JP3931030B2 - Position detection device - Google Patents

Position detection device Download PDF

Info

Publication number
JP3931030B2
JP3931030B2 JP2000319276A JP2000319276A JP3931030B2 JP 3931030 B2 JP3931030 B2 JP 3931030B2 JP 2000319276 A JP2000319276 A JP 2000319276A JP 2000319276 A JP2000319276 A JP 2000319276A JP 3931030 B2 JP3931030 B2 JP 3931030B2
Authority
JP
Japan
Prior art keywords
detection surface
light
light source
detection
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000319276A
Other languages
Japanese (ja)
Other versions
JP2002132435A (en
Inventor
保二 小川
正夫 熊岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiroku Inc
Original Assignee
Xiroku Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiroku Inc filed Critical Xiroku Inc
Priority to JP2000319276A priority Critical patent/JP3931030B2/en
Publication of JP2002132435A publication Critical patent/JP2002132435A/en
Application granted granted Critical
Publication of JP3931030B2 publication Critical patent/JP3931030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、検出面上において指示体の指示位置座標を検出する光遮断方式の光デジタイザに関する。特に、指示体が検出面上でタッチしたことが検出される高さを低くした光デジタイザに関する。
【0002】
【従来の技術】
抵抗皮膜方式や電磁誘導方式のデジタイザに代えて、より高精度な検出能力を有する光方式のデジタイザが注目されている。図5に、リニアイメージセンサを用いた光デジタイザの一例を示す。図5(a)は、光デジタイザの平面概略図である。図5(b)は、その一部断面の側面図である。図示のように、指示体となるペン2が検出面1上に置かれたときに、検出面1の上方に設けられる2つの検出ユニット3により三角測量の原理により指示位置座標を検出するものである。2つの検出ユニット3のそれぞれは、図5(b)に示すように、リニアイメージセンサ13の結像レンズ9の上にLED光源11を配置した構成となっている。検出面1に光を遮るものが何も置かれていない時には、検出ユニット3から、検出面1上を通過して再帰反射部材22に入射した光は、逆の光路を通って検出ユニット3に戻ってくる。検出面1にペン2等が置かれた時には、光の光路の一部が遮られて、検出ユニット3に帰らなくなる。この影の部分がイメージセンサ13で撮像できるため、その影の方向を2つ検出ユニット3,3により検出することで、光を遮ったもののある方向を検出することができる。即ち、ペン2が存在する方向が、2つの異なる既知の位置にある検出ユニット3,3によって検出できれば、三角測量の原理によりペン2の指示位置座標を算出できる。
【0003】
【発明が解決しようとする課題】
しかしながら、図5に示す例では、図6に示すように、光源11から検出面1に向けて放射される行きの光の光路と再帰反射部材22から反射される帰りの光の光路の検出面からの各高さが一致しておらず、特に行きの光路が検出面1から高く離れているために、ペンが検出面にタッチする前に(ペンが浮いている状態で)、LED光源11から発し再帰反射部材22に向かう光線を遮断した時点でタッチ検出がなされてしまう。そのため、漢字などの文字をペンで書こうとした時に続け文字となってしまうという問題がある。また、指によるタッチ操作では、検出面にタッチした実感がないのにタッチ検出がなされてしまうので、操作性が悪い。
【0004】
本発明は、斯かる実情に鑑み、検出面に近いところでタッチ検出を行なうことが可能な光デジタイザを提供することを目的とする。
【0005】
【課題を解決するための手段】
斯かる課題を解決すべく、本発明に係る位置検出装置は、一辺を除く周囲三辺に再帰反射部材が設けられた長方形形状の検出面を有し、該検出面上に位置する指示体の指示位置座標を検出すべく、前記検出面の前記一辺の両端部にそれぞれ、前記検出面に向けて光線を発する光源と、前記再帰反射部材からの再帰反射光を受ける撮像手段と、該撮像手段の前面に設けられ前記再帰反射光を結像する結像レンズとを有し、前記検出面上に位置する指示体が光路を遮断することにより生じる影を前記各撮像手段により検出し、三角測量の原理により指示体の座標位置を算出する位置検出装置において、
前記結像レンズの左右近傍で、前記光源が発する行きの光線と前記再帰反射部材により反射された帰りの光線の前記検出面からの各高さが同一となる位置に、前記光源が発する行きの光線を前記検出面に向けて折り曲げるミラー手段を備えることを特徴とする。
【0006】
また、前記ミラー手段は曲面ミラーであって、前記光源の光線を集光または拡散する機能をも併せ持つものとすることができる。前記光源は、前記結像レンズと前記曲面ミラーの左右の位置に備えられ、おおよそ前記検出面に平行な方向から該曲面ミラーに向かって光線を発するものとすることもできる。
【0007】
本発明に係る他の態様による位置検出装置は、一辺を除く周囲三辺に再帰反射部材が設けられた長方形形状の検出面を有し、該検出面上に位置する指示体の指示位置座標を検出すべく、前記検出面の前記一辺の両端部にそれぞれ、前記検出面に向けて光を照射する光源と、前記再帰反射部材からの再帰反射光を受ける撮像手段と、該撮像手段の前面に設けられ前記再帰反射光を結像する結像レンズとを有し、前記検出面上に位置する指示体が光路を遮断することにより生じる影を前記各撮像手段により検出し、三角測量の原理により指示体の座標位置を算出する位置検出装置において、
前記撮像手段の受光面が前記検出面の方向に対して直角の方向に配置されており、
前記光源の近傍で、前記光源が発する行きの光線と前記再帰反射部材により反射された帰りの光線の前記検出面からの各高さが同一となる位置に、前記撮像手段の撮像視野を折り曲げるミラー手段を備えることを特徴とする。
【0008】
また、前記ミラー手段は前記結像レンズのレンズ部材の一部として構成されるものとすることができる。
【0009
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ説明する。複数の図面にわたって用いた参照符号と同一の符号を付した部分は同一物をあらわしている。
【0010
図1は、本発明の三角測量の原理に基づき指示体の座標位置を検出する光デジタイザの好適な実施形態を示す図である。本発明の発明者は、上記課題を解決するには、光源が検出面に向けて発する光線の角度と再帰反射光線がリニアイメージセンサに入る角度との開きをできるだけ小さくすることが必要であることに気づいた。しかしながら、光源を結像レンズの横に配置しようとすると、光源がレンズやイメージセンサやその間の光路にぶつかってしまう。そこで熟考したところ、光源(発光ダイオード)やリニアイメージセンサの部材の大きさの制限よりも更に上記二つの光線の間の角度の開きを小さくするにはミラー手段で光線を折り曲げることが有効であるとの天啓を得て、図1に示す構成を考え付いた。
【0011
図1(a)は、本発明の位置検出装置の要部である、検出面の一辺の左右にそれぞれ設けられる検出ユニット3内部のリニアイメージセンサ13、結像レンズ9、光源(発光ダイオード)11及びミラー12の位置関係を横から見た図である。図1(b)は、本発明の位置検出装置の要部である検出ユニット3内部のリニアイメージセンサ13、結像レンズ9、光源(発光ダイオード)11及びミラー12の位置関係を光線の進行方向(ペン2の位置からリニアイメージセンサ13を見る方向)から見た図である。図示するように光源を下向きに配置してミラー12でその進行方向をおよそ90度折り曲げることにより光線の行きと帰りとの検出面からの高さを同一にすることができる。しかも、図1(b)に示すように、ミラー12は、結像レンズ9のすぐ近くに配置することができる。図5、図6に示す再帰反射部材22は、光線が来た方向と同一方向に光線を返す機能を持つ部材であって、一般に用いられているものでは、方向が1度狂うと光の量が10分の1程度に減殺される。図1に示すように、ミラー12を結像レンズ9の直ぐ近くに配置することにより、行きと帰りの光路が良く揃い、光源11が2つ設けられることと相俟って、充分な信号の強度を得ることができる。
【0012
図1(c)は、実施形態におけるミラーをシリンドリカル凹面ミラーに変更した例を示す図である。図1(a)では、ミラーを平面ミラーとしていたが、広がりのある光源の光線を縦方向に集光して検出面に平行なビームとなるようにミラーをシリンドリカル曲面ミラーとすることもできる。このようにミラーを曲面ミラーとすることで、光源の光線を指示体のタッチ検出や座標検出に効率よく使用することができる。ここで、シリンドリカル曲面ミラーとは、筒状の曲面を持つミラーをいう。
【0013
【実施例】
次に図2以降を参照しつつ、本発明の実施例について説明する。図2は、シリンドリカルミラーを用い光源を左右に配置した実施例を示す図である。この図は平面図であり、検出ユニット3内部を上から見ている。結像レンズ9の左右両側にシリンドリカル凹面ミラー25をそれぞれ配置し、その両側に図のように光源11を配置する。結像レンズの像を結ぶ位置にはリニアイメージセンサ13が置かれる。この構成によりリニアイメージセンサ13に入射する光線の高さ(ペン2の位置を検出する検出面1からの高さ)と同一の高さ(あるいはほぼ同一の高さ)にて光源からの光を位置検出面に投げかけることが可能となる。
【0014
図3は、リニアイメージセンサを下向きに配置した実施例を示す図である。図3(a)は、光線を横から見ており、図3(b)は、光線の進行方向から見ている。この実施例では、光源11は、折り曲げられずにまっすぐ検出面に向いて光線を発している。リニアイメージセンサ13は、その受光面が下向きに配置される。そして、検出面1の周辺に設けられた再帰反射部材22からの再帰反射光線は、ミラー12によりほぼ90度折り曲げられてリニアイメージセンサ13に入射する。この実施例でも二つの光線の検出面からの高さはほぼ同一とすることができる。
【0015
図4は、結像レンズとミラー部材とを一つの光学部材にて構成した実施例を示す図である。この実施例は、図3に示したリニアイメージセンサを下向きに配置した実施例の変形実施例である。リニアイメージセンサを下向きに配置した場合、リニアイメージセンサに入射する光は、光線折り曲げ手段(ミラー手段)により折り曲げられ、その直後に結像レンズにより屈折される。本発明の発明者は、このミラーとレンズとを一体的な一つの光学部材として構成することにより、もっと本発明の検出ユニットの機構を単純化することができると考えた。図4(a)は、この実施例を横から見た図、図4(b)は、光線の進行方向から見た図である。図3に示すミラー12及び結像レンズ9の代わりにミラー付結像レンズ19を設けたのがこの発明の特徴である。
【0016
図7に、ミラー付結像レンズの製造方法を示す。図7(a)は凸レンズを光線の進行方向から見た図であり、図7(b)は凸レンズを横から見た図である。この凸レンズは、片面が球面であり、他方の面は平面となっている。このレンズを図に示すように、41,42,43の三つの部分に分けてカットし、41と43とを捨てて、42を取り出して用いる。さらに、平面側の端の部分を図7(c)に示すように45度の角度でカットする。こうしてできたのが図7(d)に示すミラー付結像レンズ19である。45度でカットした面はプリズムと同様の原理で全反射するので、ミラーとして機能する。なお、結像レンズ19の構成をわかりやすく説明するために、この製造方法を示したが、他の製造方法でも同じ物が製造できる。
【0017
本発明の光デジタイザは、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、左右の光源を複数のLEDの集合(複数ならべる)として実現することにより、大きな検出面を持つ光デジタイザを実現することができる。これは本発明により、光源のスペース面での制約が緩和されることにより実現可能な効果である。
【0018
【発明の効果】
以上、説明したように本発明の光デジタイザによれば、検出面に近いところでタッチ検出を行なうことが可能な光デジタイザを提供できるので、ペン先が検出面にタッチしたか離れたかを正確に検出できるので文字認識に適した光デジタイザを提供できる。また、指によるタッチ操作においても、検出面に指がタッチしたという操作者の実感と装置のタッチ検出とが一致するので操作性のよい光デジタイザを提供できるという優れた効果を奏し得る。
【図面の簡単な説明】
【図1】 本発明の光デジタイザの実施形態を示す図である。
【図2】 シリンドリカルミラーを用い光源を左右に配置した実施例を示す図である。
【図3】 リニアイメージセンサを下向きに配置した実施例を示す図である。
【図4】 結像レンズとミラー部材とを一つの光学部材にて構成した実施例を示す図である。
【図5】 リニアイメージセンサを用いた光デジタイザを示す図である。
【図6】 リニアイメージセンサを用いた光デジタイザの課題を説明する図である。
【図7】 結像レンズとミラー部材とを一つの光学部材にて構成する場合のその部材を製造する方法を説明する図である。
【符号の説明】
1 検出面
2 ペン
3 検出ユニット
9 結像レンズ
11 光源(発光ダイオード、LED)
12 ミラー
13 リニアイメージセンサ
19 ミラー付結像レンズ
22 再帰反射部材
24、25 シリンドリカル凹面ミラー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light-blocking optical digitizer that detects the pointing position coordinates of a pointer on a detection surface. In particular, the present invention relates to an optical digitizer having a reduced height at which it is detected that an indicator touches a detection surface.
[0002]
[Prior art]
In place of the resistive film type or electromagnetic induction type digitizer, an optical type digitizer having a more accurate detection capability has attracted attention. FIG. 5 shows an example of an optical digitizer using a linear image sensor. FIG. 5A is a schematic plan view of the optical digitizer. FIG.5 (b) is the side view of the partial cross section. As shown in the figure, when a pen 2 as an indicator is placed on the detection surface 1, the indicated position coordinates are detected by the principle of triangulation by two detection units 3 provided above the detection surface 1. is there. Each of the two detection units 3, as shown in FIG. 5 (b), has a configuration of arranging the LED light source 11 on the imaging lens 9 of the linear image sensor 13. When nothing is blocking the light on the detection surface 1, the light that has passed through the detection surface 1 and entered the retroreflective member 22 from the detection unit 3 passes through the reverse optical path to the detection unit 3. Come back. When the pen 2 or the like is placed on the detection surface 1, a part of the optical path of the light is blocked, and the detection unit 3 cannot be returned. Since this shadow portion can be imaged by the image sensor 13, the direction of the shadow is detected by the two detection units 3 and 3 , so that the direction in which the light is blocked can be detected. That is, if the direction in which the pen 2 exists can be detected by the detection units 3 and 3 at two different known positions, the indicated position coordinates of the pen 2 can be calculated by the principle of triangulation.
[0003]
[Problems to be solved by the invention]
However, in the example shown in FIG. 5, as shown in FIG. 6, the detection surface of the optical path of the outgoing light radiated from the light source 11 toward the detection surface 1 and the optical path of the return light reflected from the retroreflective member 22. LED light sources 11 before the pen touches the detection surface (with the pen floating) because the heights of the light sources are not matched and in particular the outgoing optical path is far away from the detection surface 1. Touch detection is performed at the time when the light beam emitted from the light and directed toward the retroreflective member 22 is blocked. For this reason, there is a problem that when a character such as a kanji is written with a pen, the character continues. Further, in the touch operation with a finger, touch detection is performed even when there is no actual touch on the detection surface, so that the operability is poor.
[0004]
In view of such circumstances, an object of the present invention is to provide an optical digitizer capable of performing touch detection near a detection surface.
[0005]
[Means for Solving the Problems]
In order to solve such a problem, a position detection device according to the present invention has a rectangular detection surface provided with retroreflective members on three sides excluding one side, and an indicator positioned on the detection surface. A light source that emits a light beam toward the detection surface at each end of the one side of the detection surface, an imaging unit that receives the retroreflected light from the retroreflective member, and the imaging unit to detect the designated position coordinates An imaging lens that forms an image of the retroreflected light provided on the front surface of the lens, and a shadow generated by the indicator located on the detection surface blocking the optical path is detected by each of the imaging means, and triangulation In the position detection device that calculates the coordinate position of the indicator according to the principle of
In the vicinity of the left and right sides of the imaging lens, the light beam emitted from the light source is located at a position where the height of the light beam emitted from the light source and the return light beam reflected by the retroreflective member from the detection surface is the same. Mirror means for bending a light beam toward the detection surface is provided.
[0006]
Further, the mirror means is a curved mirror, and may have a function of condensing or diffusing the light beam of the light source. The light source may be provided at the left and right positions of the imaging lens and the curved mirror, and emit light toward the curved mirror from a direction approximately parallel to the detection surface.
[0007]
A position detection device according to another aspect of the present invention has a rectangular detection surface provided with retroreflective members on three sides excluding one side, and the indication position coordinates of the indicator located on the detection surface are obtained. In order to detect, a light source that irradiates light toward the detection surface at both ends of the one side of the detection surface, an imaging unit that receives retroreflected light from the retroreflective member, and a front surface of the imaging unit And an imaging lens for imaging the retroreflected light, and a shadow generated by the indicator located on the detection surface blocking the optical path is detected by each imaging means, and based on the principle of triangulation In the position detection device that calculates the coordinate position of the indicator,
The light receiving surface of the imaging means is arranged in a direction perpendicular to the direction of the detection surface,
A mirror that folds the imaging field of the imaging means at a position in the vicinity of the light source where the outgoing light beam emitted from the light source and the return light beam reflected by the retroreflective member have the same height from the detection surface. Means are provided.
[0008]
The mirror means may be configured as a part of a lens member of the imaging lens.
[00 09 ]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Parts denoted by the same reference numerals as those used in the drawings represent the same thing.
[00 10 ]
FIG. 1 is a diagram showing a preferred embodiment of an optical digitizer that detects the coordinate position of an indicator based on the triangulation principle of the present invention. In order to solve the above problem, the inventor of the present invention needs to make the difference between the angle of the light beam emitted from the light source toward the detection surface and the angle at which the retroreflected light beam enters the linear image sensor as small as possible. I noticed. However, if the light source is arranged beside the imaging lens, the light source hits the lens, the image sensor, or the optical path therebetween. As a result of careful consideration, it is effective to bend the light beam with a mirror means in order to further reduce the opening of the angle between the two light beams rather than limiting the size of the light source (light emitting diode) or the member of the linear image sensor. I came up with the idea shown in Fig. 1.
[00 11 ]
FIG. 1A shows a linear image sensor 13, an imaging lens 9, and a light source (light emitting diode) 11 inside a detection unit 3 provided on the left and right sides of one side of the detection surface, which are the main parts of the position detection device of the present invention. 4 is a view of the positional relationship of the mirror 12 as viewed from the side. FIG. 1B shows the positional relationship among the linear image sensor 13, the imaging lens 9, the light source (light emitting diode) 11, and the mirror 12 in the detection unit 3, which is the main part of the position detection apparatus of the present invention, and the light beam traveling direction. It is the figure seen from (the direction which looks at the linear image sensor 13 from the position of the pen 2). As shown in the figure, by arranging the light source downward and bending the traveling direction thereof by the mirror 12 by approximately 90 degrees, the height from the detection surface of the outgoing and the return of the light beam can be made the same. Moreover, as shown in FIG. 1B, the mirror 12 can be disposed in the immediate vicinity of the imaging lens 9. The retroreflective member 22 shown in FIG. 5 and FIG. 6 is a member having a function of returning a light beam in the same direction as the direction of the light beam. Is reduced to about 1/10. As shown in FIG. 1, by arranging the mirror 12 in the immediate vicinity of the imaging lens 9, the optical paths for going and returning are well aligned, and in combination with the provision of two light sources 11, a sufficient signal can be obtained. Strength can be obtained.
[00 12 ]
FIG. 1C is a diagram illustrating an example in which the mirror in the embodiment is changed to a cylindrical concave mirror. In FIG. 1A, the mirror is a plane mirror. However, the mirror may be a cylindrical curved mirror so that the light rays of a wide light source are condensed in the vertical direction to form a beam parallel to the detection surface. Thus, by using a curved mirror as the mirror, it is possible to efficiently use the light beam of the light source for touch detection and coordinate detection of the indicator. Here, the cylindrical curved mirror refers to a mirror having a cylindrical curved surface.
[00 13 ]
【Example】
Next, an embodiment of the present invention will be described with reference to FIG. FIG. 2 is a diagram showing an embodiment in which light sources are arranged on the left and right using cylindrical mirrors. This figure is a plan view, and the inside of the detection unit 3 is viewed from above. Cylindrical concave mirrors 25 are arranged on both the left and right sides of the imaging lens 9, and the light source 11 is arranged on both sides as shown in the figure. A linear image sensor 13 is placed at a position connecting the images of the imaging lens. With this configuration, the light from the light source is emitted at the same height (or almost the same height) as the height of the light beam incident on the linear image sensor 13 (height from the detection surface 1 for detecting the position of the pen 2). It is possible to cast on the position detection surface.
[00 14 ]
FIG. 3 is a diagram showing an embodiment in which linear image sensors are arranged downward. 3A shows the light beam from the side, and FIG. 3B shows the light beam from the traveling direction. In this embodiment, the light source 11 emits a light beam directly toward the detection surface without being bent. The linear image sensor 13 has a light receiving surface disposed downward. The retroreflected light beam from the retroreflective member 22 provided around the detection surface 1 is bent by approximately 90 degrees by the mirror 12 and enters the linear image sensor 13. Also in this embodiment, the height of the two light beams from the detection surface can be made substantially the same.
[00 15 ]
FIG. 4 is a diagram showing an embodiment in which the imaging lens and the mirror member are configured by one optical member. This embodiment is a modified embodiment of the embodiment in which the linear image sensor shown in FIG. When the linear image sensor is arranged downward, the light incident on the linear image sensor is bent by the light beam bending means (mirror means), and immediately after that, is refracted by the imaging lens. The inventor of the present invention thought that the mechanism of the detection unit of the present invention can be further simplified by configuring the mirror and the lens as an integral optical member. FIG. 4A is a view of this embodiment as viewed from the side, and FIG. 4B is a view of the embodiment as viewed from the traveling direction of the light beam. A feature of the present invention is that an imaging lens 19 with a mirror is provided instead of the mirror 12 and the imaging lens 9 shown in FIG.
[00 16 ]
FIG. 7 shows a manufacturing method of the imaging lens with a mirror. FIG. 7A is a diagram of the convex lens viewed from the traveling direction of the light beam, and FIG. 7B is a diagram of the convex lens viewed from the side. This convex lens has a spherical surface on one side and a flat surface on the other side. As shown in the figure, this lens is cut into three parts 41, 42, and 43, and 41 and 43 are discarded, and 42 is taken out and used. Further, the end portion on the plane side is cut at an angle of 45 degrees as shown in FIG. The image forming lens 19 with a mirror shown in FIG. Since the surface cut at 45 degrees is totally reflected on the same principle as a prism, it functions as a mirror. In addition, in order to explain the configuration of the imaging lens 19 in an easy-to-understand manner, this manufacturing method has been shown.
[00 17 ]
The optical digitizer of the present invention is not limited to the illustrated examples described above, and it is needless to say that various modifications can be made without departing from the scope of the present invention. For example, an optical digitizer having a large detection surface can be realized by realizing the left and right light sources as a set of a plurality of LEDs. This is an effect that can be realized by the present invention by relaxing restrictions on the space of the light source.
[00 18 ]
【The invention's effect】
As described above, according to the optical digitizer of the present invention, since it is possible to provide an optical digitizer capable of performing touch detection near the detection surface, it is possible to accurately detect whether the pen tip has touched or moved away from the detection surface. Therefore, an optical digitizer suitable for character recognition can be provided. Further, even in a touch operation with a finger, since the operator's actual feeling that the finger touches the detection surface coincides with the touch detection of the apparatus, an excellent effect that an optical digitizer with good operability can be provided can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of an optical digitizer according to the present invention.
FIG. 2 is a diagram showing an embodiment in which light sources are arranged on the left and right sides using cylindrical mirrors.
FIG. 3 is a diagram showing an embodiment in which linear image sensors are arranged downward.
FIG. 4 is a diagram illustrating an embodiment in which an imaging lens and a mirror member are configured by one optical member.
FIG. 5 is a diagram showing an optical digitizer using a linear image sensor.
FIG. 6 is a diagram illustrating a problem of an optical digitizer using a linear image sensor.
FIG. 7 is a diagram for explaining a method of manufacturing an imaging lens and a mirror member when the optical lens and the mirror member are constituted by one optical member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Detection surface 2 Pen 3 Detection unit 9 Imaging lens 11 Light source (light emitting diode, LED)
12 Mirror 13 Linear Image Sensor 19 Imaging Lens 22 with Mirror Retroreflective members 24 and 25 Cylindrical concave mirror

Claims (5)

一辺を除く周囲三辺に再帰反射部材が設けられた長方形形状の検出面を有し、該検出面上に位置する指示体の指示位置座標を検出すべく、前記検出面の前記一辺の両端部であって検出面から僅かに上方のそれぞれの位置に前記検出面上を通過し前記検出面の直角に交わる二辺に設けられた前記再帰反射部材に向かう光線を発する光源と、前記再帰反射部材からの再帰反射光を受けるイメージセンサから成る撮像手段と、該撮像手段の前面に設けられ前記再帰反射光を結像する結像レンズとを有し、前記検出面上に位置する指示体が光路を遮断することにより生じる影を前記各撮像手段により検出し、三角測量の原理により指示体の座標位置を算出する位置検出装置において、
前記結像レンズの左右近傍で、前記検出面に対して横向きに設けられた前記光源が発する行きの光線と前記再帰反射部材により反射された帰りの光線の前記検出面からの各高さが同一となる位置に、前記光源が発する行きの光線の大部分を前記再帰反射部材に向けて折り曲げるミラー手段を備えることを特徴とする位置検出装置。
A rectangular detection surface provided with retroreflective members on three sides excluding one side, and both end portions of the one side of the detection surface to detect the indicated position coordinates of the indicator located on the detection surface the respective positions slightly upward from the detection surface a is a light source that emits toward Cow beam to the retroreflective member provided to the two sides passes over the detection plane intersecting at a right angle of the detection surface, the recursive An indicator located on the detection surface, having an imaging unit comprising an image sensor that receives retroreflected light from a reflecting member, and an imaging lens that is provided in front of the imaging unit and forms an image of the retroreflected light In the position detection device that detects the shadow caused by blocking the optical path by each imaging means, and calculates the coordinate position of the indicator according to the principle of triangulation,
In the vicinity of the left and right sides of the imaging lens, the height of the outgoing light beam emitted from the light source provided sideways with respect to the detection surface and the return light beam reflected by the retroreflective member from the detection surface are the same. A position detecting device, comprising: mirror means for bending most of the light rays emitted from the light source toward the retroreflective member at a position where
請求項1に記載の位置検出装置であって、
前記ミラー手段は曲面ミラーであって、前記光源の光線を集光または拡散する機能をも併せ持つものである位置検出装置。
The position detection device according to claim 1,
The position detecting device, wherein the mirror means is a curved mirror and has a function of condensing or diffusing the light beam of the light source.
請求項2に記載の位置検出装置であって、
前記光源は、前記結像レンズと前記曲面ミラーの左右の位置に備えられ、おおよそ前記検出面に平行な方向から該曲面ミラーに向かって光線を発する位置検出装置。
The position detection device according to claim 2,
The light source is provided at the left and right positions of the imaging lens and the curved mirror, and emits light toward the curved mirror from a direction approximately parallel to the detection surface.
一辺を除く周囲三辺に再帰反射部材が設けられた長方形形状の検出面を有し、該検出面上に位置する指示体の指示位置座標を検出すべく、前記検出面の前記一辺の両端部であって検出面から僅かに上方のそれぞれの位置に、前記検出面上を通過し前記検出面の直角に交わる二辺に設けられた前記再帰反射部材に向かう光線を発する光源と、前記再帰反射部材からの再帰反射光を受けるイメージセンサから成る撮像手段と、該撮像手段の前面に設けられ前記再帰反射光を結像する結像レンズとを有し、前記検出面上に位置する指示体が光路を遮断することにより生じる影を前記各撮像手段により検出し、三角測量の原理により指示体の座標位置を算出する位置検出装置において、
前記結像レンズの左右近傍で、前記検出面に対して下向きに設けられた前記光源が発する行きの光線と前記再帰反射部材により反射された帰りの光線の前記検出面からの各高さが同一となる位置に、前記光源が発する行きの光線の大部分を前記再帰反射部材に向けて折り曲げるミラー手段を備えることを特徴とする位置検出装置。
A rectangular detection surface provided with retroreflective members on three sides excluding one side, and both end portions of the one side of the detection surface to detect the indicated position coordinates of the indicator located on the detection surface A light source that emits a light beam directed to the retroreflective member provided on two sides passing through the detection surface and intersecting at right angles to the detection surface at respective positions slightly above the detection surface, and the retroreflection An indicator located on the detection surface, the imaging means including an image sensor configured to receive retroreflected light from a member, and an imaging lens provided on a front surface of the imaging means for imaging the retroreflected light; In the position detection device that detects the shadow caused by blocking the optical path by each imaging means, and calculates the coordinate position of the indicator according to the principle of triangulation,
In the vicinity of the left and right sides of the imaging lens, the height of the outgoing light beam emitted from the light source provided downward with respect to the detection surface and the return light beam reflected by the retroreflective member from the detection surface are the same. A position detecting device, comprising: mirror means for bending most of the light rays emitted from the light source toward the retroreflective member at a position where
請求項4に記載の位置検出装置であって、
前記ミラー手段は曲面ミラーであって、前記光源の光線を集光または拡散する機能をも併せ持つものである位置検出装置。
The position detection device according to claim 4,
The position detecting device, wherein the mirror means is a curved mirror and has a function of condensing or diffusing the light beam of the light source.
JP2000319276A 2000-10-19 2000-10-19 Position detection device Expired - Fee Related JP3931030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000319276A JP3931030B2 (en) 2000-10-19 2000-10-19 Position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000319276A JP3931030B2 (en) 2000-10-19 2000-10-19 Position detection device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006319105A Division JP4053071B2 (en) 2006-11-27 2006-11-27 Position detection device

Publications (2)

Publication Number Publication Date
JP2002132435A JP2002132435A (en) 2002-05-10
JP3931030B2 true JP3931030B2 (en) 2007-06-13

Family

ID=18797766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000319276A Expired - Fee Related JP3931030B2 (en) 2000-10-19 2000-10-19 Position detection device

Country Status (1)

Country Link
JP (1) JP3931030B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118313A1 (en) 2010-03-24 2011-09-29 株式会社日立ソリューションズ Coordinate input device, and program
WO2011152088A1 (en) 2010-06-01 2011-12-08 株式会社日立ソリューションズ Position detecting device and image processing system
EP2466344A1 (en) 2010-12-20 2012-06-20 Hitachi Solutions, Ltd. Reflecting plate and reflecting frame
US9044995B2 (en) 2011-09-30 2015-06-02 Hitachi Solutions, Ltd. Reflection frame-equipped sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590296B2 (en) * 2005-04-15 2010-12-01 キヤノン株式会社 Coordinate input device
EP2524285B1 (en) * 2010-01-14 2022-06-29 SMART Technologies ULC Interactive system with successively activated illumination sources
WO2016098502A1 (en) * 2014-12-17 2016-06-23 株式会社リコー Coordinate detecting apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118313A1 (en) 2010-03-24 2011-09-29 株式会社日立ソリューションズ Coordinate input device, and program
WO2011152088A1 (en) 2010-06-01 2011-12-08 株式会社日立ソリューションズ Position detecting device and image processing system
EP2466344A1 (en) 2010-12-20 2012-06-20 Hitachi Solutions, Ltd. Reflecting plate and reflecting frame
US9044995B2 (en) 2011-09-30 2015-06-02 Hitachi Solutions, Ltd. Reflection frame-equipped sheet

Also Published As

Publication number Publication date
JP2002132435A (en) 2002-05-10

Similar Documents

Publication Publication Date Title
JP3830121B2 (en) Optical unit for object detection and position coordinate input device using the same
JP3807779B2 (en) Coordinate detection device
JP4094794B2 (en) Coordinate detection apparatus, information storage medium, and coordinate detection method
JP3905670B2 (en) Coordinate input detection apparatus, information storage medium, and coordinate input detection method
JP4208394B2 (en) Coordinate input device
JP2003114755A5 (en)
JP2001265516A (en) Coordinate input device
KR20180037749A (en) Display apparatus
JP4054847B2 (en) Optical digitizer
JP2005107607A (en) Optical position detecting apparatus
JP3931030B2 (en) Position detection device
US8854338B2 (en) Display apparatus and method of controlling display apparatus
JP2000322201A5 (en)
JP4053071B2 (en) Position detection device
JP4034328B2 (en) Luminescence detection device and coordinate detection device
TWI457805B (en) Device and method determing position of object
JP2004038528A (en) Optical coordinate detecting device
JP3846544B2 (en) Optical digitizer
CN102096518A (en) Electronic equipment and input method
TW201102876A (en) Optical navigation device with phase grating for beam steering
WO2016098502A1 (en) Coordinate detecting apparatus
JP4031594B2 (en) Coordinate input / detection device
JP2001056738A (en) Coordinate input device
TWI423100B (en) Optical sensing system
US20220146737A1 (en) Input device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees