through the refrigerator during free cooling. It is possible to selectively communicate with an exchanger (not shown).
During the free cooling, the circulating cooling water is indirect or direct contact with the cooling water (secondary circulating cooling water) on the air conditioner supplied to the heat exchanger, and after cooling it, it is supplied to the upper water tank 10. A circulating cooling water system is constructed which is cooled again by direct contact with the external airflow and used by circulation.
[0022]
A temperature sensor 16 for detecting the cooling tower outlet temperature of the circulating cooling water system is provided, and in order to obtain the outside air wet bulb temperature at the place where the cooling tower A is installed, A relative hygrometer 18 for measuring the humidity and a dry bulb thermometer 19 for measuring the dry bulb temperature are installed.
A flow meter 21 for measuring the circulating cooling water flow rate is installed in the return pipe 20 of the circulating cooling water system.
A difference between the flow rate of the circulating cooling water detected by the flow meter 21 and a set value is obtained, and based on the difference, the motor of the circulation pump P uses a device that increases or decreases the number of revolutions, for example, an inverter. A flow rate regulator (not shown) for increasing or decreasing the frequency is provided.
At least the sensor 16, the relative hygrometer 18, the dry bulb thermometer 19, and the flow meter 21 are electrically connected to the data calculation unit 27, and the measured value of the relative hygrometer 18 and the dry bulb hygrometer 19 has a calculation mechanism for obtaining the wet bulb temperature based on the measured value of 19 and when the outside wet bulb temperature at the place where the cooling tower A is installed is 0 ° C. or less, the circulating cooling water outlet of the cooling tower A A temperature set value t2 ° C, a first target value t4 ° C higher than the set value, and a second target value t3 ° C higher than the set value and slightly lower than the first target value are preset.
[0023]
In addition, the external airflow that has cooled the circulating cooling water through direct contact with the circulating cooling water flowing through the filling plate 11 from the outside air intake portion 17 and flowing down on the surface of the filling plate 11 is passed through the mixing chamber 23 from the exhaust port 24. A blower 25 for exhausting outside the cooling tower A is installed at the exhaust port 24.
The blower 25 uses a device that increases or decreases the number of rotations, for example, an inverter. The inverter 25 is driven and controlled by a motor, and the direction of rotation is controlled forward and reverse. Note that this motor is preferably a geared motor or a motor in which a gear box is laid.
[0024]
Furthermore, the amount of circulating cooling water sprayed from the upper water tank 10 onto the filling plate 11 is divided into several stages as program parameters stored in the data calculation unit 27 according to the outside air wet bulb temperature. The lower the outside wet bulb temperature, the more water is set, and the higher the outside wet bulb temperature is, the smaller the amount of water is set in advance so as to be controlled stepwise (FIG. 2).
Preferably, the water wet bulb temperature is in a range of −10 ° C. to + 1 ° C., the water spray amount is divided into five stages, and the water spray amount is set to a predetermined value in advance within the range of the outdoor air wet bulb temperature in each section. .
When the outdoor air wet bulb temperature fluctuates beyond the outdoor air wet bulb temperature at each stage, the water spray is changed to a predetermined watering amount corresponding to the outdoor air wet bulb temperature at that time.
The data calculating unit 27 increases or decreases the frequency of the inverter circuit 22 of the motor based on the result calculated by the data calculating unit 27 to control the rotation speed of each motor, and the rotation direction of the blower 25 is controlled. A control unit 28 that controls forward and reverse rotation is connected. The data calculation unit 27 also increases / decreases the frequency of the inverter circuit 26 for controlling the rotation speed of the circulation pump P, and shares the control unit 28 with the inverter circuit 22.
[0025]
The operation of the open-type cooling tower configured as described above will be described together with a typical embodiment of the invention of the operation method of the open-type cooling tower during freezing in free cooling according to claims 1 to 3 and 6. .
When icing occurs in the cooling tower A, the blower 25 of the cooling tower A is reversely rotated, and the temperature of the circulating cooling water itself or the heat of the motor of the blower 25 is sent to the freezing place to melt the ice.
[0026]
More specifically, the outside air relative humidity and the dry bulb temperature in the vicinity of the outside air intake 17 of the cooling tower A are measured by the hygrometer 18 and the thermometer 19, and these measured values are input to the data calculator 27. The outdoor wet bulb temperature is calculated based on these measured values.
When the obtained outdoor wet bulb temperature is equal to or lower than the free cooling possible temperature, the operation of the refrigerator is stopped, the cooling tower A is operated, and the free cooling is performed. The operation pattern is as shown in FIG.
In the data calculation unit 27, a set value t2 of the circulating cooling water outlet temperature of the cooling tower A, a first target value t4 slightly higher than the set value, and a second value slightly higher than the set value and slightly lower than the first target value. A target value t3 is set in advance.
Further, the amount of circulating cooling water sprayed from the upper water tank 10 onto the filling plate 11 is set in several stages according to the wet bulb temperature, and the wet bulb temperature is low. The higher the wet water temperature and the higher the wet bulb temperature, the lower the water amount and preset in 5 stages (see FIG. 2).
The outside air wet bulb temperature at the installation location of the cooling tower A at the start of operation of the cooling tower A is set to be below the freezing point, for example, 1 ° C.
[0027]
At this time, an inverter circuit for the circulation pump P is selected so that the water spray amount corresponding to the obtained outside air wet bulb temperature is selected from the set number of the water sprays and the water spray amount of the selected partition is obtained. A command signal is issued from the control unit 28 to the control circuit 28, the frequency of the inverter circuit 22 is changed, the rotational speed of the motor of the circulation pump P is adjusted, and the sprinkling amount of the circulating cooling water is set to the numerical value of the selected section. In the example illustrated in FIG. 2, the amount of water spray is set in increments of 2 ° C.
The flow rate of the sprinkling amount after this selection is constantly measured by the flow meter 21, the fluctuation of the sprinkling amount in the same section is monitored, and the frequency of the inverter circuit 22 is feedback controlled.
[0028]
After selecting the section and setting the watering amount to a set value, a command signal is issued from the control unit 28 to the inverter circuit 26 of the blower 25 according to the outlet temperature, and the frequency control of the inverter circuit 26 and the fan 25 are controlled. Forward / reverse control is performed as follows (see FIG. 3).
In the wet bulb temperature range for each single section, the blower 25 is controlled by frequency control of the inverter circuit 26 so as to keep the cooling water outlet temperature at a set value in a state where the previously set watering amount is maintained. Controls the normal rotation speed. As the ice on the filling plate 11 freezes, the air passage closes, the rotational speed of the blower 25 increases, and the outlet temperature rises even when it reaches the steady rotational speed. This rise in temperature is due to the fact that icing occurs near the outer periphery of the cooling tower, that is, in the vicinity of the outside air intake 17, and the intake of outdoor air serving as a cooling heat source for the water to be cooled is hindered. And until the said outlet temperature reaches the 1st target value a little higher than the said setting value, the fan 25 provided in the cooling tower A continues normal rotation driving | operation.
Thereafter, when the outlet temperature reaches the first target value, the rotation of the blower 25 is stopped over a predetermined time from the normal rotation (see symbol A in FIG. 3). The stop state is continued for a predetermined time (see symbol B in FIG. 3).
[0029]
After completion of the predetermined stop time, the blower 25 is started to operate at low speed reverse rotation, and the speed is increased to steady reverse rotation over a predetermined time (see reference sign D in FIG. 3). The operation in which outside air is taken in from the side of the cooling tower (louver 12) and exhausted from the exhaust port 24 is the operation in which the air flow is reversed. That is, the part closest to the outside air intake until then becomes the part closest to the warm air outlet after the heat exchange. Since sprinkling is not stopped, the temperature of the cooling water heated by the cooling load and the heat generated by the motor of the fan 25 of the cooling tower are combined to send warm air to the filling plate on the louver 12 side that is an icing portion. The frozen parts will be thawed.
[0030]
During the reverse rotation operation of the blower 25, the outlet temperature rapidly rises and then rises again. Here, icing occurs in the inner periphery of the cooling tower, that is, in the vicinity of the mixing chamber 23. At that time, as described above, the introduction of outdoor air is insufficient, and in order to compensate for this, the rotational speed of the blower 25 is increased according to a preset set value, but when the temperature rises and reaches the second target value, The rotation of the blower 25 is stopped over a predetermined time set from reverse rotation (see symbol E in FIG. 3).
The stop state is continued for a set predetermined time (see symbol F in FIG. 3).
After completion of the predetermined stop time, the rotation of the blower 25 is started at a low speed and a positive rotation, and the speed is increased until a regular positive rotation is performed over a set predetermined time (see symbol H in FIG. 3).
[0031]
Thereafter, the outlet temperature rapidly decreases and reaches a set value.
The outlet temperature rises again with freezing on the filling plate 11, and every time the first target value is reached, the blower 25 is repeatedly stopped, reversely rotated, stopped, and forward rotated as one cycle to set the outlet temperature. Keep near value.
During such operation, when the outdoor wet bulb temperature falls from 0 ° C. to, for example, −4 ° C., the division in use is changed, and the amount of water spray is set in advance to be larger than that at 0 ° C. Using the section corresponding to −4 ° C., the amount of water spray of the newly designated section is sprayed on the filling plate 11 and the same operation as described above is performed.
If the outside wet bulb temperature is a temperature below the freezing point, for example, −4 ° C. from the beginning, a section corresponding to −4 ° C. may be selected and the same operation as described above may be performed.
[0032]
Embodiment 2
This form is a typical embodiment of the open type cooling tower according to claim 7, and the configuration different from that of the first embodiment is that at least the temperature sensor, the relative hygrometer, and the temperature are included in the data calculation unit. A meter is electrically connected, and the amount of water sprayed is such that the amount of water sprayed increases as the ambient air wet bulb temperature of the ambient air is lower, and the amount of water spray decreases as the ambient air wet bulb temperature increases. The water spray amount setting unit for continuously setting the water spray amount is different from that of the first embodiment in that the amount of water sprayed in the circulating cooling water is set according to the temperature of the external air wet bulb. The higher the outside air wet bulb temperature is, the smaller the amount of water is set continuously in advance (corresponding to a typical embodiment of the invention of claim 1). The rest is the same as in the first embodiment.
[0033]
Embodiment 3
This embodiment is a typical embodiment of the invention described in claims 4 to 5, and the configuration different from the embodiment 1 is that the blockage rate of the air passage due to freezing on the filling plate 11 is 40% to 80%. The cooling tower A is operated. Specifically, the operating state of the blower 25 of the cooling tower A is changed when the lower limit and the upper limit of the blockage rate of the air passage are predetermined rates, for example, 40% and 80%. More preferably, the blowing resistance of the blower 25 is measured as the load current of the motor, and the measurement signal when the load current is equal to or higher than the 80% occlusion rate due to freezing and the circulating cooling water outlet temperature are the first target value. The OR signal of the measurement signal in the case of exceeding is used as a command signal from normal rotation to reverse rotation, and the blower 25 is changed from normal rotation to reverse rotation. The rotation direction of the blower 25 is returned to the normal rotation by the measurement signal when the load current is equal to or less than the value corresponding to the blockage rate of 40% due to freezing and the OR signal of the measurement signal when the load current is equal to or less than the preset value of the outlet temperature. By doing so, the predetermined outlet temperature is stabilized and the reliability of the operation of the cooling tower is increased.
Others are the same as in the first embodiment.
In this way, the outlet temperature of the circulating cooling water is substantially maintained at the set value while avoiding the sealing of the air passage due to icing on the filling plate 11 and the outside air intake port 17 when the outside air wet bulb temperature is 0 ° C. or less, Supply cooling water of desired temperature.
The cooling tower is an open type cooling tower and can be implemented regardless of the type as long as it has a blower.
The supply source of the circulating cooling water is an air conditioner, a cooling device, a storage / preservation device, or other equipment that requires cooling of about 5 ° C. to 10 ° C. The air conditioner (not shown) is a heat exchanger. The air conditioner and the fan coil unit may be communicated with each other through a pipe without going through.
[0034]
【The invention's effect】
In the invention of the operation method according to any one of claims 1 to 6, the amount of water spray is set so as to change according to the outside air wet bulb temperature, and the number of rotations and the direction of rotation of the blower are controlled, so Even in a state where icing has occurred to some extent, effective cooling is possible, and a desired cooling water outlet temperature can be obtained. Moreover, the range of the outside wet-bulb temperature which can operate the said cooling tower can be expanded, and this open type cooling tower can be used also in severe winter places, such as Hokkaido, Tohoku, and Hokuriku.
[0035]
In particular, in the invention according to claim 2, hunting of the motor of the pump and the blower is performed by setting the watering amount in stages according to the temperature pattern and controlling the rotation direction of the blower during the free cooling. In addition, effective cooling and a target cooling water outlet temperature can be obtained even when some degree of freezing occurs between the outside air inlet and the packed plate of the cooling tower. Moreover, the range of the outdoor wet bulb temperature in which the cooling tower can be operated can be expanded, and this open type cooling tower can be used even in severe winter areas such as Hokkaido, Tohoku and Hokuriku.
In addition, by controlling the drive motor of the blower and the drive motor of the cooling water circulation pump based on the outside air wet bulb temperature, these motors can be reliably controlled in response to the change in the outside air wet bulb temperature, The said effect can be exhibited more notably.
[0036]
In particular, in the invention according to claim 3, by setting the forward rotation time of the blower longer than the reverse rotation time, when the outside wet bulb temperature is low, a longer cycle time is taken to melt the ice. If the outdoor wet bulb temperature is high, the cycle time should be shortened, and the reversing time that makes it difficult to obtain a sufficient amount of air in the cooling tower body will be lengthened. Thus, the cooling performance can be exhibited without taking a sufficient amount of forward rotation time and without significantly lowering the original cooling performance of the cooling tower as compared with a general-purpose product.
[0037]
According to a fourth aspect of the present invention, the air-cooling rate of the air passages in the packed plate is set to an average of 40% to 80%, and the open-type cooling tower is operated to allow a blower while allowing a blocked state due to ice. Thus, circulating cooling water having a desired outlet temperature can be obtained by forward and reverse operations, and the operation of the cooling tower can be appropriately automated.
In the invention described in claim 5, the blowing resistance of the drive motor of the blower due to icing is measured when the load current exceeds a value corresponding to 80% of the blockage rate due to icing, and when the upper limit of the outlet temperature is exceeded. The OR signal of the blower is the stop and reverse command signal of the blower, and the OR signal of the measurement signal when the load current is equal to or less than a value corresponding to a blockage rate of 40% due to freezing and the OR signal of the measurement signal when the outlet temperature is equal to or less than the set value By returning the rotation direction of the blower to normal rotation, the circulating cooling water can be efficiently cooled as icing is thawed, and the above-described effects can be exhibited in a state where icing is allowed to some extent.
[0038]
In a sixth aspect of the present invention, the rotational speed of the motor of the blower is controlled based on the change in the outlet temperature and the rotational direction thereof is controlled to be forward / reversely rotated within the range of the set watering amount. In this way, a predetermined outlet temperature can always be obtained in the free cooling regardless of the change in the outside wet bulb temperature.
[0039]
In the invention of the open type cooling tower according to the seventh aspect, the operation method according to the first to sixth aspects can be carried out, and the effect can be exhibited.
In the invention of the open type cooling tower according to the eighth aspect, the operation method according to the second to sixth aspects can be carried out, and the effect can be exhibited.
In the invention of the open type cooling tower according to the ninth aspect, the operation method according to the second to sixth aspects can be carried out, and the effect can be exhibited.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the entirety of an embodiment.
FIG. 2 is a schematic diagram showing a control pattern of the watering amount in FIG. 1;
FIG. 3 is a schematic diagram of an operation pattern of the blower in FIG. 1;
[Explanation of symbols]
A Open cooling tower
P Circulation pump
10 Upper water tank
11 Filling plate
12 louvers
15, 16 Temperature sensor
18 Relative hygrometer
19 Dry bulb thermometer
21 Flow meter
22, 26 Inverter circuit
23 Mixing chamber
25 Blower
27 Data operation part
28 Control unit

Claims (9)

開放式冷却塔のみを運転して得られる冷却水を使用して冷却負荷の冷却を行うフリークーリングにおける氷結時の開放式冷却塔の運転方法において、
前記冷却塔の送風機を回転数及び回転方向を制御可能とし、
前記冷却塔の設置場所周囲空気の外気湿球温度が氷点近傍以下であるとき、前記冷却塔に設けた上部水槽から充填板上へ流す前記冷却水の散水量を、設置場所周囲空気の外気湿球温度が低いほど散水量を多く、外気湿球温度が高いほど散水量が少なくなるように前記上部水槽からの散水量を設定し、
A)前記冷却塔の冷却水出口温度を設定値に保つように前記送風機の正回転回転数を制御するステップ。
B)この後、前記充填板上での氷結により、冷却水出口温度が上昇して設定値より少し高目に設定された第1目標値に達したとき、前記送風機を正回転から逆回転に切換えるステップ。
C)次いで、前記送風機の逆回転中、冷却水出口温度が、一旦降下後に再び上昇して、前記設定値より高く、前記第1目標値より少し低めに設定された第2目標値に達したときに、前記送風機を逆回転から正回転に切換えるステップ。
前記充填板上での氷結状態による冷却水出口温度の変化に伴い、前記A)乃至C)のステップを繰り返す
ことを特徴とするフリークーリングにおける氷結時の開放式冷却塔の運転方法。
In the operation method of the open cooling tower during freezing in free cooling in which cooling water is cooled using cooling water obtained by operating only the open cooling tower,
The number of rotations and the direction of rotation of the cooling tower fan can be controlled,
When the outside air wet bulb temperature of the ambient air around the installation location of the cooling tower is below the freezing point, the sprinkling amount of the cooling water flowing from the upper water tank provided on the cooling tower onto the packing plate is the outside air humidity of the ambient air around the installation location. Set the watering amount from the upper water tank so that the watering amount is higher as the bulb temperature is lower, and the watering amount is lower as the outdoor wet bulb temperature is higher.
A) A step of controlling the rotational speed of the blower so as to keep the cooling water outlet temperature of the cooling tower at a set value.
B) After that, when the cooling water outlet temperature rises due to icing on the filling plate and reaches the first target value set slightly higher than the set value, the blower is changed from normal rotation to reverse rotation. Switching step.
C) Next, during the reverse rotation of the blower, the cooling water outlet temperature once rose and then rose again, and reached the second target value set higher than the set value and slightly lower than the first target value. Sometimes switching the blower from reverse to forward rotation.
A method of operating an open cooling tower during freezing in free cooling, wherein the steps A) to C) are repeated as the cooling water outlet temperature changes due to the frozen state on the packed plate.
前記充填板上への前記上部水槽からの循環冷却水の散水量を、前記外気湿球温度に応じて、数段階に区分して設定しておき、外気湿球温度が低い程水量を多く、外気湿球温度が高い程水量を少なく段階的に設定することを特徴とする請求項1記載のフリークーリングにおける氷結時の開放式冷却塔の運転方法。Sprinkling amount of circulating cooling water from the upper water tank on the filling plate is set in several stages according to the outside air wet bulb temperature, the lower the outside air wet bulb temperature, the more water amount, The method for operating an open cooling tower during freezing in free cooling according to claim 1, wherein the amount of water is set stepwise as the outdoor wet bulb temperature increases. 前記送風機の正回転時間を逆回転時間より長く設定し、外気湿球温度との関係で1サイクルの合計時間を約20分から60分とすることを特徴とする請求項1又は2記載のフリークーリングにおける氷結時の開放式冷却塔の運転方法。3. The free cooling according to claim 1 or 2, wherein the forward rotation time of the blower is set longer than the reverse rotation time, and the total time of one cycle is about 20 to 60 minutes in relation to the outside wet bulb temperature. To operate an open cooling tower during icing. 前記充填板内の空気通路の氷結による閉塞率を平均40%乃至80%として,前記開放式冷却塔を運転することを特徴とする請求項1、2又は3記載フリークーリングにおける氷結時の開放式冷却塔の運転方法。4. The open type at the time of freezing in free cooling, wherein the open type cooling tower is operated with an average blockage rate due to freezing of the air passage in the packed plate being 40% to 80%. Cooling tower operation method. 氷結による送風機の駆動モータの送風抵抗を負荷電流として測定し、この負荷電流が氷結による閉塞率80%相当値以上の場合の測定信号と前記出口温度の上限値を越えた場合の測定信号のオア信号を前記送風機の停止及び逆転指令信号とし、
前記負荷電流が氷結による閉塞率40%相当値以下の場合の測定信号と前記出口温度の設定値以下の場合の測定信号のオア信号により前記送風機の回転方向を正転に戻すことを特徴とする請求項1、2、3又は4記載フリークーリングにおける氷結時の開放式冷却塔の運転方法。
The blower resistance of the drive motor of the blower due to icing is measured as a load current, and the measurement signal when the load current is equal to or higher than the 80% occlusion rate due to icing and the OR of the measurement signal when the outlet temperature exceeds the upper limit value are measured. The signal is the blower stop and reverse command signal,
The rotation direction of the blower is returned to normal rotation by an OR signal of a measurement signal when the load current is equal to or less than a value corresponding to a blockage rate of 40% due to icing and a set value of the outlet temperature or less. The operation method of the open type cooling tower at the time of freezing in free cooling in claim 1, 2, 3 or 4.
前記設定された散水量の各区分の範囲で、前記出口温度の変化に基づいて前記送風機のモータの回転数を制御すると共にその回転方向を正逆回転制御するものとすることを特徴とする請求項2、3又は4記載のフリークーリングにおける氷結時の開放式冷却塔の運転方法。The rotation speed of the motor of the blower is controlled based on the change in the outlet temperature, and the rotation direction is controlled to be forward / reversely rotated in the range of the set watering amount. Item 5. A method for operating an open cooling tower during freezing in free cooling according to item 2, 3 or 4. 開放式冷却塔のみを運転して得られる冷却水を使用して冷却負荷の冷却を行うフリークーリングに使用する開放式冷却塔とし、
前記循環冷却水系の冷却塔の入口温度を検出する温度センサーと、前記循環冷却水系の冷却塔の出口温度を検出する温度センサーが設けてあると共に、前記冷却塔の設置場所の外気湿球温度を求めるために、この冷却塔の外気取り入れ部近傍の相対湿度を測定する相対湿度計と、乾球温度を測定する温度計が各々設置され、
前記冷却塔の排気口に送風機が設置され、この送風機のモータは可変速制御型で、その回転方向が正逆回転可能のものとし、
前記循環冷却水系に配置された循環ポンプのモータは可変速制御型としてあり、
データ演算部には、少なくとも前記温度センサーと、相対湿度計および、温度計が電気的に接続され、更に前記冷却水の散水量を、設置場所周囲空気の外気湿球温度が低いほど散水量を多く、外気湿球温度が高いほど散水量が少なくなるように散水量を連続的に設定する散水量設定部が設けてあり、
前記冷却塔設置場所での湿球温度が氷点下近傍において、この冷却塔の出口温度の設定値と、この設定値を境にその出口温度の上限値、下限値、及び設定値よりやや高めの目標値が設定される温度設定部と共に、
前記データ演算部には、更に前記出口温度に応じた前記送風機の回転方向のタイムテーブルが予め設定される設定部が各々設けてあり、
このデータ演算部により前記出口温度に基づいて前記送風機のモータの回転数を制御すると共にその回転方向を前記設定部に設定されているタイムテーブルに従い正逆回転制御する制御部が前記データ演算部とモータ用駆動制御回路とに電気的に接続されていることを特徴とする開放式冷却塔。
It is an open type cooling tower used for free cooling that cools the cooling load using the cooling water obtained by operating only the open type cooling tower,
A temperature sensor for detecting the inlet temperature of the cooling tower of the circulating cooling water system and a temperature sensor for detecting the outlet temperature of the cooling tower of the circulating cooling water system are provided, and the outside wet bulb temperature at the place where the cooling tower is installed is determined. In order to obtain, a relative hygrometer that measures the relative humidity in the vicinity of the outside air intake of the cooling tower and a thermometer that measures the dry bulb temperature are installed,
A blower is installed at the exhaust port of the cooling tower, and the motor of this blower is a variable speed control type whose rotation direction can be rotated forward and backward.
The motor of the circulating pump arranged in the circulating cooling water system is a variable speed control type,
At least the temperature sensor, a relative hygrometer, and a thermometer are electrically connected to the data calculation unit, and the water spray amount is further reduced as the outside air wet bulb temperature of the air around the installation site is lower. There is a sprinkling amount setting unit that continuously sets the sprinkling amount so that the sprinkling amount decreases as the outdoor wet bulb temperature increases.
When the wet bulb temperature at the cooling tower installation location is near freezing point, the set value of the outlet temperature of the cooling tower, and the upper limit value, the lower limit value, and the target value slightly higher than the set value with respect to this set value as a boundary Along with the temperature setting part where the value is set,
Each of the data calculation units is further provided with a setting unit in which a time table in the rotation direction of the blower according to the outlet temperature is preset.
A control unit that controls the rotation speed of the motor of the blower based on the outlet temperature by the data calculation unit and controls the rotation direction according to the time table set in the setting unit is the data calculation unit. An open-type cooling tower which is electrically connected to a motor drive control circuit.
開放式冷却塔のみを運転して得られる冷却水を使用して冷却負荷の冷却を行うフリークーリングに使用する開放式冷却塔とし、
前記循環冷却水系の冷却塔の入口温度を検出する温度センサーと、前記循環冷却水系の冷却塔の出口温度を検出する温度センサーが設けてあると共に、前記冷却塔の設置場所の外気湿球温度を求めるために、この冷却塔の外気取り入れ部近傍の相対湿度を測定する相対湿度計と、乾球温度を測定する温度計が各々設置され、
前記冷却塔の排気口に送風機が設置され、この送風機のモータは可変速制御型でその回転方向が正逆回転可能のものとし、
前記循環冷却水系に配置された循環ポンプのモータは可変速制御型としてあり、
データ演算部には、少なくとも前記温度センサーと、相対湿度計および、温度計が電気的に接続され、前記充填板上への前記上部水槽からの循環冷却水の散水量を、前記外気湿球温度に応じて、数段階に区分し、湿球温度が低い程水量を多く、外気湿球温度が高い程水量を少なく段階的に設定する散水量設定部と、前記出口温度に応じた前記送風機の回転方向のタイムテーブルが予め設定される設定部とが各々設けてあり、
このデータ演算部により前記外気湿球温度範囲に基づいて前記循環ポンプのモータの回転数を制御し、前記段階的に設定されている数区分の散水量のうち対応する区分の散水量を選択し、更に前記出口温度に基づいて前記送風機のモータの回転数を制御すると共にその回転方向を前記設定部に設定されているタイムテーブルに従い正逆回転制御する制御部が前記データ演算部と各モータ用駆動制御回路とに電気的に接続されていることを特徴とする開放式冷却塔。
It is an open type cooling tower used for free cooling that cools the cooling load using the cooling water obtained by operating only the open type cooling tower,
A temperature sensor for detecting the inlet temperature of the cooling tower of the circulating cooling water system and a temperature sensor for detecting the outlet temperature of the cooling tower of the circulating cooling water system are provided, and the outside wet bulb temperature at the place where the cooling tower is installed is determined. In order to obtain, a relative hygrometer that measures the relative humidity in the vicinity of the outside air intake of the cooling tower and a thermometer that measures the dry bulb temperature are installed,
A blower is installed at the exhaust port of the cooling tower, and the motor of this blower is a variable speed control type whose rotation direction can be rotated forward and backward,
The motor of the circulating pump arranged in the circulating cooling water system is a variable speed control type,
At least the temperature sensor, a relative hygrometer, and a thermometer are electrically connected to the data calculation unit, and the amount of the circulating cooling water sprayed from the upper water tank onto the filling plate is determined based on the outside air wet bulb temperature. In accordance with the above, it is divided into several stages, the amount of water is increased as the wet bulb temperature is lower, and the amount of water is set stepwise as the outdoor wet bulb temperature is higher, and the blower according to the outlet temperature And a setting unit in which a time table in the rotation direction is set in advance.
The data calculation unit controls the number of rotations of the motor of the circulation pump based on the outside wet bulb temperature range, and selects the watering amount of the corresponding section among the watering amounts of the several sections set stepwise. Further, a control unit for controlling the rotation speed of the motor of the blower based on the outlet temperature and controlling the rotation direction according to a time table set in the setting unit is provided for the data calculation unit and each motor. An open-type cooling tower which is electrically connected to a drive control circuit.
開放型冷却塔設置場所の外気湿球温度が氷点下近傍において冷凍機の運転を停止し、冷却塔のみを運転して得られる冷却した循環冷却水を間接的に用いるフリークーリングに使用する開放式冷却塔とし、
前記循環冷却水系の冷却塔の入口温度を検出する温度センサーと、前記循環冷却水系の冷却塔の出口温度を検出する温度センサーが設けてあると共に、前記冷却塔の設置場所の外気湿球温度を求めるために、この冷却塔の外気取り入れ部近傍の相対湿度を測定する相対湿度計と、乾球温度を測定する温度計が各々設置され、
前記冷却塔の排気口に設けられた送風機のモータは可変速制御型でその回転方向が正逆回転可能のものとし、
前記循環冷却水系に配置された循環ポンプのモータは可変速制御型としてあり、
データ演算部には、少なくとも前記温度センサーと、相対湿度計および、温度計が電気的に接続され、前記充填板上への前記上部水槽からの循環冷却水の散水量を、前記外気湿球温度に応じて、数段階に区分し、湿球温度が低い程水量を多く、外気湿球温度が高い程水量を少なく段階的に設定する散水量設定部と、前記出口温度に応じた前記送風機の回転方向のタイムテーブルが予め設定される設定部とが各々設けてあり、
このデータ演算部により前記外気湿球温度範囲に基づいて前記循環ポンプのモータの回転数を制御し、前記段階的に設定されている数区分の散水量のうち対応する区分の散水量を選択し、更に前記出口温度に基づいて前記送風機のモータの回転数を制御すると共にその回転方向を前記設定部に設定されているタイムテーブルに従い正逆回転制御する制御部が前記データ演算部と各モータ用駆動制御回路とに電気的に接続されていることを特徴とする開放式冷却塔。
Open-type cooling that is used for free cooling that indirectly uses the cooled circulating cooling water that is obtained by stopping the operation of the refrigerator when the temperature of the outside wet-bulb at the place where the open-type cooling tower is installed is near freezing point and operating only the cooling tower A tower,
A temperature sensor for detecting the inlet temperature of the cooling tower of the circulating cooling water system and a temperature sensor for detecting the outlet temperature of the cooling tower of the circulating cooling water system are provided, and the outside wet bulb temperature at the place where the cooling tower is installed is determined. In order to obtain, a relative hygrometer that measures the relative humidity in the vicinity of the outside air intake of the cooling tower and a thermometer that measures the dry bulb temperature are installed,
The blower motor provided at the exhaust port of the cooling tower is a variable speed control type whose rotation direction can be rotated forward and reverse,
The motor of the circulating pump arranged in the circulating cooling water system is a variable speed control type,
At least the temperature sensor, a relative hygrometer, and a thermometer are electrically connected to the data calculation unit, and the amount of the circulating cooling water sprayed from the upper water tank onto the filling plate is determined based on the outside air wet bulb temperature. In accordance with the above, it is divided into several stages, the amount of water is increased as the wet bulb temperature is lower, and the amount of water is set stepwise as the outdoor wet bulb temperature is higher, and the blower according to the outlet temperature And a setting unit in which a time table in the rotation direction is set in advance.
The data calculation unit controls the number of rotations of the motor of the circulation pump based on the outside wet bulb temperature range, and selects the watering amount of the corresponding section among the watering amounts of the several sections set stepwise. Further, a control unit for controlling the rotation speed of the motor of the blower based on the outlet temperature and controlling the rotation direction according to a time table set in the setting unit is provided for the data calculation unit and each motor. An open-type cooling tower which is electrically connected to a drive control circuit.
JP2002300252A 2001-10-17 2002-10-15 Operation method of open cooling tower during freezing and freezing cooling tower used for freezing Expired - Lifetime JP3934024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300252A JP3934024B2 (en) 2001-10-17 2002-10-15 Operation method of open cooling tower during freezing and freezing cooling tower used for freezing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001319068 2001-10-17
JP2001-319068 2001-10-17
JP2002300252A JP3934024B2 (en) 2001-10-17 2002-10-15 Operation method of open cooling tower during freezing and freezing cooling tower used for freezing

Publications (2)

Publication Number Publication Date
JP2003194492A JP2003194492A (en) 2003-07-09
JP3934024B2 true JP3934024B2 (en) 2007-06-20

Family

ID=27615506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300252A Expired - Lifetime JP3934024B2 (en) 2001-10-17 2002-10-15 Operation method of open cooling tower during freezing and freezing cooling tower used for freezing

Country Status (1)

Country Link
JP (1) JP3934024B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236370A (en) * 2008-03-26 2009-10-15 Tokyo Electric Power Co Inc:The Intake air cooling device for air cooled type condenser
CN106051960A (en) * 2016-05-18 2016-10-26 江苏天纳节能科技股份有限公司 Cooling tower group cold and hot water mixed-using system for central air conditioner cooling and plate heat exchanger free cooling and using method thereof
CN111928719B (en) * 2019-07-15 2022-07-08 德州贝诺风力机械设备有限公司 Packing module and cooling tower
CN112964082A (en) * 2021-04-13 2021-06-15 西安热工研究院有限公司 System and method for deicing top of natural draft cooling tower antifreeze

Also Published As

Publication number Publication date
JP2003194492A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
CN101918776B (en) Methods and systems for controlling an air conditioning system operating in free cooling mode
US5257506A (en) Defrost control
CN102348945B (en) For running the control system of condenser fan
US5065593A (en) Method for controlling indoor coil freeze-up of heat pumps and air conditioners
CN101743449B (en) Hot gas defrost method and apparatus
JP2008514895A (en) Reverse Peltier defrost system
CA2549943A1 (en) Method for refrigerant pressure control in refrigeration systems
KR100863771B1 (en) Method for controlling a cooling tower by using active control
CN107940677A (en) A kind of control method and device for slowing down air-conditioner outdoor unit frosting
CN109323504A (en) Vertical air-cooled multi-temperature zone refrigerator and its control method based on rotary type magnetic refrigerating device
US6263686B1 (en) Defrost control method and apparatus
CN110736276B (en) Control method of natural cooling refrigeration system
JP3934024B2 (en) Operation method of open cooling tower during freezing and freezing cooling tower used for freezing
JP5180130B2 (en) Steam compression refrigerator system
CN212179341U (en) Water circulation type cooling system
JP3953305B2 (en) Closed cooling tower for free cooling
JP6465332B2 (en) Heat pump hot water supply system
JP6201768B2 (en) Liquid circuit device
JP3933426B2 (en) Cooling tower operation method and cooling tower used for this
CN113587539A (en) Defrosting control method and refrigerator
JP2002213898A (en) Method of operating cooling tower, and the cooling tower
JP2003254693A (en) Cooling tower of air conditioning facility
KR200403761Y1 (en) Forice-on-coil a device inclusion of thermal stroage package system
KR100715839B1 (en) Forice-on-coil a device inclusion of thermal stroage package system
JPS5828918B2 (en) How to prevent cooling tower from freezing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070314

R150 Certificate of patent or registration of utility model

Ref document number: 3934024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term