JP3932377B2 - High specific gravity stable liquid composition and stable liquid excavation method - Google Patents

High specific gravity stable liquid composition and stable liquid excavation method Download PDF

Info

Publication number
JP3932377B2
JP3932377B2 JP2000385484A JP2000385484A JP3932377B2 JP 3932377 B2 JP3932377 B2 JP 3932377B2 JP 2000385484 A JP2000385484 A JP 2000385484A JP 2000385484 A JP2000385484 A JP 2000385484A JP 3932377 B2 JP3932377 B2 JP 3932377B2
Authority
JP
Japan
Prior art keywords
stable liquid
specific gravity
excavation
liquid composition
high specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000385484A
Other languages
Japanese (ja)
Other versions
JP2001240852A (en
Inventor
紘一 森
靖和 大西
欣二 筒井
宏平 佐藤
靖人 森島
茂 飯島
孝幸 林
典子 鍵政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS CO. LTD.
Fujita Corp
Original Assignee
DKS CO. LTD.
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKS CO. LTD., Fujita Corp filed Critical DKS CO. LTD.
Priority to JP2000385484A priority Critical patent/JP3932377B2/en
Publication of JP2001240852A publication Critical patent/JP2001240852A/en
Application granted granted Critical
Publication of JP3932377B2 publication Critical patent/JP3932377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、高比重安定液組成物、及び安定液掘削工法に関し、詳しくは例えば地盤調査ボーリング・場所打ち杭や連続地中壁(鉄筋コンクリート製または鋼コンクリート製などの連続地中壁)などの構築のために行う孔・溝掘削に使用する高性能高比重安定液組成物、及び該高比重安定液組成物を用いた安定液掘工法に関し、更に詳しくは、作業地盤面より自噴するような高い被圧水頭を有する地下水条件下、過圧密粘土地盤、もしくは地下水流速の大きな地盤など、過酷な条件下での孔・溝掘削を、崩落や滑落などの事故を起こすことなく行うことのできる安定液掘削工法、及びこの工法に用いる高性能高比重安定液組成物に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
場所打ち杭工法の一つであるアースドリル工法やRC連続地中壁工法等の安定液掘削工法は近年、大深度地下開発、インフラーストラクチャーの各施設構築等に多用されている。この安定液掘削工法では、バケット系や、回転ビットリバース系の掘削機により、安定液を用いて掘削孔(溝)壁を保護しながら地盤を所定の断面で掘削し、その後、鉄筋かご、あるいは鋼製部材を挿入して、トレミー工法によりコンクリートを打設する。
【0003】
上記したような安定液掘削工法は、場合によっては、作業地盤面より自噴するような高い被圧水頭を有する地下水条件下での孔・溝掘削、あるいは洪積層の過圧密粘土地盤や地下水流速の大きな地盤に対する孔・溝掘削など、過酷な条件下での掘削を余儀なくされることがある。
【0004】
このような掘削は、崩落や滑落などの事故を起こす可能性が大きいので、これを回避すべく使用する安定液にも工夫が必要となる。説明を加えると、上記したような過酷な条件下で掘削を安全に行うには、掘削部での地盤地下水圧に対して安定液圧が0.1〜0.3kgf/cm程度上回ることと、この液圧を有効に作用させるため、地盤透水性に応じて掘削壁面に薄く強い泥膜を形成させる必要がある。
【0005】
しかしながら、従来の安定液(ポリマー系安定液など)は比重が1.03〜1.10であるため、上述したような過酷な条件では、掘削壁面に対して強い泥膜を形成させることができず、掘削には不適であった。従って、安定液の比重を高くして掘削壁面に対して強い泥膜を形成しやすくする必要がある。
【0006】
石油掘削用泥水の増重剤としてバライト(硫酸バリウム)がよく知られている。しかしながら、このような増重剤も、静置時間の長い安定液掘削工法では、前記バライトが沈降して安定液から分離しやすく、分散安定性の保持が困難であった。
【0007】
微粉末炭酸カルシウムの配合も一応考えられる。微粉末炭酸カルシウムは反応性が低いので、打設コンクリートによる性状劣化に関しては、さほど問題はないが、調製後の安定液の静置時の分散安定性が低く、孔・溝掘削時の性能に問題となった。
【0008】
[発明の目的]
本発明は上記の実情に鑑みてなされたものであり、その目的は、従来、施工不可能であった自噴するような高い被圧水頭を有する地下水条件下での孔掘削・溝掘削、あるいは洪積層の過圧密粘土地盤や地下水流速の大きな地盤に対する孔・溝掘削など、過酷な条件下での掘削を可能にし、また長期にわたる分散安定性能に優れ、かつコンクリート置換性が良好な高性能な安定液組成物を提供するところにあり、前記高性能安定液組成物を使用して適応性をより広めた安定液掘削工法を提供するところにある。
【0009】
【課題を解決するための手段】
請求項1に記載の高比重安定液組成物は、アースドリル杭や連続地中壁を構築すべく地盤に孔や溝を掘削するための安定液掘削工法に使用される高比重安定液組成物であって、水、ベントナイト、カオリン鉱物、カルボキシメチルセルロース、及び分散剤を含有し、1.1を超える液比重を有してなるものである。
【0010】
請求項2に記載の高比重安定液組成物は、水1m に対し、ベントナイト10〜50kg、カオリン鉱物100〜800kg、カルボキシメチルセルロース0.5〜10kg、及び分散剤0.1〜20kgが配合されてなるものである。
【0011】
請求項3記載の高比重安定液組成物は、請求項1または2記載の高比重安定液組成物において、前記カオリン鉱物の比表面積が10,000cm /g以上であることを特徴とする。
【0012】
請求項4記載の安定液掘削工法は、請求項1〜3のいずれか1項に記載の高比重安定液組成物を掘削孔内に供給し、これによって掘削内周地盤面に泥膜を形成させながら更なる掘削を行なうようにした掘削工法である。
【0015】
【発明の実施の形態】
粘土鉱物
本発明で使用される粘土鉱物としては、特に限定はないが、カオリン鉱物と総称される粉末粘土を使用することが好ましい。
【0016】
カオリン鉱物はカオリナイト・デッカイト・ナクライトの3種の鉱物がポリタイプの関係にあって存在する。このカオリン鉱物には、カオリンに限らず、ボールクレー・ファイアークレー・木節粘土・蛙目粘土などの種々の粘土の主成分をなしている。
【0017】
このカオリン鉱物はpHを高めて分散安定性を改善した時、増粘性が少なく、経時による粘度変化も小さいので安定液の比重増加用として好適である。また、反応性が少ないので、コンクリート打設時のゲル化や劣化が生じにくい。
【0018】
カオリン鉱物として良く知られる木節粘土の粒度は産地によって変動は大きいが、多くの木節粘土の粒度は25μm以下の比率が80%でBET比表面積(以下、単に「比表面積」という)が10,000cm/g以上あり、特に水簸精製した粘土では25μm以下が100%で比表面積も300,000cm/gにも達する製品も存在する。この木節粘土や蛙目粘土は安価で多量入手が容易なので本発明材料として適している。粘土の比表面積として20,000cm/g以上あれば充分に静置安定性の良好な安定液を作成することできる。
【0019】
粉末粘土としてよく使用される岡山産笠岡粘土に代表されるイライトやモンモリロナイトも本発明における粘土鉱物として使用することができるが、これを含有する粘土類は、高比重安定液の増重材として使用した場合において経時による増粘性が大きくなる傾向が少しあり、また多価イオンとの反応性が少し高いので、どちらかといえば好ましくない。
【0020】
本発明の安定液組成物は、粘土鉱物、特に好ましくはカオリン鉱物の粉末を配合することにより、さらに好ましくは、比表面積10,000cm/g以上のカオリン鉱物を配合することにより、1.1を超える液比重を有してなる高比重安定液組成物である。
【0021】
安定液組成物の比重が1.1以下といった従来の安定液で掘削すると、次のような不都合(問題)が生じる。すなわち、安定液掘削工法では、安全掘削上必要な安定液面位は、最低でも地下水位+1.0m、被圧地下水位+1.5mが必要になるので、例えば、被圧地下水位がGL+3.5mあるとすれば、安定液面位は最低GL+5.0mが必要である。この条件を確保するには、施工地盤面3.5m以上の嵩上げが必要となり、盛土などによる場合は大量の土砂搬入と嵩上げに要するコストは膨大になる。ケーシング等で安定液面位を高くすることは可能であるが、高さ3m以上のケーシング設置は掘削が困難となり、盛土+ケーシング高さ2mがコンクリート打設他から施工上好ましい条件となる。
【0022】
粘土鉱物、好ましくはカオリン鉱物の粉末を使用することにより、安定液に炭酸塩等の分散剤が存在していても増粘は少なく、増重効果や分散効果が維持される。
【0023】
また、カオリン鉱物の粉末は、多価カチオンとの反応性が低いので、セメントから溶出されるCaイオンが安定液中に混入しても、ゲル化が生じにくい。
【0024】
なお、粘土鉱物の添加量は、被圧地下水圧や過圧密粘土の圧密度によって必要とされる液圧から比重(通常は1.4以下)を求めて定めるが、およそのところ清水1mに対し、100〜800kgである。100kg未満の場合、ベントナイト量50kgでも比重1.1を超える安定液組成物が得られないという問題が発生する可能性があり、800kgを超える場合、安定液比重が1.4を超えるので、コンクリート打設時、コンクリートと高比重安定液との置換が困難になりかねないという問題が発生する可能性がある。
【0025】
分散剤
本発明の安定液組成物には、好適には、カチオン混入による安定液のゲル化防止や流動性改良を目的に分散剤が添加される。分散剤としては、無機分散剤と有機分散剤とに分類され、無機分散剤としては、炭酸塩が好適に使用される。炭酸塩としては、炭酸水素ナトリウム・炭酸ナトリウム・炭酸水素カリウム・炭酸カリウム・炭酸水素リチウム・炭酸リチウムなどのアルカリ金属炭酸塩やヘキサメタリン酸ナトリウムなどが挙げられる。有機分散剤としては、低分子量ポリアクリル酸塩・リグニンスルフォン酸塩等が挙げられる(前記低分子量としては、例えば平均分子量3,000〜50,000が好適であり、この範囲を超えると分散性能は低下する傾向にある。通常は10,000前後。)。前者の無機分散剤は添加量が多くなると安定液の粘度が上昇するので、安定液の粘度を低下させる方向に働く後者の有機分散剤との併用が好ましい。添加量には特に限定はないが、清水1mに対し、0〜20.0kgであることが好ましく、さらに好ましくは0.1〜20.0kg、さらに好ましくは0.5〜10.0kg程度である。20kgを超える場合、過剰添加となる可能性があり、安定液作製費(調製費)が高くなる(経済的不利益を招く)という問題が発生する可能性がある。なお、前記分散剤は、清水1mに対して0.1kg以上添加した場合から、その添加による作用効果が期待できる。
【0026】
なお、分散剤として、前記した無機分散剤の1種類を単独で用いてもよいし、2種以上を併用しても構わない。また、同様に、有機分散剤の1種類を単独で用いてもよいし、2種以上を併用しても構わない。あるいは、無機分散剤から1種あるいは2種以上と、有機分散剤から1種あるいは2種以上を併用することもできる。
【0027】
無機系増粘剤および有機系増粘剤
安定液全体の分散安定性と造壁性確保のため、増粘剤を併用することが好ましい。増粘剤としては、無機系増粘剤および有機系増粘剤に分類され、無機系増粘剤としては、ベントナイト・セピオライト・アタパルジャイト・アスベストなどが挙げられる。このうち、増粘性が高く、造壁性評価指標となる濾水量が少なく、分散安定性が良好という理由でベントナイトの使用が好適である。無機系増粘剤の添加量は、粘土の種類、性質や安定液比重、及び用いる増粘剤の種類(品種、増粘性能)によって変わるので一概には言えないが、およそのところ清水1mに対し、10〜50kgである。10kg未満の場合、静置安定性の不足と濾水量が多くなるという問題が発生する可能性があり、50kgを超える場合、静置安定性と濾水量は良好であるが、コンクリート打設時のゲル化を生じ易くなるという問題が発生する可能性がある。
【0028】
有機系増粘剤としては、ポリアクリルアミド部分加水分解物・キサンタンガムやグァーガム等の水溶性高分子化合物も使用できるが、次のような理由でカルボキシメチルセルロース(CMC)の使用が最適である。すなわち、CMCは少量の添加で、造壁性評価指標となる濾水量をベントナイトと相乗的に小さく出来、また増粘性が大きくて安定液中に懸濁させた粒子を保持する(沈降させない)性質が高くなる。また、コンクリート打設時のセメントとの接触時の劣化が少ない。
【0029】
有機系増粘剤の添加量は、粘土の種類・性質や安定液比重、及び用いるCMC等の増粘剤の種類(品種・増粘性能)によって変わるので一概には言えないが、およそのところ清水1mに対し、0.5〜10kgである。0.5kg未満の場合、ベントナイト50kg以内に限定すると粘度不足が生じるという問題が発生する可能性があり、10kgを超える場合、安定液の粘度が高くなりすぎて、管理規格の上限を超えるという問題が発生する可能性がある。
【0030】
粘土等の固形分が多い場合は増粘性が高くなるので比較的粘度の低い低粘度CMCを使用するが、この場合の添加量は清水1mに対し、1〜3kgである。
【0031】
[作用]
本発明の安定液組成物を用いた安定液掘削工法では、掘削壁面に薄くて強い泥膜が形成され、必要な液圧を掘削壁面に作用することが可能となる。これにより、過酷な条件での孔・溝掘削を、地盤の嵩上げや周辺地盤の沈下あるいは井戸水枯れ等の問題を起こしやすい地下水低下工法や地下水汚染につながる地盤改良等の補助工法を施すことなく安全に行うことができるので、工期や工費の大幅な削減が可能となり、施工の合理化・省力化に大きく寄与する。
【0032】
また、洪積層の過圧密粘土地盤では孔・溝掘削時に、水平方向の応力解放により滑落や崩落を生じることがあり、これに対しても、本発明の安定液を使用することにより、掘削壁面に十分な液圧を作用させることで、崩落を起こさない安全な掘削が可能となる。同様に、地下水流速が3m/minを超すような地盤でも、安定液比重と粘度を高めることで崩落を防止することができる。
【0033】
さらに、本発明の安定液組成物は、高比重でありながら、分散性や流動性が高いので、当該安定液で満たされた掘削孔・溝の形状を確認するための超音波孔(溝)壁測定が可能となり、孔や溝の形状を正確に把握でき精度や品質の判断が可能となる。また、打設するコンクリートとの置換性も良好なことから、従来の安定液(比重:1.1以下)と同様な高品質な地下躯体の構築が可能である。
【0034】
本発明の安定液組成物を使用した高性能高比重安定液掘削工法は、従来の機器材・仕様ですべて対応できる。
【0035】
【実施例】
以下、本発明の一実施例を挙げて説明するが、本発明はこれによって限定されるものではない。
【0036】
実施例1および比較例1(安定液の性状と静置安定性(比重1.20))
下記[表1][表2]に記載の成分を、同表記載の割合に従って配合し、通常の方法で安定液組成物を調製した。
【0037】
得られた安定液組成物について、(1)ファンネル粘度、(2)濾水量(ml)/ケーキ厚(mm)、(3)pH、(4)B型粘度(mPa・s)、(5)静置安定性(上澄%/沈殿%)、(6)一夜間静置後の流動性をそれぞれ測定した。結果を[表1][表2]に併記する。
【0038】
なお、上記(1)のファンネル粘度は500ml/500mlロート型粘度計により測定し、(2)の濾水量はAPI規格濾過試験機3kgf/cm−30分で測定し、またケーキ厚は濾過試験後のケーキの厚み、(5)の静置安定性は1000mlガラス性メスシリンダーに1000ml入れ、24時間静置後の上澄量/沈殿物量(%)を示す。
【0039】
【表1】

Figure 0003932377
ベントナイト SA−B:三立鉱業株式会社製ベントナイト(250メッシュ品)、
DKハイポリマー50:第一工業製薬株式会社製のCMC、
マーゼルSH:第一工業製薬株式会社製の低分子量(約10,000)アクリル酸ソーダ、
カオリン:SATINTONE WHITE TEX 林化成(株)製 表面積60,800cm/g、
水簸木節粘土:(株)富丸製 表面積232,500cm/g、
FCP−10:ファイヤークレーパウダー (株)富丸製 表面積123,500cm/g
【表2】
Figure 0003932377
バライト:テルゲル (株)テルナイト製 表面積8,300cm/g、
超微粉炭酸カルシウム:TP−111 奥多摩工業(株)製 43,900cm/g。
【0040】
上記[表1]、[表2]から分かるように、粘土鉱物以外のものを使用した液比重1.1を超える安定液は粘度が高くなったり、また一夜間静置するとゲル化性質を強く示す。しかしながら、カオリン鉱物の粉末(木節粘土)は経時的な粘度変化が少なく、ゲル化を生じない。また、同一粘度で比較しても静置時の沈降物発生もほとんど見られない。
【0041】
実施例2(安定液の耐セメント性(液比重1.30))
下記[表3]に記載の成分を、同表記載の割合に従って配合し、通常の方法で安定液組成物を調製した。[表3]からも分かるように、配合成分として、ポルトランドセメントを清水1mに対し、0・3・5・7及び10kgを添加した。 得られた安定液組成物について、(1)ファンネル粘度、(2)濾水量(ml)/ケーキ厚(mm)、(3)pH、(4)B型粘度(mPa・s)、(5)静置安定性(上澄%/沈殿%)、(6)一夜間静置後の流動性をそれぞれ測定した。結果を[表3]に併記する。なお、上記(1)のファンネル粘度は500ml/500mlロート型粘度計により測定し、(2)の濾水量はAPI規格濾過試験機3kgf/cm−30分で測定し、またケーキ厚は濾過試験後のケーキの厚み、(5)の静置安定性は100mlガラス性円筒管に100ml入れ、24時間静置後の上澄量/沈殿物量(%)を示す。
【0042】
【表3】
Figure 0003932377
ベントナイト SA−B:三立鉱業株式会社製ベントナイト(250メッシュ品)、
FCP−7:ファイヤークレーパウダー (株)富丸製 表面積128,000cm/g、
笠岡粘土:笠岡粘土工業(株)製 表面積293,000cm/g、
DKハイポリマー50:第一工業製薬株式会社製のCMC、
マーゼルSH:第一工業製薬株式会社製の低分子量(約10,000)アクリル酸ソーダ。
【0043】
上記[表3]から分かるように、本発明の安定液組成物は、多価カチオンとの反応性の少ない粘土を用いているので、耐セメント性が著しく向上している。
【0044】
実施例3(場所打ち杭:アースドリル工法への適用)
高被圧水頭下でアースドリル杭に本発明の高比重安定液を適用し、通常の施工と同様に、掘削→ポンプリフトによるスライム処理/良液置換→コンクリート打設、まで問題の無いことを確認した。結果の概要を下記に示す。
【0045】
1)アースドリル杭(諸元)
直径:1.3m、深度:GL−20m、設計杭天:GL−1.5m。
【0046】
2)地盤・地下水概要
GL−13m程まで、N値5〜25に漸増する沖積の緩い砂質土層、以深がN値40〜50以上の砂礫・礫混じり粗砂層である。地下水位は常水位面がGL−1.5m内外で、以深が被圧帯水層となり、その水頭はGL−4m深度でGL面に、GL−10m深度でGL+1.1m、GL−15m深度でGL+3.6m、GL−23深度でGL+4.2mと自噴する高被圧条件である。
【0047】
3)安定液(諸元)
上記被圧条件より、安定液面位をGL+1mに保持することで安定液の必要液比重は安全率を見込み、1.25とした。安定液の配合を下記[表4]に示す。
【0048】
【表4】
Figure 0003932377
ベントナイト SA−B:三立鉱業株式会社製ベントナイト(250メッシュ品)、
FCP−10:ファイヤークレーパウダー (株)富丸製 表面積123,500cm/g、
DKハイポリマー50:第一工業製薬株式会社製のCMC、
マーゼルSH:第一工業製薬株式会社製の低分子量(約10,000)アクリル酸ソーダ。
【0049】
4)工事結果
表層ケーシングは直径1.5m、長さ6m、地上面2m(地中4m)として、圧入により設置し、ドリリングバケット掘削に入った。安定液は、掘削深度GL−1.5mより投入し、以深の掘削は安定液面位をGL+1〜1.2mに保持して行なった。掘削中の逸水量は、0.1〜0.2m/hrと少なく、超音波孔壁測定から、肌落ちもほとんどなく、通常と同様の掘削が可能であった。
【0050】
掘削完了後の安定液性状(掘削孔 上部〜下部より採取)は、比重:1.26〜1.28、ファンネル粘度:31〜32秒、(造壁性)濾水量:7.6〜8.0ml/ケーキ厚:1.4〜1.6mm、pH:8.5〜8.6、砂分保有率:3〜5%と良好な値が維持されていた。
【0051】
スライムの堆積厚は、一晩放置(13時間)でも12cmと少なく、底ざらい無しで先端ポンプ方式の良液置換〜スライム除去処理を行なった。鉄筋かご・トレミー管を挿入し、コンクリート打設前の残存スライムは皆無であった。
【0052】
打設したコンクリートは、呼び強度:27、スランプ:18〜19cm、空気量:4.5%で、コンクリートの余打率(設計量に対する打設量の増分)は3.3%であった。
【0053】
回収された安定液は、コンクリート天端上30cmまで性状劣化が見られず、その性状は、比重:1.25〜1.26、ファンネル粘度:30〜31秒、(造壁性)濾水量:7.2〜8.0ml/ケーキ厚:1.6〜2.5mm、pH:8.8〜9.2、砂分保有率:1〜3%と性状変化はわずかであった。
【0054】
杭体構築後、杭上部2.5mまで鉛直方向にコア採取(径:100mm)を杭中央部・鉄筋かご際の2カ所で行ない、杭体コンクリートの圧縮強度(4週)を調査した。杭体上部50cmの余盛り部で28〜30N/mm、以深40〜50N/mmと設計基準強度を上回ることが確認できた。
【0055】
(安定液が1.1を超える高比重を有していることによる格別の作用効果)
上記実施例3の場合、安定液比重は1.25とし、安定液面位をGL(Ground Level)+1mとした。この程度に安定液面位を上げるには表層ケーシングを地表面上2m程立ち上げることで、掘削やコンクリート打設に特別の装置や機械を使用することなく、通常の施工仕様で施工が可能となる。
【0056】
比較例には示していないが、通常比重(1.1未満)の安定液で掘削すると、次のような不都合(問題)が生じる。すなわち、安定液掘削工法では、安全掘削上必要な安定液面位は、最低でも地下水位+1.0m、被圧地下水位+1.5mが必要になるので、例えば、被圧地下水位がGL+3.5mあるとすれば、安定液面位は最低GL+5.0mが必要である。この条件を確保するには、施工地盤面3.5m以上の嵩上げが必要となり、盛土などによる場合は大量の土砂搬入と嵩上げに要するコストは膨大になる。ケーシング等で安定液面位を高くすることは可能であるが、高さ3m以上のケーシング設置は掘削が困難となり、盛土+ケーシング高さ2mがコンクリート打設他から施工上好ましい条件となる。
【0057】
【発明の効果】
本発明により、従来、施工困難もしくは不可能であった自噴するような高い被圧水頭を有する地下水条件下での孔・溝掘削、あるいは洪積層の過圧密粘土地盤や地下水流速の大きな地盤に対する孔・溝掘削など、過酷な条件下での掘削を可能にし、また長期にわたる分散安定性能に優れ、かつコンクリート置換性にも優れた安定液組成物を提供することができ、この安定剤組成物を使用することにより、安定液掘削工法の安全性と適応性をより高めることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high specific gravity stable liquid composition and a stable liquid excavation method. Specifically, for example, construction of ground survey boring, cast-in-place pile, continuous underground wall (continuous underground wall made of reinforced concrete or steel concrete), etc. The high-performance high-specific gravity stable liquid composition used for drilling holes and trenches and the stable liquid-digging method using the high-specific gravity stable liquid composition, more specifically, the high self-injection from the work ground surface A stable liquid that can drill holes and trenches under severe conditions such as groundwater with a pressurized head, overconsolidated clay ground, or groundwater with a large groundwater flow velocity without causing an accident such as collapse or sliding. The present invention relates to an excavation method and a high-performance, high-specific gravity stable liquid composition used in this method.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, stable liquid excavation methods such as the earth drill method and RC continuous underground wall method, which are one of the cast-in-place pile methods, have been widely used for deep underground development and construction of infrastructure facilities. In this stable liquid excavation method, the ground is excavated in a predetermined cross-section while protecting the excavation hole (groove) wall with a stable liquid using a bucket system or a rotating bit reverse type excavator, and then a reinforcing bar or Insert steel members and place concrete by treme method.
[0003]
In some cases, the stable liquid excavation method described above may be used for drilling holes and trenches under groundwater conditions that have a high pressure head that is self-injecting from the work ground surface, Drilling under severe conditions such as drilling holes and grooves in large grounds may be required.
[0004]
Such excavation has a high possibility of causing an accident such as collapse or sliding, and therefore, it is necessary to devise the stabilizing liquid used to avoid this accident. In other words, in order to perform excavation safely under the severe conditions as described above, the stable hydraulic pressure exceeds the ground water pressure at the excavation part by about 0.1 to 0.3 kgf / cm 2. In order to make this hydraulic pressure work effectively, it is necessary to form a thin and strong mud film on the excavation wall surface according to the ground permeability.
[0005]
However, conventional stabilizers (polymer stabilizers, etc.) have a specific gravity of 1.03 to 1.10, so that a strong mud film can be formed on the excavation wall surface under the severe conditions described above. It was unsuitable for excavation. Therefore, it is necessary to increase the specific gravity of the stabilizing liquid to easily form a strong mud film against the excavation wall surface.
[0006]
Barite (barium sulfate) is well known as a thickener for oil drilling mud. However, even with such a thickener, in the stable liquid excavation method with a long standing time, the barite settles and is easily separated from the stable liquid, and it is difficult to maintain dispersion stability.
[0007]
Mixing finely powdered calcium carbonate is also conceivable. Fine powdered calcium carbonate has low reactivity, so there is not much problem with property deterioration due to cast concrete, but the dispersion stability of the stabilized liquid after preparation is low and the performance when drilling holes and grooves is low. It became a problem.
[0008]
[Object of invention]
The present invention has been made in view of the above circumstances, and the purpose of the present invention is to perform hole drilling / groove drilling under a groundwater condition having a high pressure head to be self-injected, which has not been possible in the past. Enables excavation under severe conditions such as drilling holes and trenches in laminated overconsolidated clay ground and groundwater with a large groundwater flow velocity, and has excellent long-term dispersion stability performance and high-performance stability with good concrete replaceability The present invention provides a liquid composition, and provides a stable liquid excavation method using the high-performance stable liquid composition and further expanding its adaptability.
[0009]
[Means for Solving the Problems]
The high specific gravity stable liquid composition according to claim 1 is a high specific gravity stable liquid composition used in a stable liquid excavation method for excavating holes and grooves in the ground to construct earth drill piles or continuous underground walls . It contains water, bentonite, kaolin mineral, carboxymethylcellulose, and a dispersant, and has a liquid specific gravity exceeding 1.1.
[0010]
The high specific gravity stable liquid composition according to claim 2 contains 10 to 50 kg of bentonite, 100 to 800 kg of kaolin mineral, 0.5 to 10 kg of carboxymethylcellulose, and 0.1 to 20 kg of a dispersant for 1 m 3 of water. It will be.
[0011]
The high specific gravity stable liquid composition according to claim 3 is the high specific gravity stable liquid composition according to claim 1 or 2, wherein the kaolin mineral has a specific surface area of 10,000 cm 2 / g or more.
[0012]
The stable liquid excavation method according to claim 4 supplies the high specific gravity stable liquid composition according to any one of claims 1 to 3 into the excavation hole, thereby forming a mud film on the ground surface surrounding the excavation. It is an excavation method in which further excavation is performed while allowing
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Clay mineral The clay mineral used in the present invention is not particularly limited, but it is preferable to use powdered clay collectively referred to as kaolin mineral.
[0016]
There are three types of kaolin minerals, kaolinite, decaitite and nacrite, in a polytype relationship. This kaolin mineral is not limited to kaolin, but is the main component of various clays such as ball clay, fire clay, kibushi clay, and glazed clay.
[0017]
This kaolin mineral is suitable for increasing the specific gravity of a stable liquid because it has a low viscosity and a small change in viscosity over time when the pH is increased to improve the dispersion stability. Moreover, since there is little reactivity, it is hard to produce the gelatinization and deterioration at the time of concrete placement.
[0018]
The particle size of Kibushi clay, which is well known as kaolin mineral, varies greatly depending on the place of origin, but the particle size of many Kibushi clay is 80% with a ratio of 25 μm or less and a BET specific surface area (hereinafter simply referred to as “specific surface area”) of 10 There 000cm 2 / g or more, there products 25μm or less reaches to be 300,000 2 / g specific surface area of 100%, especially elutriation purified clay. Since Kibushi clay and Sasame clay are inexpensive and easily available in large quantities, they are suitable as the material of the present invention. If the specific surface area of the clay is 20,000 cm 2 / g or more, a stable solution having a sufficiently good standing stability can be prepared.
[0019]
Illite and montmorillonite typified by Kasaoka clay from Okayama, which is often used as powdered clay, can also be used as clay minerals in the present invention, but clays containing this can be used as a weight-increasing material for high specific gravity stabilizers. In this case, the viscosity increase with time tends to be slightly increased, and the reactivity with multivalent ions is slightly high.
[0020]
The stable liquid composition of the present invention is obtained by blending a clay mineral, particularly preferably a kaolin mineral powder, and more preferably by blending a kaolin mineral having a specific surface area of 10,000 cm 2 / g or more. It is a high specific gravity stable liquid composition having a liquid specific gravity exceeding.
[0021]
When drilling with a conventional stabilizing liquid having a specific gravity of 1.1 or less, the following inconvenience (problem) occurs. That is, in the stable liquid excavation method, the stable liquid level required for safe excavation requires at least the groundwater level +1.0 m and the pressurized groundwater level +1.5 m. For example, the pressurized groundwater level is GL + 3.5 m. If there is, the stable liquid level needs to be at least GL + 5.0 m. In order to ensure this condition, it is necessary to raise the construction ground surface to a height of 3.5 m or more, and in the case of embankment or the like, the cost required for carrying in and raising a large amount of earth and sand becomes enormous. Although it is possible to increase the stable liquid level with a casing or the like, the installation of a casing having a height of 3 m or more becomes difficult to excavate, and embankment + casing height of 2 m is a preferable condition for construction from other places such as concrete placement.
[0022]
By using a powder of clay mineral, preferably kaolin mineral, even if a dispersing agent such as carbonate is present in the stabilizing liquid, the viscosity increase is small, and the weight increasing effect and the dispersing effect are maintained.
[0023]
Further, since the kaolin mineral powder has low reactivity with the polyvalent cation, gelation hardly occurs even when Ca ions eluted from the cement are mixed in the stable solution.
[0024]
The addition amount of the clay mineral, defines seeking specific gravity hydraulic pressure required by the consolidation of the artesian under pressure and overconsolidated clay (usually 1.4 or less), but Shimizu 1 m 3 approximately at On the other hand, it is 100 to 800 kg. If the amount is less than 100 kg, there may be a problem that a stable liquid composition exceeding a specific gravity of 1.1 cannot be obtained even if the amount of bentonite is 50 kg. If the amount exceeds 800 kg, the specific gravity of the stable liquid exceeds 1.4. At the time of placing, there may be a problem that the replacement of the concrete with the high specific gravity stabilizing liquid may be difficult.
[0025]
Dispersant A stabilizer is preferably added to the stable liquid composition of the present invention for the purpose of preventing gelation of the stable liquid due to cation contamination and improving fluidity. Dispersants are classified into inorganic dispersants and organic dispersants, and carbonates are preferably used as inorganic dispersants. Examples of the carbonate include alkali metal carbonates such as sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, potassium carbonate, lithium hydrogen carbonate, lithium carbonate, and sodium hexametaphosphate. Examples of the organic dispersant include low molecular weight polyacrylates and lignin sulfonates. (As the low molecular weight, for example, an average molecular weight of 3,000 to 50,000 is preferable. Tends to decrease, usually around 10,000.) Since the viscosity of the stabilizer increases as the amount of the former inorganic dispersant increases, it is preferable to use the former together with the latter organic dispersant that works to reduce the viscosity of the stabilizer. Although there is no particular limitation on the addition amount with respect to Shimizu 1 m 3, preferably a 0~20.0Kg, more preferably 0.1~20.0Kg, more preferably at about 0.5~10.0kg is there. When it exceeds 20 kg, it may be excessively added, and there may be a problem that the cost for preparing the stable liquid (preparation cost) becomes high (incurring economic disadvantage). Incidentally, the dispersing agent is from when added 0.1kg or more to Shimizu 1 m 3, can be expected operational effect due to the addition.
[0026]
As the dispersant, one kind of the inorganic dispersant described above may be used alone, or two or more kinds may be used in combination. Similarly, one type of organic dispersant may be used alone, or two or more types may be used in combination. Alternatively, one or more of inorganic dispersants and one or more of organic dispersants can be used in combination.
[0027]
Inorganic thickeners and organic thickeners It is preferable to use a thickener in combination in order to ensure dispersion stability and wall-forming property of the entire stabilizing liquid. Thickeners are classified into inorganic thickeners and organic thickeners, and examples of inorganic thickeners include bentonite, sepiolite, attapulgite and asbestos. Among these, use of bentonite is preferable because it has high viscosity, has a small amount of filtered water as an evaluation index for wall-forming property, and has good dispersion stability. The addition amount of the inorganic thickeners, the type of clay, the nature and stability specific gravity, and a thickener of the type used can not be said unconditionally because vary (cultivar, thickening performance), approximately at Shimizu 1 m 3 In contrast, it is 10 to 50 kg. If it is less than 10 kg, there may be a problem that the standing stability is insufficient and the amount of drainage increases, and if it exceeds 50 kg, the standing stability and the amount of drainage are good, but when concrete is placed. There is a possibility that a problem that gelation easily occurs.
[0028]
As the organic thickener, a water-soluble polymer compound such as polyacrylamide partial hydrolyzate / xanthan gum or guar gum can be used, but carboxymethyl cellulose (CMC) is most suitable for the following reasons. In other words, CMC can be added in a small amount to reduce the amount of drainage, which is a wall-forming property evaluation index, synergistically with bentonite, and has a high viscosity and retains particles that are suspended in a stable liquid (does not settle). Becomes higher. Moreover, there is little deterioration at the time of contact with the cement at the time of concrete placement.
[0029]
The amount of organic thickener added varies depending on the type and properties of clay, the specific gravity of the stabilizer, and the type of thickener such as CMC used (variety and thickening performance). for Shimizu 1m 3, it is 0.5~10kg. If the amount is less than 0.5 kg, the problem of insufficient viscosity may occur when the bentonite is limited to 50 kg or less. If the amount exceeds 10 kg, the viscosity of the stable liquid becomes too high and exceeds the upper limit of the management standard. May occur.
[0030]
When the solid content of clay or the like is large, the viscosity increases, so a low-viscosity CMC having a relatively low viscosity is used. In this case, the addition amount is 1 to 3 kg with respect to 1 m 3 of fresh water.
[0031]
[Action]
In the stable liquid excavation method using the stable liquid composition of the present invention, a thin and strong mud film is formed on the excavation wall surface, and the necessary hydraulic pressure can be applied to the excavation wall surface. As a result, drilling holes and trenches under harsh conditions can be performed safely without the use of auxiliary methods such as groundwater lowering methods that tend to cause problems such as raising the ground, subsidence of the surrounding ground, or well water drainage, and ground improvement leading to groundwater contamination. Therefore, the construction period and cost can be greatly reduced, which greatly contributes to rationalization and labor saving of construction.
[0032]
In addition, in the over-consolidated clay ground of the divergent layer, sliding or collapsing may occur due to horizontal stress release when drilling holes and grooves. Against this, by using the stabilizing liquid of the present invention, By applying a sufficient hydraulic pressure to the tank, it is possible to perform safe excavation without causing collapse. Similarly, even on the ground where the groundwater flow velocity exceeds 3 m / min, collapse can be prevented by increasing the specific gravity and viscosity of the stable liquid.
[0033]
Furthermore, since the stable liquid composition of the present invention has high specific gravity and high dispersibility and fluidity, an ultrasonic hole (groove) for confirming the shape of the excavation hole / groove filled with the stable liquid. Wall measurement is possible, the shape of holes and grooves can be accurately grasped, and accuracy and quality can be judged. In addition, since the replaceability with the concrete to be placed is good, it is possible to construct a high-quality underground structure similar to the conventional stabilizer (specific gravity: 1.1 or less).
[0034]
The high-performance, high-specific gravity stable liquid drilling method using the stable liquid composition of the present invention can be used with all conventional equipment and specifications.
[0035]
【Example】
Hereinafter, although one Example of this invention is given and demonstrated, this invention is not limited by this.
[0036]
Example 1 and Comparative Example 1 (Property of Stabilizing Solution and Standing Stability (Specific Gravity 1.20))
The components described in [Table 1] and [Table 2] below were blended in accordance with the ratios described in the table, and a stable liquid composition was prepared by an ordinary method.
[0037]
About the obtained stable liquid composition, (1) funnel viscosity, (2) drainage amount (ml) / cake thickness (mm), (3) pH, (4) B-type viscosity (mPa · s), (5) The standing stability (supernatant% / precipitation%) and (6) fluidity after standing overnight were measured. The results are also shown in [Table 1] and [Table 2].
[0038]
The funnel viscosity of (1) above is measured with a 500 ml / 500 ml funnel viscometer, the amount of filtrate of (2) is measured with an API standard filtration tester 3 kgf / cm 2 -30 minutes, and the cake thickness is a filtration test. The thickness of the cake after and the stationary stability of (5) indicate the amount of supernatant / precipitate amount (%) after being placed in a 1000 ml glass graduated cylinder and allowed to stand for 24 hours.
[0039]
[Table 1]
Figure 0003932377
Bentonite SA-B: Bentonite (250 mesh product) manufactured by Mitsuru Mining Co., Ltd.
DK High Polymer 50: CMC manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
Marzel SH: Daiichi Kogyo Seiyaku Co., Ltd. low molecular weight (about 10,000) sodium acrylate,
Kaolin: SATINTONE WHITE TEX Hayashi Kasei Co., Ltd. surface area 60,800 cm 2 / g,
Minamata Kibushi clay: manufactured by Tomimaru Co., Ltd., surface area 232,500 cm 2 / g,
FCP-10: Fire clay powder, manufactured by Tomimaru Corporation, surface area 123,500 cm 2 / g
[Table 2]
Figure 0003932377
Barite: Tergel Co., Ltd. Ternite Co., Ltd. surface area 8,300 cm 2 / g,
Ultrafine calcium carbonate: TP-111 Okutama Kogyo Co., Ltd. 43,900 cm 2 / g.
[0040]
As can be seen from the above [Table 1] and [Table 2], a stable solution having a specific gravity of more than 1.1 using a material other than a clay mineral has a high viscosity, and has a strong gelling property when left overnight. Show. However, kaolin mineral powder (kibushi clay) has little change in viscosity over time and does not cause gelation. Moreover, even when the same viscosity is compared, almost no sediment is generated upon standing.
[0041]
Example 2 (Cement resistance of liquid stabilizer (liquid specific gravity 1.30))
The components described in [Table 3] below were blended according to the proportions described in the table, and a stable composition was prepared by a conventional method. As can be seen from [Table 3], as a blending component, Portland cement was added to 0 · 3 · 5 · 7 and 10 kg to 1 m 3 of fresh water. About the obtained stable liquid composition, (1) funnel viscosity, (2) drainage amount (ml) / cake thickness (mm), (3) pH, (4) B-type viscosity (mPa · s), (5) The standing stability (supernatant% / precipitation%) and (6) fluidity after standing overnight were measured. The results are also shown in [Table 3]. The funnel viscosity of (1) above is measured with a 500 ml / 500 ml funnel viscometer, the amount of filtrate of (2) is measured with an API standard filtration tester 3 kgf / cm 2 -30 minutes, and the cake thickness is a filtration test. The thickness of the cake after and the stationary stability of (5) indicate the amount of supernatant / precipitate amount (%) after putting 100 ml in a 100 ml glass cylindrical tube and leaving it for 24 hours.
[0042]
[Table 3]
Figure 0003932377
Bentonite SA-B: Bentonite (250 mesh product) manufactured by Mitsuru Mining Co., Ltd.
FCP-7: Fire clay powder, manufactured by Tomimaru Corporation, a surface area of 128,000 cm 2 / g,
Kasaoka Clay: Kasaoka Clay Industry Co., Ltd. surface area 293,000 cm 2 / g,
DK High Polymer 50: CMC manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
Marzel SH: Low molecular weight (about 10,000) sodium acrylate manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
[0043]
As can be seen from the above [Table 3], the stable liquid composition of the present invention uses a clay having low reactivity with the polyvalent cation, so that the cement resistance is remarkably improved.
[0044]
Example 3 (cast-in-place pile: application to earth drill method)
Applying the high specific gravity stability liquid of the present invention to the ground drill pile under high pressure head, and in the same way as normal construction, there is no problem from drilling → slime treatment by pump lift / replacement of good liquid → concrete placement. confirmed. A summary of the results is shown below.
[0045]
1) Earth drill pile (specifications)
Diameter: 1.3 m, depth: GL-20 m, design pile ceiling: GL-1.5 m.
[0046]
2) Outline of ground and groundwater Up to about GL-13m, it is an alluvial loose sandy soil layer that gradually increases to an N value of 5 to 25, and a deep sand layer with a gravel and gravel mixed with an N value of 40 to 50 or more. The groundwater level is the normal water level inside and outside GL-1.5m, the depth is a confined aquifer, and the head is GL-4m depth at GL surface, GL-10m depth at GL + 1.1m, GL-15m depth This is a high pressure condition in which GL + 3.6 m and GL-23 depth are self-injecting with GL + 4.2 m.
[0047]
3) Stabilizing liquid (specifications)
From the above pressure condition, the required liquid specific gravity of the stable liquid was set to 1.25 in view of the safety factor by maintaining the stable liquid level at GL + 1 m. The composition of the stabilizer is shown in [Table 4] below.
[0048]
[Table 4]
Figure 0003932377
Bentonite SA-B: Bentonite (250 mesh product) manufactured by Mitsuru Mining Co., Ltd.
FCP-10: Fire clay powder, manufactured by Tomimaru Co., Ltd., surface area 123,500 cm 2 / g,
DK High Polymer 50: CMC manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
Marzel SH: Low molecular weight (about 10,000) sodium acrylate manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
[0049]
4) Construction results The surface casing was 1.5m in diameter, 6m in length, 2m above the ground (4m in the ground), installed by press-fitting, and started drilling bucket excavation. The stable liquid was introduced from the excavation depth GL-1.5 m, and the deep excavation was performed while maintaining the stable liquid level at GL + 1 to 1.2 m. The amount of water loss during excavation was as small as 0.1 to 0.2 m 3 / hr, and from the measurement of ultrasonic hole walls, there was almost no skin falling, and excavation as usual was possible.
[0050]
Stable liquid properties after completion of excavation (taken from the upper part to the lower part of the excavation hole) are: specific gravity: 1.26 to 1.28, funnel viscosity: 31 to 32 seconds, (wall-forming property) drainage: 7.6 to 8. Good values of 0 ml / cake thickness: 1.4 to 1.6 mm, pH: 8.5 to 8.6, and sand content retention: 3 to 5% were maintained.
[0051]
The slime deposited thickness was as small as 12 cm even when left overnight (13 hours), and the tip pump type good liquid replacement to slime removal treatment was performed without roughening the bottom. There was no residual slime before inserting concrete bars and tremy tubes.
[0052]
The cast concrete had a nominal strength of 27, a slump of 18 to 19 cm, an air volume of 4.5%, and an aftercasting rate of the concrete (increment of the cast amount with respect to the design amount) was 3.3%.
[0053]
The recovered stable liquid does not show any property deterioration up to 30 cm above the top of the concrete, and its properties are specific gravity: 1.25 to 1.26, funnel viscosity: 30 to 31 seconds, (wall-forming property) drainage amount: 7.2-8.0 ml / cake thickness: 1.6-2.5 mm, pH: 8.8-9.2, sand content retention: 1-3%, property change was slight.
[0054]
After construction of the pile body, core collection (diameter: 100 mm) was performed in the vertical direction up to 2.5 m above the pile at two places in the middle of the pile and the reinforcing bar cage, and the compressive strength (4 weeks) of the pile body concrete was investigated. It was confirmed that the surplus portion of the upper 50 cm of the pile body was 28 to 30 N / mm 2 , the depth was 40 to 50 N / mm 2 and exceeded the design standard strength.
[0055]
(Special effects due to the fact that the stabilizer has a high specific gravity exceeding 1.1)
In the case of Example 3, the stable liquid specific gravity was 1.25, and the stable liquid level was GL (Ground Level) + 1m. In order to raise the stable liquid level to this level, the surface casing can be raised about 2m above the ground surface, and construction can be performed with normal construction specifications without using special equipment or machinery for excavation or concrete placement. Become.
[0056]
Although not shown in the comparative example, the following inconvenience (problem) occurs when excavating with a stable liquid having a normal specific gravity (less than 1.1). That is, in the stable liquid excavation method, the stable liquid level required for safe excavation requires at least the groundwater level +1.0 m and the pressurized groundwater level +1.5 m. For example, the pressurized groundwater level is GL + 3.5 m. If there is, the stable liquid level needs to be at least GL + 5.0 m. In order to ensure this condition, it is necessary to raise the construction ground surface to a height of 3.5 m or more, and in the case of embankment or the like, the cost required for carrying in and raising a large amount of earth and sand becomes enormous. Although it is possible to increase the stable liquid level with a casing or the like, the installation of a casing having a height of 3 m or more becomes difficult to excavate, and embankment + casing height of 2 m is a preferable condition for construction from other places such as concrete placement.
[0057]
【The invention's effect】
According to the present invention, holes or trench excavation under groundwater conditions with high pressure heads such as self-injection, which has been difficult or impossible to construct, or holes for over-consolidated clay ground with a high density of groundwater or ground with high groundwater velocity・ Stable liquid compositions that enable excavation under harsh conditions such as trench excavation, are excellent in long-term dispersion stability performance, and are excellent in concrete replacement properties. By using it, the safety and adaptability of the stable liquid excavation method can be further enhanced.

Claims (4)

アースドリル杭や連続地中壁を構築すべく地盤に孔や溝を掘削するための安定液掘削工法に使用される高比重安定液組成物であって、
水、ベントナイト、カオリン鉱物、カルボキシメチルセルロース、及び分散剤を含有し、1.1を超える液比重を有してなることを特徴とする高比重安定液組成物。
A high specific gravity stable liquid composition used in a stable liquid drilling method for excavating holes and grooves in the ground to construct earth drill piles and continuous underground walls ,
A high specific gravity stable liquid composition comprising water, bentonite, kaolin mineral, carboxymethyl cellulose, and a dispersant, and having a liquid specific gravity exceeding 1.1.
水1m に対し、ベントナイト10〜50kg、カオリン鉱物100〜800kg、カルボキシメチルセルロース0.5〜10kg、及び分散剤0.1〜20kgが配合されてなることを特徴とする請求項1記載の高比重安定液組成物。The high specific gravity according to claim 1, wherein 10 to 50 kg of bentonite, 100 to 800 kg of kaolin mineral, 0.5 to 10 kg of carboxymethylcellulose, and 0.1 to 20 kg of a dispersant are blended with 1 m 3 of water. Stabilizing liquid composition. 前記カオリン鉱物の比表面積が10,000cmThe specific surface area of the kaolin mineral is 10,000 cm 2 /g以上であることを特徴とする請求項1または2記載の高比重安定液組成物。The high specific gravity stable liquid composition according to claim 1 or 2, wherein the composition is at least / g. 請求項1〜3のいずれか1項に記載の高比重安定液組成物を掘削孔内に供給し、これによって掘削内周地盤面に泥膜を形成させながら更なる掘削を行なうようにした安定液掘削工法。The high specific gravity stable liquid composition according to any one of claims 1 to 3 is supplied into the excavation hole, thereby stabilizing the excavation inner ground surface while forming a mud film. Liquid drilling method.
JP2000385484A 1999-12-24 2000-12-19 High specific gravity stable liquid composition and stable liquid excavation method Expired - Lifetime JP3932377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000385484A JP3932377B2 (en) 1999-12-24 2000-12-19 High specific gravity stable liquid composition and stable liquid excavation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP36607599 1999-12-24
JP11-366075 1999-12-24
JP2000385484A JP3932377B2 (en) 1999-12-24 2000-12-19 High specific gravity stable liquid composition and stable liquid excavation method

Publications (2)

Publication Number Publication Date
JP2001240852A JP2001240852A (en) 2001-09-04
JP3932377B2 true JP3932377B2 (en) 2007-06-20

Family

ID=26581729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000385484A Expired - Lifetime JP3932377B2 (en) 1999-12-24 2000-12-19 High specific gravity stable liquid composition and stable liquid excavation method

Country Status (1)

Country Link
JP (1) JP3932377B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206711A (en) * 2005-01-27 2006-08-10 Shikoku Chem Corp Additive for drilling mud and drilling mud
JP5167190B2 (en) * 2009-04-14 2013-03-21 吉田エンジニアリング有限会社 High specific gravity stable liquid and excavation method
JP2014088687A (en) * 2012-10-29 2014-05-15 Yokoyama Kiso Koji:Kk Method for creating pile body
JP6179470B2 (en) * 2014-06-30 2017-08-16 王子ホールディングス株式会社 Underground treatment composition
US10081751B2 (en) * 2016-04-01 2018-09-25 Saudi Arabian Oil Company Modification of bentonite properties for drilling fluids
JP7410812B2 (en) * 2020-07-08 2024-01-10 鹿島建設株式会社 Drilling system and ground excavation method

Also Published As

Publication number Publication date
JP2001240852A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
CN100591866C (en) Drifting sand layer and gravel stratum water-moving double-liquid high pressure slip-casting water-blocking construction method
JP5832063B2 (en) Well sealant composition containing cationic latex and method of use thereof
BRPI0611571A2 (en) drilling fluid and use of a polymer
CN1657711A (en) Rotary spray anchoring pile construction process
CN106866056B (en) A kind of mud and preparation method thereof for construction of diaphragm wall
JP3932377B2 (en) High specific gravity stable liquid composition and stable liquid excavation method
CN108060894A (en) A kind of boring method under complex geological condition
CN104711973A (en) Construction method for small-diameter pile composite foundation
CN1380470A (en) Impervious wall construction and soilslip-resisting and leakage-blocking process
Ischy et al. AN INTRODUCTION TO ALLUVIAL GROUTING.
JP4276815B2 (en) Civil lubricants containing powder lubricant
US5275511A (en) Method for installation of piles in offshore locations
CN103643674B (en) Erect column pile construction method under geologic condition of pebble bed sandstone
CN111042820B (en) Construction method for sand layer with oversized pilot hole by vertical shaft raise-shaft method
Jefferis et al. Polymer systems for fluid supported excavations
JP2000186280A (en) Shield drilling mud additive
CN113445496A (en) Rotary drilling cast-in-place pile and construction process thereof
CN108867279B (en) Soft soil roadbed municipal road construction method
CN208023598U (en) A kind of base pit dewatering pipe well
CN110984149A (en) Construction method for pile body pretreatment in shield pile grinding process
CN114605972A (en) Strong-plugging anti-sloughing drilling fluid for stratum in broken zone and preparation method and application thereof
JP2006045877A (en) Underground continuous wall construction method
JP3725750B2 (en) Stabilizing liquid composition
CN111139048A (en) Potassium-based cation flushing fluid for coal-based stratum drilling and preparation method thereof
JPH0352514B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250