JP3933508B2 - Method for producing porous resin particles - Google Patents

Method for producing porous resin particles Download PDF

Info

Publication number
JP3933508B2
JP3933508B2 JP2002091541A JP2002091541A JP3933508B2 JP 3933508 B2 JP3933508 B2 JP 3933508B2 JP 2002091541 A JP2002091541 A JP 2002091541A JP 2002091541 A JP2002091541 A JP 2002091541A JP 3933508 B2 JP3933508 B2 JP 3933508B2
Authority
JP
Japan
Prior art keywords
aqueous suspension
resin particles
agent
distiller
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002091541A
Other languages
Japanese (ja)
Other versions
JP2003286312A (en
Inventor
幸男 浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2002091541A priority Critical patent/JP3933508B2/en
Publication of JP2003286312A publication Critical patent/JP2003286312A/en
Application granted granted Critical
Publication of JP3933508B2 publication Critical patent/JP3933508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は多孔質樹脂粒子の製造方法に関するものである。より詳しくは、重合終了後の水性懸濁液から多孔化剤の効率よい除去工程を有する多孔質樹脂粒子の製造方法に関する。
【0002】
【従来の技術】
多孔質樹脂粒子は高い吸油性、吸水性を持つ微粒子でありその吸着特性を活かし塗料添加剤、紙加工、繊維処理、クリームやメークアップ等の化粧品、農薬、医薬品など様々な用途で利用されている。
【0003】
多孔質樹脂微粒子の製造方法は、架橋剤の存在下ビニル系モノマーに多孔化剤として非重合性溶媒を溶解し、水性懸濁重合を行い、重合終了後、洗浄、乾燥工程を行うことで水および多孔化剤を取り除き多孔質樹脂粒子を得ることができる。この様に多孔質樹脂粒子を得る方法は特開昭61-69816、特開昭63-316715、特開平2-290804等に記載されている。
しかしながらこれらの先行技術には多孔化剤を効率よく除去し更には回収することができる方法については記載されていない。多孔化剤を取り除く方法として特開昭63-316715には重合後ろ過などで固液分離を行った後乾燥を行う方法や、固液分離後低沸点溶剤で洗浄した後に乾燥を行う方法が記されている。また、特開昭61-69816には溶剤洗浄、蒸留等によって多孔化剤を除去することができると記載されている。
【0004】
しかしながら、低沸点溶剤で洗浄する方法は多孔化剤を取り除くために新たな溶剤を必要とし、排出する溶剤量が増加し洗浄コストの増加につながる。また、重合後ろ過などで固液分離を行い、その後乾燥により多孔化剤を除去する場合はろ液に多孔化剤が混入し排出されたり、乾燥により大気中に排出されることとなり、環境中に大部分の多孔化剤が放出されることとなる。また、蒸留による多孔化剤を除去する方法も記載されているが、多孔質樹脂粒子を重合した後の多孔化剤を含んだ水性懸濁液は蒸留を行う際に突沸を起こしやすく効率よく多孔化剤を除去し回収することが困難であった。
【0005】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、水性懸濁重合等で多孔質樹脂微粒子を製造する際に重合終了後の水性懸濁液から多孔化剤を効率よく除去し回収することができる多孔質樹脂粒子の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明によれば、架橋剤、ビニル系モノマーおよび多孔化剤としての非重合性溶媒からなる混合物を、任意に界面活性剤を含有する水性媒体中で懸濁重合して得られる多孔質樹脂粒子を含有する水性懸濁液から多孔化剤を除去する際に、水性懸濁液中の水に対して界面活性剤を0.005重量%〜3重量%となるよう調整した後、少なくとも多孔化剤が蒸留し得る温度と圧力において、この水性懸濁液を連続的または断続的に蒸留器に投入し、撹拌下に多孔化剤を蒸留除去する多孔質樹脂粒子の製造方法が提供される。
【0007】
【発明の実施の形態】
本発明の多孔質樹脂粒子の製造方法について更に詳しく説明する。なお、以下に用いる用語(メタ)アクリルとは、アクリルおよびメタクリルの両方を含む概念である。
本発明で使用されるビニル系モノマーは、油溶性のものであれば特に限定されない。例えば、スチレン、p−メチルスチレン、p−tert−ブチルスチレン等のスチレン系モノマー;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸ラウリル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸イソブチル、メタクリル酸tert−ブチル、メタクリル酸ベンジル、メタクリル酸フェニル、メタクリル酸イソボルニル、メタクリル酸シクロヘキシル、メタクリル酸グリシジル、メタクリル酸ヒドロフルフリル、メタクリル酸ラウリル等の(メタ)アクリル酸エステル系モノマーが挙げられ、この中から、単独で場合によっては2種以上を組み合わせて使用される。
【0008】
さらに、この発明において製造される樹脂粒子は、良好な多孔形状を得るために、通常架橋構造を有している。そのために、重合の際に架橋剤が用いられる。このような架橋剤としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、デカエチレングリコールジ(メタ)アクリレート、ペンタデカエチレングリコールジ(メタ)アクリレート、ペンタコンタヘクタエチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、メタクリル酸アリル、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、フタル酸ジエチレングリコールジ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコールジアクリレート、ポリエステルアクリレート、ウレタンアクリレート等の(メタ)アクリル酸エステル系モノマー、ジビニルベンゼン、ジビニルナフタレンおよびこれらの誘導体が挙げられる。これらは単独または複数種組み合わせて用いることができる。
【0009】
これら架橋剤の中でも、エチレングリコールジメタアクリレート、ジエチレングリコールジメタアクリレート、トリエチレングリコールジメタアクリレート、1,3-ブチレングリコールジメタアクリレート、1,4-ブタンジオールジメタアクリレート、1,6-ヘキサンジオールジメタアクリレート等のメタアクリル酸エステル系架橋剤及びカプロラクトン変性ジペンタエリスリトールヘキサアクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコールジアクリレート、ポリエステルアクリレートは皮膚刺激性が低いため、得られた多孔質樹脂粒子を皮膚に触れる用途に使用する場合はこれらを用いることが好ましい。
【0010】
架橋剤は得ようとする樹脂粒子が多孔形状となりやすく、十分な吸油特性を得ることを考慮して、さらに、粒子自体が脆くなり、本粒子を配合した商品を製造する過程で破砕しない程度の強度を得ることを考慮して、全モノマーに対して5重量%以上90重量%となるように使用するのが好ましい。
【0011】
多孔質樹脂粒子製造するために用いる多孔化剤としては、トルエン、ベンゼン、のような芳香族化合物、酢酸エチル、酢酸ブチルのようなエステル系化合物、n-ヘキサン、n-オクタン、n-ドデカンのような飽和の脂肪族炭化水素類などが利用できる。これらの多孔化剤は、単独でまたは2種以上を組み合わせて使用してもよい。
多孔質樹脂粒子の吸油・吸水特性はこれら多孔化剤の添加量によって異なってくる。多孔化剤の添加量が多いほど多孔率が高くなりその結果として、吸油・吸水特性が高いものが得られる。反対に、多孔化剤の添加量が少ないと樹脂の多孔率は低く、その結果吸油・吸水特性も低くなる。多孔化剤の添加量は使用目的に応じ適宜添加量を選択することができるが、モノマー、架橋剤および多孔化剤からなる油相の20重量%〜90重量%の範囲で使用するのが好ましい。
【0012】
なお多孔質樹脂粒子を形成するための重合反応は、上記の架橋剤、ビニル系モノマーおよび多孔化剤としての非重合性溶媒からなる油相混合物を、分散剤および任意に界面活性剤を含有する水層に混合して、懸濁重合法により行う。油相には、懸濁重合時の重合開始剤として、例えば過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルソクロロ過酸化ベンゾイル、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシジカーボネート、クメンハイドロパーオキサイド、tert-ブチルハイドロパーオキサイド等の油溶性過酸化物、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(2,4-ジメチルバレロニトリル)等の油溶性アゾ化合物を含んでいてもよい。
【0013】
また、水相には、重合時の分散剤として、リン酸カルシウム、リン酸マグネシウム、ピロリン酸マグネシウム、水酸化アルミニウム、コロイダルシリカ等の難水溶性無機塩、ポリビニルアルコール、メチルセルロース、ポリビニルピロリドン等の水溶性高分子を含んでいてもよい。これらの分散剤は、単独または2種以上を組み合わせて用いてもよく、その添加量としては、例えば油相に対して0.5〜10重量%が好ましい。
また、水性媒体には、後述する界面活性剤を必要に応じて添加してもよい。
【0014】
重合は、水相と油相を混合した後温度を上昇して開始するが、その重合温度は40〜90℃とするのが良い。そして、この温度を保持しながら重合させる時間としては一般的に1〜10時間程度が好ましい。この時、油相と水相との混合条件及び撹拌条件をコントロールすることで、樹脂粒径を決定する。撹拌装置としては、例えば、ホモジナイザー、回転羽根と機壁あるいは回転羽根同士のギャップにかかる高シェアーを利用した乳化分散機、超音波分散機、高圧噴射型分散機等を用いて分散し粒子化する。多孔質樹脂粒子の粒子径は使用目的に応じ適宜撹拌条件をコントロールすることで調整することができるが、特に0.5〜30μmとするのが感触の点で好ましい。また、ここで言う平均粒子径はコールターカウンター法で測定される粒子径である。
【0015】
重合終了後、多孔化剤を粒子内に含んだ多孔質樹脂粒子などからなる水性懸濁液が得られる。上記のように、この懸濁液には重合する時点で必要に応じて界面活性剤が含まれていてもよいが、水の添加またはさらなる界面活性剤を溶解することにより、蒸留する際に、界面活性剤の濃度が水性懸濁液に含有される水の量に対して0.005重量%〜3重量%、好ましくは0.01重量%〜1重量%となるように調整する。この界面活性剤の添加により水性懸濁液の流動性が上がり蒸留時に突沸を起こしにくくなり、効率よく多孔化剤を回収することが可能となる。ここで言う突沸とは、蒸留時に蒸留器内の前記水性懸濁液が加熱および減圧の条件下で泡立ちを起こすか、または爆発的に沸騰することにより蒸留器の内容物が未蒸留の混合物のままで冷却器を通り、回収槽内に瞬間的に排出される現象を言う。界面活性剤の濃度調整は、この蒸留操作を行う前に界面活性剤の添加または水の添加により行う。
【0016】
この時使用できる界面活性剤は特に限定されるものではないがオレイン酸ナトリウム、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルホン酸塩、アルキルリン酸エステル塩等のアニオン性界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル等のノニオン界面活性剤、ラウリルジメチルアミンオキサイドのような両性界面活性剤等が挙げられる。これらの界面活性剤は単独でまたは2種以上組み合わせて使用しても良い。この中でもアニオン性界面活性剤が好ましく、さらに、ラウリル硫酸ナトリウムおよびドデシルベンゼンスルホン酸ナトリウムがより好ましい。
【0017】
この界面活性剤量を調整した水性懸濁液から蒸留を行うことにより多孔化剤の除去、回収を行う。
蒸留は、この水性懸濁液を連続的または断続的に蒸留器に投入し、少なくとも多孔化剤が蒸留し得る温度と圧力において撹拌下に行なう。この際、投入と同時に蒸留を行うことが好ましく、このために、多孔化剤が減圧留去され得る温度および/または圧力に予め調整された蒸留器に水性懸濁液を、送液ポンプ等を用いてまたは蒸留器内の負圧等により供給してもよい。またその際、供給される懸濁液に含まれる多孔化剤の量と蒸留による留液の量が平衡を保つように供給量を調節することにより連続的に供給しても、また、供給および供給の停止を連続的に行ない断続的に供給してもよい。
【0018】
本発明の多孔質樹脂粒子の製造方法は、例えば図1のような装置により実現できる。この装置を用いる場合、蒸留器2を加熱して温度調節を行う。蒸留器2は減圧ライン6により減圧状態にすることが好ましい。その後、貯液槽1に貯えた水性懸濁液をこの蒸留器2に送り込む。水性懸濁液に含まれる多孔化剤は加熱および減圧下に導かれるため直ちに気化し冷却器5で冷却されることにより凝集し回収容器3に蓄えられ、蒸留器2内には多孔化剤を除去された多孔質樹脂粒子および水相が残される。この時留出する多孔化剤の様子が観察できるよう冷却器5と回収容器3を繋ぐ配管の間には耐圧ガラスで作られた窓を設けておく。蒸留器2への水性懸濁液の投入は連続的であっても、断続的であってもかまわない。この減圧蒸留の操作は貯液槽の水性懸濁液が全て蒸留器に投入され、多孔化剤の留出が認められなくなるまで行われる。
【0019】
ここで蒸留器2は加熱および温度調節機構が必要であり、例えば蒸留器外周を温度調節された熱媒体が循環するようなジャッケト構造を有し内容物に均一に熱が伝わるよう撹拌機構を有するものが望ましい。蒸留を行うときの条件は使用する多孔化剤の種類によって異なってくるが、通常、蒸留器を40℃〜80℃の温度範囲に保ち、60mmHg〜460mmHgの減圧下において、流速200〜2000ml/毎分で水性懸濁液を供給しながら減圧蒸留することにより回収することが望ましい。
【0020】
このようにして得られる多孔化剤を除去した水性懸濁液を、必要に応じて酸等で分散剤を分解した後、濾過、洗浄、乾燥、粉砕、分級を順次行うことにより多孔質樹脂粒子を得ることができる。
このようにして得られた本発明の樹脂粒子は、化粧料中、1〜50重量%の範囲となるよう配合して使用される。配合される化粧料としては、おしろい類、ファンデーション、口紅などのメークアップ化粧料、化粧水、クリーム、乳液、パック類などの基礎化粧料、制汗剤、日焼け止め製品、ボディーパウダー、ベビーパウダー等のボディー用化粧料、ひげ剃り用クリーム、プレシェーブローション、ボディローション等のローション等があげられる。
【0021】
本発明の樹脂粒子は多孔形状を有するため、多孔を有さない粒子に比べ吸油量および吸水量が高く、液状のものであれば水溶性のものでも油溶性ものでも吸収することができる。また固体の有効成分を溶解した水溶液やオイル成分なども利用できる。たとえば、柔軟剤・エモリエント剤として利用されるエステル油、高級アルコールなど、保湿剤として利用されるグリセリン、プロピレングリコール、ポリエチレングリコール、多価アルコールなど、他には油状の紫外線吸収剤や香料など各種の液状の成分が挙げられる。本発明の多孔質樹脂粒子を配合することで、これらの液状成分を大量に配合することが可能になるほか、皮膚に塗付したとき伸びの良い触感を与える。
【0022】
化粧料への本樹脂粒子の配合量は1重量%未満であると樹脂粒子が少なすぎて添加した効果が明確に認められず、また、50重量%を超えると添加量を増加したとしても、添加量の増加に見合った顕著な効果の増進が認められない。
【実施例】
以下、本発明の実施例について説明する。尚、本発明は以下の実施例に限定されるものではない。
【0023】
実施例1

Figure 0003933508
上記の油相を特殊機化製TKホモミキサー(回転数5000rpm )により水相に分散させた後、撹拌機、温度計を備えた重合器にこの分散液を入れ、60℃で6時間撹拌を続けて懸濁重合を行い多孔質樹脂粒子および多孔化剤のn−ヘキサンを含む水性懸濁液を得た。
この水性懸濁液に対しラウリル硫酸ナトリウム4gを加えることでラウリル硫酸ナトリウムの濃度を水に対し0.05重量%に調整した。
【0024】
〔蒸留操作〕
貯液槽1、蒸留器2ともに15リットルの容量を有する図1の装置を使い、貯液槽1にこの水性懸濁液を充填し、蒸留器2は60℃に加熱および温度調節を行いさらに減圧ライン6により240mmHgに調整した。貯液槽1の内部を回転数250rpmで、および蒸留器2の内部を回転数250rpmでそれぞれ撹拌下に、貯液槽1の水性懸濁液をポンプ4(流速450ml/分)によりこの蒸留器2に投入を始め減圧蒸留を開始した。貯液槽1の水性懸濁液のすべてを蒸留器2に送るのに25分を要し、多孔化剤の留出が認められなくなったのを確認して蒸留開始40分後に、蒸留器2を冷却し常圧に戻した。蒸留器2に残った多孔化剤を除去した懸濁液をろ過した後、水洗、乾燥、粉砕を順次行うことにより平均粒子径15.3μmの多孔質樹脂粒子得た。蒸留操作で回収容器3に回収されたn−ヘキサンの量は920gであり回収率は92.0%であった。
【0025】
比較例1
〔懸濁液の調製〕
実施例1と同様の配合で重合を行なった。重合後、界面活性剤を加えること無く水性懸濁液を準備した。
〔蒸留操作〕
この水性懸濁液を実施例1と同様に蒸留操作を行った。蒸留操作開始から5分間は多孔化剤の回収が進んだがその後突沸を起こし蒸留器内の水性懸濁液が多孔質樹脂粒子や水相を伴ったまま回収容器に排出され多孔化剤を回収することができなかった。
【0026】
比較例2
〔懸濁液の調製〕
実施例1と同様の配合で重合を行ない、その後、実施例1と同様にラウリル硫酸ナトリウム4gを加えることでラウリル硫酸ナトリウムの濃度を水に対し0.05重量%に調整した。
〔蒸留操作〕
この水性懸濁液全量を蒸留器に充填し60℃に加熱および温度調節を行った後、蒸留器2の内部を回転数250rpmで撹拌下、減圧ラインにより240mmHgに調整した。減圧すると同時に突沸を起こし蒸留器内の水性懸濁液が多孔質樹脂粒子や水相を伴ったまま回収容器に排出され多孔化剤を回収することができなかった。
【0027】
実施例2
Figure 0003933508
上記の油相を特殊機化製TKホモミキサー(回転数6000rpm )により水相に分散させた後、撹拌機、温度計を備えた重合器にこの分散液を入れ、60℃で6時間撹拌を続けて懸濁重合を行い多孔質樹脂粒子および多孔化剤の酢酸エチルを含む水性懸濁液を得た。
この水性懸濁液に対しラウリル硫酸ナトリウム7.76gを加えることで界面活性剤の合計濃度を水に対し0.1重量%に調整した。
【0028】
〔蒸留操作〕
貯液槽1、蒸留器2ともに15リットルの容量を有する図1の装置を使い、貯液槽1にこの水性懸濁液を充填し、蒸留器2は70℃に加熱および温度調節を行いさらに減圧ライン6により260mmHgに調整した。貯液槽1の内部を回転数300rpmで、および蒸留器2の内部を回転数300rpmでそれぞれ撹拌下に、貯液槽1の水性懸濁液をポンプ4(流速500ml/分)を介してこの蒸留器2に投入を始め減圧蒸留を開始した。貯液槽1の水性懸濁液のすべてを蒸留器2に送るのに23分を要し、多孔化剤の留出が認められなくなったのを確認して蒸留開始35分後に、蒸留器2を冷却し常圧に戻した。蒸留器2に残った多孔化剤を除去した懸濁液をろ過した後、水洗、乾燥、粉砕を順次行うことにより平均粒子径10.5μmの多孔質樹脂粒子を得た。蒸留操作で回収容器3に回収された酢酸エチルの量は945gであり回収率は94.5%であった。
【0029】
比較例3
〔懸濁液の調製〕
実施例2と同様の配合で重合を行なった。重合後、ラウリル硫酸ナトリウム280gを加えることで界面活性剤の合計濃度を水に対し3.5重量%に調整した。
【0030】
〔蒸留操作〕
この水性懸濁液を実施例1と同様に蒸留操作を行った。蒸留操作開始から18分間は多孔化剤の回収が進んだがその後突沸を起こし蒸留器内の水性懸濁液が多孔質樹脂粒子や水相を伴ったまま回収容器に排出されため減圧ラインの圧力を300mmHgとし水性懸濁液の投入を続けた。貯液槽1の水性懸濁液のすべてを蒸留器2に送るのに45分を要した。回収容器3には多孔質樹脂粒子や水相を伴っていたがそこから酢酸エチルを分離すると630gであり回収率は63.0%であった。
【0031】
実施例3
Figure 0003933508
【0032】
上記の油相を特殊機化製TKホモミキサー(回転数7000rpm )により水相に分散させた後、撹拌機、温度計を備えた重合器にこの分散液を入れ、60℃で6時間撹拌を続けて懸濁重合を行い多孔質樹脂粒子および多孔化剤の酢酸エチルを含む水性懸濁液を得た。
【0033】
〔蒸留操作〕
貯液槽1、蒸留器2ともに15リットルの容量を有する図1の装置を使い、貯液槽1にこの水性懸濁液を充填し、蒸留器2は70℃に加熱および温度調節を行いさらに減圧ライン6により260mmHgに調整した。貯液槽1の内部を回転数300rpmで、および蒸留器2の内部を回転数300rpmでそれぞれ撹拌下に、貯液槽1の水性懸濁液をポンプ4(流速450ml/分)で蒸留器2に投入を始め減圧蒸留を開始した。貯液槽1の水性懸濁液のすべてを蒸留器2に送るのに26分を要し、多孔化剤の留出が認められなくなったのを確認して蒸留開始45分後に、蒸留器2を冷却し常圧に戻した。蒸留器2に残った多孔化剤が除去した懸濁液をろ過した後、水洗、乾燥、粉砕を順次行うことで平均粒子径5.3μmの多孔質樹脂粒子得た。蒸留操作で回収容器3に回収された酢酸エチルの量は1120gであり回収率は93.3%であった。
【0034】
実施例4
Figure 0003933508
上記の油相を特殊機化製TKホモミキサー(回転数5000rpm )により水相に分散させた後、撹拌機、温度計を備えた重合器にこの分散液を入れ、60℃で6時間撹拌を続けて懸濁重合を行い多孔質樹脂粒子および多孔化剤のn−ヘキサンを含む水性懸濁液を得た。
この水性懸濁液に対しドデシルベンゼンスルホン酸ナトリウム8gを加えることでドデシルベンゼンスルホン酸ナトリウムの濃度を水に対し0.1重量%に調整した。
【0035】
〔蒸留操作〕
貯液槽1、蒸留器2ともに15リットルの容量を有する図1の装置を使い、貯液槽1にこの水性懸濁液を充填し、蒸留器2は95℃に加熱および温度調節を行い、常圧の状態で貯液槽1の内部を回転数250rpmで、および蒸留器2の内部を回転数250rpmでそれぞれ撹拌下に、貯液槽1の水性懸濁液をポンプ4(流速350ml/分)で蒸留器2に投入を始め蒸留を開始した。貯液槽1の水性懸濁液のすべてを蒸留器2に送るのに32分を要し、多孔化剤の留出が認められなくなったのを確認して蒸留開始45分後に、蒸留器2を冷却した。蒸留器2に残った多孔化剤を除去した懸濁液をろ過した後に、水洗、乾燥、粉砕を順次行うことで平均粒子径22.5μmの多孔質樹脂粒子得た。蒸留操作で回収容器3に回収されたn−ヘキサンの量は1344gであり回収率は89.6%であった。
【0036】
実施例5
Figure 0003933508
上記の油相を特殊機化製TKホモミキサー(回転数3000rpm )により水相に分散させた後、撹拌機、温度計を備えた重合器にこの分散液を入れ、60℃で6時間撹拌を続けて懸濁重合を行い多孔質樹脂粒子および多孔化剤の酢酸エチルを含む水性懸濁液を得た。
この水性懸濁液に対しラウリル硫酸ナトリウム80gを加えることで界面活性剤の合計濃度を水に対し1.0重量%に調整した。
【0037】
〔蒸留操作〕
貯液槽1、蒸留器2ともに15リットルの容量を有する図1の装置を使い、貯液槽1にこの水性懸濁液を充填し、蒸留器2は70℃に加熱および温度調節を行いさらに減圧ライン6により260mmHgに調整した。貯液槽1の内部を回転数250rpmで、および蒸留器2の内部を回転数250rpmでそれぞれ撹拌下に、貯液槽1の水性懸濁液をポンプ4(流速350ml/分 )を介してこの蒸留器2に10分間投入、5分間投入停止を繰り返すことで断続的に水性懸濁液の投入を行い減圧蒸留を行った。投入を始め減圧蒸留を開始した。貯液槽1の水性懸濁液のすべてを蒸留器2に送るのに39分を要し、多孔化剤の留出が認められなくなったのを確認して蒸留開始60分後に、蒸留器2を冷却し常圧に戻した。蒸留器2に残った多孔化剤を除去した懸濁液をろ過した後、水洗、乾燥、粉砕を順次行うことにより平均粒子径25.6μmの多孔質樹脂粒子得た。蒸留操作で回収容器3に回収された酢酸エチルの量は670gであり回収率は95.7%であった。
【0038】
参考例
油性ファンデーションの作成
実施例1の樹脂粒子100重量部に対しスクワラン104重量部を卓上ミキサーで混合しながら添加し作成した複合樹脂粒子を用い、以下の方法で油性ファンデーションを得た。
Figure 0003933508
【0039】
粉体部をヘンシェルミキサーで混合した後、あらかじめ加熱溶解しておいたオイル部を添加し混合物をロールミルで十分に練り混ぜた。練り混ぜた混合物を加熱・撹拌しながら、融解させ60℃に冷却し香料を添加した後、金皿に流し込み放冷して油性ファンデーションを得た。この油性ファンデーションを皮膚に塗付したとき伸びの良い触感を与えるものであった。
【0040】
【発明の効果】
本発明の方法によれば、特定の水性懸濁液中において、界面活性剤の濃度を調整することにより、また蒸留器への水性懸濁液の供給を連続的あるいは断続的に行なうことにより、突沸すること無く、効率よく多孔化剤を蒸留除去し回収を行うことができる。そのため、ろ過法で多孔質樹脂を製造する際に、得られた樹脂粒子を溶剤による洗浄の必要もなく、また、ろ過や乾燥する際に多孔化剤を環境中に排出することがない。
【図面の簡単な説明】
【図1】本発明の多孔質樹脂粒子の製造方法に用いた蒸留装置の例を示す概略断面図である。
【符号の説明】
1 貯液槽
2 蒸留器
3 回収容器
4 ポンプ
5 冷却器
6 減圧ライン
7 冷却水
8 流出確認窓[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing porous resin particles. More specifically, the present invention relates to a method for producing porous resin particles having a step of efficiently removing a porosifying agent from an aqueous suspension after completion of polymerization.
[0002]
[Prior art]
Porous resin particles are fine oil-absorbing and water-absorbing fine particles that are used in various applications such as paint additives, paper processing, fiber treatment, cosmetics such as cream and make-up, agricultural chemicals, and pharmaceuticals by taking advantage of their adsorption characteristics. Yes.
[0003]
The production method of the porous resin fine particles is obtained by dissolving a non-polymerizable solvent as a porosizing agent in a vinyl monomer in the presence of a crosslinking agent, carrying out aqueous suspension polymerization, and performing washing and drying steps after the polymerization is completed. Further, the porous resin particles can be obtained by removing the porous agent. Methods for obtaining such porous resin particles are described in JP-A-61-69816, JP-A-63-316715, JP-A-2-290804, and the like.
However, these prior arts do not describe a method capable of efficiently removing and further recovering the porous agent. JP-A-63-316715 describes a method for removing a porosifying agent, such as a method of drying after solid-liquid separation by filtration after polymerization, or a method of drying after washing with a low boiling point solvent after solid-liquid separation. Has been. JP-A-61-69816 describes that the porous agent can be removed by solvent washing, distillation or the like.
[0004]
However, the method of cleaning with a low boiling point solvent requires a new solvent to remove the porosifying agent, and the amount of solvent to be discharged increases, leading to an increase in cleaning cost. In addition, when solid-liquid separation is performed by filtration after polymerization and then the porous agent is removed by drying, the porous agent is mixed into the filtrate and discharged, or it is discharged into the atmosphere by drying. Most of the porogen will be released. In addition, although a method for removing the porous agent by distillation is also described, an aqueous suspension containing the porous agent after polymerizing the porous resin particles is prone to bumping during distillation and is efficiently porous. It was difficult to remove and recover the agent.
[0005]
[Problems to be solved by the invention]
The problem to be solved by the present invention is a porous resin capable of efficiently removing and recovering a porous agent from an aqueous suspension after completion of polymerization when producing porous resin fine particles by aqueous suspension polymerization or the like The object is to provide a method for producing particles.
[0006]
[Means for Solving the Problems]
According to the present invention, porous resin particles obtained by suspension polymerization of a mixture comprising a crosslinking agent, a vinyl monomer, and a non-polymerizable solvent as a porosizing agent in an aqueous medium optionally containing a surfactant. When removing the porous agent from the aqueous suspension containing the surfactant, the surfactant is adjusted to 0.005 wt% to 3 wt% with respect to the water in the aqueous suspension, and then at least porous. A method for producing porous resin particles is provided in which the aqueous suspension is continuously or intermittently charged into a still at a temperature and pressure at which the agent can be distilled, and the porous agent is removed by distillation under stirring.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing the porous resin particles of the present invention will be described in more detail. The term (meth) acryl used below is a concept including both acrylic and methacrylic.
The vinyl monomer used in the present invention is not particularly limited as long as it is oil-soluble. For example, styrene monomers such as styrene, p-methylstyrene, p-tert-butylstyrene; methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, methyl methacrylate , Ethyl methacrylate, propyl methacrylate, butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, benzyl methacrylate, phenyl methacrylate, isobornyl methacrylate, cyclohexyl methacrylate, glycidyl methacrylate, hydrofurfuryl methacrylate, methacryl Examples include (meth) acrylic acid ester monomers such as lauryl acid. Among these, one or more monomers are used alone or in combination in some cases.
[0008]
Furthermore, the resin particles produced in the present invention usually have a crosslinked structure in order to obtain a good porous shape. For this purpose, a crosslinking agent is used during the polymerization. Examples of such crosslinking agents include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, decaethylene glycol di (meth) acrylate, and pentadecaethylene glycol di (meth) acrylate. Penta contactor ethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (Meth) acrylate, allyl methacrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, diethylene glycol di (meth) acrylate phthalate, caprolactone-modified dipentaerythritol hexa (meth) ) Acrylate, caprolactone-modified hydroxypivalic acid ester neopentyl glycol diacrylate, polyester acrylate, (meth) acrylic acid ester monomer such as urethane acrylate, divinyl benzene, divinyl naphthalene, and derivatives thereof. These can be used alone or in combination.
[0009]
Among these crosslinking agents, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol Porous resin particles obtained because methacrylic acid ester-based crosslinking agents such as dimethacrylate and caprolactone-modified dipentaerythritol hexaacrylate, caprolactone-modified hydroxypivalate ester neopentyl glycol diacrylate, and polyester acrylate have low skin irritation. These are preferably used when used for the purpose of touching the skin.
[0010]
In consideration of obtaining sufficient oil-absorbing properties, the resin particles to be obtained are likely to be porous, and the particles themselves become brittle and are not crushed in the process of producing products containing these particles. In consideration of obtaining strength, it is preferably used in an amount of 5 wt% to 90 wt% with respect to the total monomers.
[0011]
Porous agents used for producing porous resin particles include aromatic compounds such as toluene and benzene, ester compounds such as ethyl acetate and butyl acetate, n-hexane, n-octane and n-dodecane. Such saturated aliphatic hydrocarbons can be used. These porosifying agents may be used alone or in combination of two or more.
The oil absorption and water absorption characteristics of the porous resin particles vary depending on the amount of the porous agent added. As the added amount of the porosifying agent is increased, the porosity is increased, and as a result, a product having high oil absorption / water absorption characteristics is obtained. On the other hand, if the amount of the porous agent added is small, the porosity of the resin is low, and as a result, the oil absorption and water absorption characteristics are also low. The addition amount of the porosifying agent can be appropriately selected according to the purpose of use, but it is preferably used in the range of 20% by weight to 90% by weight of the oil phase composed of the monomer, the crosslinking agent and the porosifying agent. .
[0012]
The polymerization reaction for forming the porous resin particles includes an oil phase mixture composed of the above-mentioned crosslinking agent, vinyl monomer, and non-polymerizable solvent as a porous agent, a dispersant, and optionally a surfactant. It mixes with an aqueous layer and performs by suspension polymerization method. In the oil phase, as a polymerization initiator at the time of suspension polymerization, for example, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, benzoyl peroxide, methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide, tert- Oil-soluble peroxides such as butyl hydroperoxide, and oil-soluble azo compounds such as 2,2'-azobisisobutyronitrile and 2,2'-azobis (2,4-dimethylvaleronitrile) Good.
[0013]
In addition, in the aqueous phase, as a dispersing agent at the time of polymerization, a poorly water-soluble inorganic salt such as calcium phosphate, magnesium phosphate, magnesium pyrophosphate, aluminum hydroxide, colloidal silica, water-soluble high salt such as polyvinyl alcohol, methyl cellulose, polyvinyl pyrrolidone, etc. It may contain molecules. These dispersants may be used singly or in combination of two or more, and the addition amount is preferably, for example, 0.5 to 10% by weight based on the oil phase.
Moreover, you may add the surfactant mentioned later to an aqueous medium as needed.
[0014]
The polymerization is started by increasing the temperature after mixing the water phase and the oil phase, and the polymerization temperature is preferably 40 to 90 ° C. In general, the polymerization time while maintaining this temperature is preferably about 1 to 10 hours. At this time, the resin particle size is determined by controlling the mixing condition and stirring condition of the oil phase and the aqueous phase. As a stirring device, for example, a homogenizer, an emulsifying disperser using a high shear applied to a gap between a rotating blade and a machine wall or a rotating blade, an ultrasonic disperser, a high-pressure jet disperser, and the like are dispersed and granulated. . The particle diameter of the porous resin particles can be adjusted by appropriately controlling the stirring conditions according to the purpose of use, but it is particularly preferably 0.5 to 30 μm from the viewpoint of feel. The average particle size referred to here is a particle size measured by a Coulter counter method.
[0015]
After the completion of the polymerization, an aqueous suspension composed of porous resin particles containing a porous agent in the particles is obtained. As mentioned above, this suspension may optionally contain a surfactant at the time of polymerization, but when distilled by adding water or dissolving further surfactant, The concentration of the surfactant is adjusted to 0.005% to 3% by weight, preferably 0.01% to 1% by weight, based on the amount of water contained in the aqueous suspension. The addition of this surfactant increases the fluidity of the aqueous suspension and makes it difficult for bumping to occur during distillation, making it possible to efficiently recover the porosifying agent. As used herein, bumping means that the aqueous suspension in the distiller is bubbled under heating and decompression conditions during distillation, or the content of the distiller is undistilled by boiling explosively. It is a phenomenon that passes through the cooler as it is and is instantaneously discharged into the collection tank. The concentration of the surfactant is adjusted by adding a surfactant or water before performing this distillation operation.
[0016]
The surfactant that can be used at this time is not particularly limited, but anionic surfactants such as sodium oleate, sodium lauryl sulfate, sodium dodecylbenzenesulfonate, alkylnaphthalenesulfonate, alkylphosphate ester salt, Nonionic surfactants such as oxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, lauryl dimethylamine oxide, etc. And amphoteric surfactants. These surfactants may be used alone or in combination of two or more. Among these, anionic surfactants are preferable, and sodium lauryl sulfate and sodium dodecylbenzenesulfonate are more preferable.
[0017]
The porous agent is removed and recovered by distillation from the aqueous suspension with the surfactant amount adjusted.
Distillation is carried out with stirring at least at a temperature and pressure at which the porous agent can be distilled by continuously or intermittently charging this aqueous suspension into a still. At this time, it is preferable to perform distillation at the same time as charging, and for this purpose, an aqueous suspension is placed in a distiller preliminarily adjusted to a temperature and / or pressure at which the porous agent can be distilled off under reduced pressure. It may be used or supplied by a negative pressure or the like in the still. Further, at that time, even if the continuous supply is performed by adjusting the supply amount so that the amount of the porosifying agent contained in the supplied suspension and the amount of the distillate obtained by distillation are kept in equilibrium, The supply may be stopped intermittently by continuously stopping the supply.
[0018]
The method for producing porous resin particles of the present invention can be realized by an apparatus as shown in FIG. When this apparatus is used, the distiller 2 is heated to adjust the temperature. The distiller 2 is preferably put into a reduced pressure state by a reduced pressure line 6. Thereafter, the aqueous suspension stored in the liquid storage tank 1 is fed into the distiller 2. Since the porous agent contained in the aqueous suspension is led under heating and reduced pressure, it is immediately vaporized and cooled by the cooler 5 to be agglomerated and stored in the recovery container 3. The removed porous resin particles and the aqueous phase remain. At this time, a window made of pressure-resistant glass is provided between the piping connecting the cooler 5 and the recovery container 3 so that the state of the porosifying agent distilled off can be observed. The introduction of the aqueous suspension into the distiller 2 may be continuous or intermittent. This vacuum distillation operation is performed until all of the aqueous suspension in the liquid storage tank is put into the distiller and no distillation of the porosifying agent is observed.
[0019]
Here, the distiller 2 needs a heating and temperature adjusting mechanism, for example, has a jacket structure in which a heat medium whose temperature is adjusted circulates around the outer periphery of the distiller, and has a stirring mechanism so that heat is uniformly transmitted to the contents. Things are desirable. The conditions for performing distillation vary depending on the type of porosifying agent to be used. Usually, the distiller is kept in a temperature range of 40 ° C. to 80 ° C., and a reduced flow rate of 60 mmHg to 460 mmHg is used. It is desirable to recover by distillation under reduced pressure while supplying an aqueous suspension in minutes.
[0020]
The aqueous suspension from which the porous agent thus obtained has been removed is decomposed with an acid or the like, if necessary, and then subjected to filtration, washing, drying, pulverization, and classification in order to obtain porous resin particles. Can be obtained.
The resin particles of the present invention thus obtained are used in a cosmetic composition so as to be in the range of 1 to 50% by weight. Cosmetics to be blended include makeup cosmetics such as funny products, foundations and lipsticks, basic cosmetics such as lotions, creams, emulsions, packs, antiperspirants, sunscreen products, body powder, baby powder, etc. Body lotion, shaving cream, pre-shave lotion, body lotion and the like.
[0021]
Since the resin particles of the present invention have a porous shape, they have higher oil absorption and water absorption than particles that do not have porosity, and can absorb water-soluble or oil-soluble ones as long as they are liquid. Also, an aqueous solution or an oil component in which a solid active ingredient is dissolved can be used. For example, ester oils and higher alcohols used as softeners and emollients, glycerin, propylene glycol, polyethylene glycol, polyhydric alcohols used as moisturizers, and various other oily UV absorbers and fragrances. A liquid component is mentioned. By blending the porous resin particles of the present invention, these liquid components can be blended in a large amount, and give a good tactile sensation when applied to the skin.
[0022]
If the amount of the resin particles in the cosmetic is less than 1% by weight, the effect of adding the resin particles is too small to be clearly recognized, and if the amount exceeds 50% by weight, even if the amount added is increased, There is no significant increase in effect commensurate with the added amount.
【Example】
Examples of the present invention will be described below. In addition, this invention is not limited to a following example.
[0023]
Example 1
Figure 0003933508
The above oil phase is dispersed in the aqueous phase using a special machine TK homomixer (rotation speed: 5000 rpm), and then this dispersion is put into a polymerization vessel equipped with a stirrer and a thermometer and stirred at 60 ° C. for 6 hours. Subsequently, suspension polymerization was performed to obtain an aqueous suspension containing porous resin particles and a porous agent n-hexane.
The concentration of sodium lauryl sulfate was adjusted to 0.05% by weight with respect to water by adding 4 g of sodium lauryl sulfate to this aqueous suspension.
[0024]
[Distillation operation]
The apparatus of FIG. 1 having a capacity of 15 liters is used for both the liquid storage tank 1 and the distiller 2, and the liquid storage tank 1 is filled with this aqueous suspension, and the distiller 2 is heated to 60 ° C. and adjusted in temperature. The pressure was adjusted to 240 mmHg by the decompression line 6. The distiller is stirred by the pump 4 (flow rate 450 ml / min) with the aqueous suspension of the reservoir 1 under stirring at the rotational speed of 250 rpm and the interior of the distiller 2 at the rotational speed of 250 rpm. 2 was started and vacuum distillation was started. It took 25 minutes to send all of the aqueous suspension in the storage tank 1 to the distiller 2, and after confirming that no distillation of the porosifying agent was observed, the distiller 2 Was cooled to normal pressure. After filtering the suspension from which the porous agent remaining in the distiller 2 was removed, washing with water, drying, and pulverization were sequentially performed to obtain porous resin particles having an average particle size of 15.3 μm. The amount of n-hexane recovered in the recovery container 3 by the distillation operation was 920 g, and the recovery rate was 92.0%.
[0025]
Comparative Example 1
(Preparation of suspension)
Polymerization was carried out in the same formulation as in Example 1. After the polymerization, an aqueous suspension was prepared without adding a surfactant.
[Distillation operation]
This aqueous suspension was subjected to a distillation operation in the same manner as in Example 1. The recovery of the porous agent progressed for 5 minutes after the start of the distillation operation, but then sudden bumping occurred, and the aqueous suspension in the still was discharged into the recovery container with the porous resin particles and the aqueous phase to recover the porous agent. I couldn't.
[0026]
Comparative Example 2
(Preparation of suspension)
Polymerization was carried out in the same formulation as in Example 1, and then 4 g of sodium lauryl sulfate was added in the same manner as in Example 1 to adjust the concentration of sodium lauryl sulfate to 0.05% by weight with respect to water.
[Distillation operation]
The whole amount of this aqueous suspension was filled in a distiller, heated to 60 ° C. and adjusted in temperature, and then the inside of the distiller 2 was adjusted to 240 mmHg with a decompression line while stirring at a rotational speed of 250 rpm. Simultaneously with depressurization, bumping occurred, and the aqueous suspension in the still was discharged into the collection container with the porous resin particles and the aqueous phase, and the porous agent could not be recovered.
[0027]
Example 2
Figure 0003933508
The above oil phase is dispersed in the aqueous phase using a special machine TK homomixer (rotation speed: 6000 rpm), and then this dispersion is placed in a polymerization vessel equipped with a stirrer and a thermometer, and stirred at 60 ° C. for 6 hours. Subsequently, suspension polymerization was performed to obtain an aqueous suspension containing porous resin particles and a porous agent, ethyl acetate.
The total concentration of the surfactant was adjusted to 0.1% by weight with respect to water by adding 7.76 g of sodium lauryl sulfate to this aqueous suspension.
[0028]
[Distillation operation]
The apparatus of FIG. 1 having a capacity of 15 liters is used for both the storage tank 1 and the distiller 2, and the aqueous tank 1 is filled with this aqueous suspension, and the distiller 2 is heated to 70 ° C. and adjusted in temperature. The pressure was adjusted to 260 mmHg by the decompression line 6. The aqueous suspension of the liquid storage tank 1 is agitated inside the liquid storage tank 1 at a rotational speed of 300 rpm and the inside of the distiller 2 at a rotational speed of 300 rpm, respectively, via a pump 4 (flow rate 500 ml / min). Distillation 2 was started and vacuum distillation was started. It took 23 minutes to send all of the aqueous suspension in the storage tank 1 to the distiller 2, and after confirming that no distillation of the porosifying agent was observed, 35 minutes after the start of distillation, the distiller 2 Was cooled to normal pressure. After filtering the suspension from which the porous agent remaining in the still 2 was removed, washing with water, drying, and pulverization were sequentially performed to obtain porous resin particles having an average particle diameter of 10.5 μm. The amount of ethyl acetate recovered in the recovery container 3 by the distillation operation was 945 g, and the recovery rate was 94.5%.
[0029]
Comparative Example 3
(Preparation of suspension)
Polymerization was carried out in the same formulation as in Example 2. After the polymerization, 280 g of sodium lauryl sulfate was added to adjust the total concentration of the surfactant to 3.5% by weight with respect to water.
[0030]
[Distillation operation]
This aqueous suspension was subjected to a distillation operation in the same manner as in Example 1. The recovery of the porosifying agent progressed for 18 minutes after the start of the distillation operation, but then sudden boiling occurred, and the aqueous suspension in the still was discharged into the recovery container with the porous resin particles and aqueous phase, so the pressure in the decompression line was reduced. The aqueous suspension was continuously charged to 300 mmHg. It took 45 minutes to send all of the aqueous suspension in reservoir 1 to distiller 2. The recovery container 3 was accompanied by porous resin particles and an aqueous phase, but when ethyl acetate was separated therefrom, it was 630 g, and the recovery rate was 63.0%.
[0031]
Example 3
Figure 0003933508
[0032]
The above oil phase is dispersed in the aqueous phase using a special machine TK homomixer (rotation speed: 7000 rpm), and then this dispersion is put into a polymerization vessel equipped with a stirrer and a thermometer and stirred at 60 ° C. for 6 hours. Subsequently, suspension polymerization was performed to obtain an aqueous suspension containing porous resin particles and a porous agent, ethyl acetate.
[0033]
[Distillation operation]
The apparatus of FIG. 1 having a capacity of 15 liters is used for both the storage tank 1 and the distiller 2, and the aqueous tank 1 is filled with this aqueous suspension, and the distiller 2 is heated to 70 ° C. and adjusted in temperature. The pressure was adjusted to 260 mmHg by the decompression line 6. While the inside of the liquid storage tank 1 was stirred at a rotational speed of 300 rpm and the inside of the distiller 2 at a rotational speed of 300 rpm, the aqueous suspension in the liquid storage tank 1 was distilled with a pump 4 (flow rate 450 ml / min). The vacuum distillation was started. It took 26 minutes to send all of the aqueous suspension in the storage tank 1 to the distiller 2, and after confirming that no distillation of the porosifying agent was observed, 45 minutes after the start of distillation, the distiller 2 Was cooled to normal pressure. After filtering the suspension from which the porous agent remaining in the distiller 2 was removed, washing with water, drying, and pulverization were sequentially performed to obtain porous resin particles having an average particle size of 5.3 μm. The amount of ethyl acetate recovered in the recovery container 3 by the distillation operation was 1120 g, and the recovery rate was 93.3%.
[0034]
Example 4
Figure 0003933508
The above oil phase is dispersed in the aqueous phase using a special machine TK homomixer (rotation speed: 5000 rpm), and then this dispersion is put into a polymerization vessel equipped with a stirrer and a thermometer and stirred at 60 ° C. for 6 hours. Subsequently, suspension polymerization was performed to obtain an aqueous suspension containing porous resin particles and a porous agent n-hexane.
The concentration of sodium dodecylbenzenesulfonate was adjusted to 0.1% by weight with respect to water by adding 8 g of sodium dodecylbenzenesulfonate to this aqueous suspension.
[0035]
[Distillation operation]
Using the apparatus of FIG. 1 having a capacity of 15 liters for both the liquid storage tank 1 and the distiller 2, the liquid storage tank 1 is filled with this aqueous suspension, the distiller 2 is heated to 95 ° C. and adjusted in temperature, Under normal pressure, the inside of the storage tank 1 is stirred at a rotational speed of 250 rpm and the inside of the distiller 2 is stirred at a rotational speed of 250 rpm, and the aqueous suspension of the liquid storage tank 1 is pumped 4 (flow rate 350 ml / min). ) And started to distill. It took 32 minutes to send all of the aqueous suspension in the storage tank 1 to the distiller 2, and after confirming that no distillation of the porosifying agent was observed, 45 minutes after the start of distillation, the distiller 2 Cooled. After filtering the suspension from which the porous agent remaining in the still 2 was removed, washing with water, drying and pulverization were sequentially performed to obtain porous resin particles having an average particle diameter of 22.5 μm. The amount of n-hexane recovered in the recovery container 3 by the distillation operation was 1344 g, and the recovery rate was 89.6%.
[0036]
Example 5
Figure 0003933508
After the above oil phase is dispersed in the aqueous phase using a special machine TK homomixer (rotation speed 3000 rpm), this dispersion is put into a polymerization vessel equipped with a stirrer and a thermometer, and stirred at 60 ° C. for 6 hours. Subsequently, suspension polymerization was performed to obtain an aqueous suspension containing porous resin particles and a porous agent, ethyl acetate.
The total concentration of the surfactant was adjusted to 1.0% by weight with respect to water by adding 80 g of sodium lauryl sulfate to this aqueous suspension.
[0037]
[Distillation operation]
The apparatus of FIG. 1 having a capacity of 15 liters is used for both the storage tank 1 and the distiller 2, and the aqueous tank 1 is filled with this aqueous suspension, and the distiller 2 is heated and adjusted to 70 ° C. The pressure was adjusted to 260 mmHg by the decompression line 6. The aqueous suspension of the liquid storage tank 1 is agitated inside the liquid storage tank 1 at a rotational speed of 250 rpm and the inside of the distiller 2 at a rotational speed of 250 rpm, respectively, via a pump 4 (flow rate 350 ml / min). The aqueous suspension was charged intermittently by repeatedly charging the distiller 2 for 10 minutes and stopping the charging for 5 minutes to perform vacuum distillation. The charging was started and vacuum distillation was started. It took 39 minutes to send all of the aqueous suspension in the storage tank 1 to the distiller 2, and after confirming that no distillation of the porosifying agent was observed, the distiller 2 Was cooled to normal pressure. After filtering the suspension from which the porous agent remaining in the still 2 was removed, washing with water, drying, and pulverization were sequentially performed to obtain porous resin particles having an average particle diameter of 25.6 μm. The amount of ethyl acetate recovered in the recovery container 3 by the distillation operation was 670 g, and the recovery rate was 95.7%.
[0038]
Reference example
Creating an oily foundation
Using composite resin particles prepared by adding 104 parts by weight of squalane to 100 parts by weight of the resin particles of Example 1 while mixing with a desktop mixer, an oily foundation was obtained by the following method.
Figure 0003933508
[0039]
After the powder part was mixed with a Henschel mixer, an oil part that had been heated and dissolved in advance was added, and the mixture was sufficiently kneaded with a roll mill. The kneaded mixture was melted with heating and stirring, cooled to 60 ° C., added with a fragrance, poured into a metal pan and allowed to cool to obtain an oily foundation. When this oily foundation was applied to the skin, it gave a good stretch feeling.
[0040]
【The invention's effect】
According to the method of the present invention, by adjusting the concentration of the surfactant in a specific aqueous suspension, and supplying the aqueous suspension to the distiller continuously or intermittently, Without causing bumping, the porous agent can be efficiently removed by distillation and recovered. Therefore, when the porous resin is produced by the filtration method, the obtained resin particles do not need to be washed with a solvent, and the porosifying agent is not discharged into the environment during filtration or drying.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a distillation apparatus used in the method for producing porous resin particles of the present invention.
[Explanation of symbols]
1 Storage tank
2 Distiller
3 collection containers
4 Pump
5 Cooler
6 Decompression line
7 Cooling water
8 Outflow confirmation window

Claims (1)

架橋剤、ビニル系モノマーおよび多孔化剤としての非重合性溶媒からなる混合物を、任意に界面活性剤を含有する水性媒体中で懸濁重合して得られる多孔質樹脂粒子を含有する水性懸濁液から多孔化剤を除去する際に、水性懸濁液中の水に対して界面活性剤を0.005重量%〜3重量%となるよう調整した後、この水性懸濁液を連続的または断続的に蒸留器に投入し、少なくとも多孔化剤が蒸留し得る温度と圧力において撹拌下に、多孔化剤を蒸留除去することからなり、前記界面活性剤がラウリル硫酸ナトリウムおよび / またはドデシルベンゼンスルホン酸ナトリウムであることを特徴とする多孔質樹脂粒子の製造方法。Aqueous suspension containing porous resin particles obtained by suspension polymerization of a mixture comprising a crosslinking agent, a vinyl monomer and a non-polymerizable solvent as a porosifying agent in an aqueous medium optionally containing a surfactant In removing the porosifying agent from the liquid, the surfactant is adjusted to 0.005% to 3% by weight with respect to the water in the aqueous suspension, and then the aqueous suspension is continuously or Intermittently throwing it into a still and distilling off the porosifying agent at least at a temperature and pressure at which the porogen can distill , the surfactant being sodium lauryl sulfate and / or dodecylbenzenesulfone A method for producing porous resin particles, characterized by being sodium acid .
JP2002091541A 2002-03-28 2002-03-28 Method for producing porous resin particles Expired - Lifetime JP3933508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002091541A JP3933508B2 (en) 2002-03-28 2002-03-28 Method for producing porous resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002091541A JP3933508B2 (en) 2002-03-28 2002-03-28 Method for producing porous resin particles

Publications (2)

Publication Number Publication Date
JP2003286312A JP2003286312A (en) 2003-10-10
JP3933508B2 true JP3933508B2 (en) 2007-06-20

Family

ID=29236601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002091541A Expired - Lifetime JP3933508B2 (en) 2002-03-28 2002-03-28 Method for producing porous resin particles

Country Status (1)

Country Link
JP (1) JP3933508B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4238148B2 (en) * 2004-01-29 2009-03-11 積水化学工業株式会社 Hollow resin fine particles and antireflection film
JP4566870B2 (en) * 2004-09-27 2010-10-20 積水化成品工業株式会社 Polymer particles having a plurality of pores therein, a method for producing the same, and a resin composition containing the polymer particles
JP4929635B2 (en) * 2005-07-14 2012-05-09 富士ゼロックス株式会社 Maleimide group-containing porous crosslinked polystyrene particles and method for producing the same
JP4672574B2 (en) * 2006-03-06 2011-04-20 花王株式会社 Resin particles
JP5255340B2 (en) * 2007-10-22 2013-08-07 積水化学工業株式会社 Porous hollow polymer particle, method for producing porous hollow polymer particle, perfume-carrying polymer particle, and method for producing perfume-carrying polymer particle
EP2810959B1 (en) * 2012-01-31 2019-06-12 Sekisui Plastics Co., Ltd. Porous resin particle, method for producing same, dispersion liquid, and application thereof
JP5864325B2 (en) * 2012-03-27 2016-02-17 積水化成品工業株式会社 Method for producing resin particles
US9200154B2 (en) 2012-03-27 2015-12-01 Sekisui Plastics Co., Ltd. Porous resin particles, method of manufacturing the same, and use of the same
EP2783678B1 (en) 2013-03-28 2016-01-20 Sekisui Plastics Co., Ltd. Porous resin particles, method of manufacturing the same, and use of the same
JP6313974B2 (en) * 2013-03-29 2018-04-18 積水化成品工業株式会社 Crosslinked acrylic resin particles and method for producing the same, resin composition and packaging article

Also Published As

Publication number Publication date
JP2003286312A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
JP3933508B2 (en) Method for producing porous resin particles
JP3888856B2 (en) Porous resin fine particles and external preparation containing the same
JP4107399B2 (en) Oil-absorbing polymer and method for producing the same
AU612839B2 (en) Porous particles in preparations involving immiscible phases
JP6178398B2 (en) Porous resin particles and uses thereof
DE69828540T2 (en) Process for the preparation of an oil- and water-adsorbent polymer suitable for the containment of solid particles and liquids, and products made by processes
JPH03170504A (en) Preparation of highly adsorbent copolymer
EP1756203B2 (en) Dried emulsion, method for the production thereof, and its uses
JP4264366B2 (en) Method for producing composite particles, composite particles and cosmetics containing the same
JP2017082152A (en) Porous resin particle, method for producing the same and structure
TW200536863A (en) Method of emulsion polymerization using liquid miniemulsion as seed particle
JP5399809B2 (en) Method for producing core-shell particles and core-shell particles
CN108348407A (en) The preparation method of capsule
KR100435518B1 (en) The production of spherical polyethylene particle by emulsion crystallization
CN103111208A (en) Solid suspension monodisperse emulsion and emulsifying method thereof
WO2007058386A1 (en) Method of controlling oil-absorbing properties of a silicone rubber powder
Yamashita Recent dispersion technology using liquid crystal
JP3400854B2 (en) Process for producing aqueous emulsion of ethylene-glycidyl acrylate compound copolymer
JPS5966406A (en) Preparation of fine particulate polymer
US8383689B2 (en) Skin cosmetics comprising cocoon-shaped polymer fine particles
JP4567341B2 (en) Production method of monodispersed solid particles
WO2017053545A1 (en) Polyacrylate oil gel composition
JP6395646B2 (en) Cosmetics
JP4688257B2 (en) Method for producing emulsion
JP2024036247A (en) Oil-in-water emulsion composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070313

R150 Certificate of patent or registration of utility model

Ref document number: 3933508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

EXPY Cancellation because of completion of term