JP3930918B2 - Dielectric multilayer substrate coil - Google Patents

Dielectric multilayer substrate coil Download PDF

Info

Publication number
JP3930918B2
JP3930918B2 JP01296195A JP1296195A JP3930918B2 JP 3930918 B2 JP3930918 B2 JP 3930918B2 JP 01296195 A JP01296195 A JP 01296195A JP 1296195 A JP1296195 A JP 1296195A JP 3930918 B2 JP3930918 B2 JP 3930918B2
Authority
JP
Japan
Prior art keywords
multilayer substrate
dielectric multilayer
conductor film
coil
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01296195A
Other languages
Japanese (ja)
Other versions
JPH08203738A (en
Inventor
好生 岡田
昌雄 岩田
宏祐 堀井
友和 駒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP01296195A priority Critical patent/JP3930918B2/en
Publication of JPH08203738A publication Critical patent/JPH08203738A/en
Application granted granted Critical
Publication of JP3930918B2 publication Critical patent/JP3930918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、携帯電話に用いられるフィルタのLC直列共振回路を構成するインダクタLに関するものである。
【0002】
【従来の技術】
従来、800〜900(MHz)帯の携帯電話用フィルタの共振器は、誘電体共振器を用いてフィルタが構成され、実現されている。
【0003】
しかしながら、この誘電体共振器では、小型化及び低コスト化の要求に対して、満足な状態でないのが現状である。
【0004】
この小型化及び低コスト化の要求に対して、LC共振器を用いたLCフィルタが検討されている。800〜900(MHz)帯におけるLCフィルタは、減衰極形成用として、直列共振回路を用いる場合が多い。
【0005】
この直列共振のL値として、等価L値で100(nH)、等価Q値で600以上必要である。この直列共振のLとして、図4に示される空芯コイル101、図5に示される方形スパイラル状のコイル201及び図6に示されるストリップライン303が用いられている。
【0006】
なお、図4において、102は空芯コイル101のケース、103は空芯コイル101のリード端子、図6において、301は誘電体多層基板、302は入出力端子、304はアース面である。
【0007】
【発明が解決しようとする課題】
しかしながら、上記した図4に示す空芯コイル101では、L値は略100nH、Q値は7600であり、前述した電気的特性は満足するが、形状が大きく小型化上満足できるものではない。
【0008】
また、図5に示す方形スパイラルコイル201では、フィルタを構成するLC直列共振器のLに必要なQ値、つまり、600以上を満足できるものではない。
【0009】
更に、図6に示すストリップライン303も同様に、方形スパイラルコイル201以上のQ値ではあるが、必要Q値、つまり、600以上を満足できるものではない。
【0010】
本発明は、上記問題点を除去し、形状を小型化するとともに、フィルタを構成するLC直列共振器のLとQ値を満足させることができる誘電体多層基板コイルを提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
(A)移動体通信機器用フィルタに用いるコイルにおいて、誘電体多層基板(1)と、この誘電体多層基板(1)の上面に形成される入力端子導体膜(2)と、出力端子導体膜(6)この入力端子導体膜と出力端子導体膜との間に設けられた複数の線状導体膜(3,4,5)と、前記誘電体多層基板(1)の裏面に設けられた複数の線状導体膜(7,8,9,10)と、前記入力端子導体膜(2)と前記誘電体多層基板(1)の裏面に設けられた複数の線状導体膜のうちの一端に位置するもの(7)とを接続し、この入力端子導体膜と接続された裏面の線状導体膜(7)と前記誘電体多層基板(1)の上面に設けられ、前記入力端子導体膜と隣り合って配置された線状導体膜(3)とを接続し、順次前記誘電体多層基板(1)の裏面に設けられた線状導体膜と前記誘電体多層基板(1)の上面に設けられた線状導体膜とを接続し、前記誘電体多層基板の裏面に設けられた複数の線状導体膜のうちの他端側に位置するもの(10)と前記出力端子導体膜(6)とを接続することで巻回されるコイル状導体路を形成すべく、前記上面の線状導体膜と前記下面の線状導体膜とを電気的に接続するために前記誘電体多層基板(1)に設けられた複数のスルーホール(11〜18)と、前記コイル状導体路を取り囲むべく、前記誘電体多層基板(1)の上面及び裏面の周囲に設けられた接地面(21)と、前記誘電体多層基板(1)の線状導体膜の巻回内部に配置されるように、該誘電体多層基板(1)内に設けられた空間部(31)と、を有するようにしたものである。
【0012】
(B)上記(1)記載の誘電体多層基板コイルであって、前記誘電体多層基板はガラスエポキシ材あるいはポリイミド材からなるものとしたものである。
【0013】
【作用】
上記(A)記載の誘電体多層基板コイルによれば、空芯コイルを誘電体多層基板により近似的に実現することができる。すなわち、スルーホールを介してコイルの巻線が1回毎に閉じており、従来のような、ストリップラインや方形スパイラルコイルでは得られない高Q値を実現することができる。特に、誘電体多層基板内に中間部を設けていることで、より空芯コイルに近づけることができ、従来のような、ストリップラインや方形スパイラルコイルでは得られない、更なる高Q値を実現することができる。
【0015】
【実施例】
以下、本発明の第1実施例を図面を参照しながら説明する。
【0016】
図1は本発明の第1実施例を示す誘電体多層基板コイルの上面斜視図、図2はその誘電体多層基板コイルの裏面斜視図、図3は図1のA−A線断面図である。
【0017】
これらの図に示すように誘電体多層基板1の上面には、入力端子導体膜2、線状導体膜3,4,5及び出力端子導体膜6が形成されている。
【0018】
一方、誘電体多層基板1の裏面には線状導体膜7,8,9,10が形成されている。
【0019】
更に、入力端子導体膜2の端部と線状導体膜7の一方端を接続するためにスルーホール11、線状導体膜7の他方端と線状導体膜3の一方端を接続するためにスルーホール12、線状導体膜3の他方端と線状導体膜8の一方端を接続するためにスルーホール13、線状導体膜8の他方端と線状導体膜4の一方端を接続するためにスルーホール14、線状導体膜4の他方端と線状導体膜9の一方端を接続するためにスルーホール15、線状導体膜9の他方端と線状導体膜5の一方端を接続するためにスルーホール16、線状導体膜5の他方端と線状導体膜10の一方端を接続するためにスルーホール17、線状導体膜10の他方端と出力端子導体膜6の一方端とを接続するためにスルーホール18がそれぞれ形成され、上面の入力端子導体膜2−線状導体膜7−線状導体膜3−線状導体膜8−線状導体膜4−線状導体膜9−線状導体膜5−線状導体膜10−出力端子導体膜6と接続されている。なお、21は接地面である。
【0020】
図7は本発明の第2実施例を示す誘電体多層基板コイルの上面斜視図、図8はその誘電体多層基板コイルの裏面斜視図、図9は図7のB−B線断面図である。第1実施例と同じ部分には同一番号を付して、その説明は省略する。
【0021】
この第2実施例と第1実施例との異なる部分は、図9から明らかなように、誘電体基板1の上面に形成される線状導体膜3,4,5と、裏面に形成される線状導体膜7,8,9,10の間の誘電体基板1に空間部31を形成した構造になっている。すなわち、この実施例では、空芯コイルの特性を誘電体多層基板コイルにより実現するようにしている。
【0022】
以下、本発明の誘電体多層基板コイルと従来のコイルとの比較を行う。
【0023】
まず、図4に示す空芯コイルのL値及びQ値は、次式に示される。
【0024】
L=k1 ・n2 ・d2 {1−(d/D)2 }b …(1)
ここで、n=1/τ:単位長さ当たりの巻数
b:コイルの長さ
d:コイルの巻線内径
H:ケースの高さ
D:ケースの幅
とすると、ソレノイドコイルの最適巻線条件として、
1.0<b/d<4, 0.4<d0 /τ<0.6(b/d=1.5),
0.5<d0 /τ<0.7(b/d=4.0),
τ<d/2.0 …(2)
で与えられる。
【0025】
共振器の無負荷Quは、
Qu≒61.0・D・(fO 1/2 ・{(d/D)−(d/D)3 }/
{1.5+(d/D)3
≒20.0・D・(fO 1/2 …(3)
ただし、0.4<d/D<0.6,
1.0<b/d<3.0
で与えられる。
【0026】
ここで、D=1.0(インチ),
d=0.55(インチ)
と設定すると、基準化素子値は式(1)より、
L=1.1112 ×0.552 ×(1.0−0.552 )×0.825
=0.215
となり、fO =900(MHz),
O =50(Ω)において、
L=1.9(nH)
また、この形状におけるQuは式(3)より、
Qu=20.0×1.0×√900=600
となる。
【0027】
次に、図5に示す方形スパイラルコイルのLH 値及びQH 値は次式で表される。
【0028】
H =8.5×10-10 ×dO ×n5/3 (nH)
=8.5×10-10 ×A/W5/3 …(4)
ここで、dO :外周の辺長(cm)
n:巻数
W=S
A:コイルの表面積(cm2
W:導体幅(cm)
S:導体間隔(cm)
H =12.4×(f/fO )×(t2 /ρ)×(1/n4/a)×104
…(5)
ここで、t:導体膜の厚さ(cm)
ρ:固有抵抗
となる。
【0029】
ここで、A=dO =1.0×1.0=1.00(cm2 ),
W=0.04(cm),
n=10
と設定すると、式(4)より、LH 値は、
H =8.5×0.1×1.00=105/3 =39.4(nH)
となり、t=0.01(cm),
d=0.01(cm),
f=109 (Hz),
ρ−1.071×10-3×d×(f)1/2
と設定すると、
H =12.4×(0.01)2 ×104 /(1.071×0.01×
10-3×√109)=36.6
となる。
【0030】
次に、図6に示されるストリップラインの等価LS 値及び等価QS 値を算出する。
【0031】
図6(a)のストリップラインは、図6(b)に示すように、等価回路として表され、この図6について、等価LS 値及び等価QS 値は次式で示される。
【0032】
λ/2,短絡線路
S =π・ZO /(2・WO )(nH) …(6)
ここで、ZO :特性インピーダンス
O :角共振周波数(=2πfO ,fO :共振周波数)
S =π/(2・α・l) …(7)
ここで、α:線路損失
l:線路長
ここで、特性インピーダンスZO =50(Ω)
共振周波数fO =109 (Hz)
と設定すれば、等価LS 値は、式(6)より、
S =π×50/(2×2×π×109 )=12.5(nH)
となり、等価QS 値は、109 (Hz)における線路長l=0.15(m),線路損失α=0.15dBと設定すると、式(7)より、
S =π/(2×0.30×0.075)=69.8
となる。
【0033】
以上の計算例を表1(空芯コイル)に示し、表2にストリップラインによる誘電体多層基板での等価L値と等価Q値の実現例を示す。
【0034】
【表1】

Figure 0003930918
【0035】
【表2】
Figure 0003930918
【0036】
表1において、図4の空芯コイルの回路では、Lは1.9nH、Qは600、f0 は1000MHz、図5の方形スパイラルコイルの回路では、Lは39.4nH、Qは36.6、f0 は1000MHz、図6のストリップラインの回路では、Lは12.5nH、Qは69.8、f0 は1000MHzである。
【0037】
また、表2において、ストリップラインによる誘電体多層基板での等価L値と等価Q値の実現例では、Lは5.92nH、Qは92.5、f0 は950MHzである。
【0038】
また、表3に本発明の第1実施例の誘電体多層基板内がガラスエポキシ材(誘電率4.8)とポリイミド材(誘電率3.3)で示された基板コイルLのデータを示し、表4に本発明の第2実施例より得た測定値のL値及びQ値を示す。
【0039】
【表3】
Figure 0003930918
【0040】
【表4】
Figure 0003930918
【0041】
表3において、本発明のガラスエポキシ材(誘電率4.8)の場合は、Lは74.6nH、Qは225、f0 は888.3MHz、αP は17.6dBであり、ポリイミド材(誘電率3.3)の場合は、Lは78nH、Qは371、f0 は895.3MHz、αP は21.0dBである。
【0042】
表4において、本発明の第2実施例による基板内に空間部を形成した場合(図7乃至図9)、Lは76.9nH、Qは432、f0 は895.3MHz、αP は22.3dBである。
【0043】
表4に示されるように、本発明の第2実施例による基板内に空間部を形成した方のQは、L≒70(nH)で約20%の増大がみられる。
【0044】
表1、表2及び表4から明らかなように、Q値について比較すると、本発明の基板コイルLは、従来の図5に示す方形スパイラルコイルの約10倍高く、従来の図6に示すストリップラインの誘電体多層基板で実現したLのQ値の4〜6倍高く、従来の図4に示す空芯コイルのQ値に近い値が得られている。これは、空芯コイルと方形スパイラルコイルの電磁界分布の差によるものである。
【0045】
前記空芯コイルは1巻き毎に閉空間を形成し、それにより磁束が閉じ込められて漏れ磁束が少なく、前記方形スパイラルコイルは1巻き毎に閉空間を形成しないので、漏れ磁束が多くなる。
【0046】
本発明の第1実施例及び第2実施例は、図1〜図3及び図7〜図9に示すように、基板コイルLは誘電体多層基板の上面からスルーホールを介して裏面に這わすことで、空芯コイルの電磁界分布に近似させている。
【0047】
従って、本発明の誘電体多層基板コイルLは、近似空芯コイルを構成し、高いQ値が得られ、小型、低コスト、高性能が満足できる。
【0048】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0049】
【発明の効果】
以上、詳細に説明したように、
求項1記載の発明によれば、空芯コイルを誘電体多層基板により近似的に実現するものである。すなわち、スルーホールを介してコイルの巻線が1回毎に閉じており、従来のような、ストリップラインや方形スパイラルコイルでは得られない高Q値を実現することができる。特に、誘電体多層基板内に中間部を設けていることで、より空芯コイルに近づけることができ、従来のような、ストリップラインや方形スパイラルコイルでは得られない、更なる高Q値を実現することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例を示す誘電体多層基板コイルの上面斜視図である。
【図2】 本発明の第1実施例を示す誘電体多層基板コイルの裏面斜視図である。
【図3】 図1のA−A線断面図である。
【図4】 従来の空芯コイルの構成図である。
【図5】 従来の方形スパイラルコイルの構成図である。
【図6】 従来の多層基板によるストリップラインの構成図である。
【図7】 本発明の第2実施例を示す誘電体多層基板コイルの上面斜視図である。
【図8】 本発明の第2実施例を示す誘電体多層基板コイルの裏面斜視図である。
【図9】 図7のB−B線断面図である。
【符号の説明】
1 誘電体多層基板
2 入力端子導体膜
3,4,5,7,8,9,10 線状導体膜
6 出力端子導体膜
11,12,13,14,15,16,17,18 スルーホール
21 接地面
31 空間部[0001]
[Industrial application fields]
The present invention relates to an inductor L constituting an LC series resonance circuit of a filter used in a mobile phone.
[0002]
[Prior art]
Conventionally, a resonator for a mobile phone filter in the 800 to 900 (MHz) band is realized by forming a filter using a dielectric resonator.
[0003]
However, at present, this dielectric resonator is not in a satisfactory state with respect to the demands for miniaturization and cost reduction.
[0004]
In response to the demands for miniaturization and cost reduction, an LC filter using an LC resonator has been studied. An LC filter in the 800 to 900 (MHz) band often uses a series resonance circuit for forming an attenuation pole.
[0005]
As the L value of this series resonance, an equivalent L value of 100 (nH) and an equivalent Q value of 600 or more are required. As the series resonance L, the air-core coil 101 shown in FIG. 4, the rectangular spiral coil 201 shown in FIG. 5, and the strip line 303 shown in FIG. 6 are used.
[0006]
4, 102 is a case of the air-core coil 101, 103 is a lead terminal of the air-core coil 101, 301 is a dielectric multilayer substrate, 302 is an input / output terminal, and 304 is a ground plane.
[0007]
[Problems to be solved by the invention]
However, in the above-described air-core coil 101 shown in FIG. 4, the L value is approximately 100 nH and the Q value is 7600, which satisfies the above-described electrical characteristics, but is not satisfactory in terms of size and size.
[0008]
Further, the square spiral coil 201 shown in FIG. 5 cannot satisfy the Q value necessary for L of the LC series resonator constituting the filter, that is, 600 or more.
[0009]
Further, the strip line 303 shown in FIG. 6 similarly has a Q value higher than that of the rectangular spiral coil 201 but does not satisfy the necessary Q value, that is, 600 or higher.
[0010]
An object of the present invention is to provide a dielectric multilayer substrate coil that eliminates the above-described problems, reduces the size, and satisfies the L and Q values of the LC series resonator constituting the filter. .
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
(A) In a coil used for a filter for a mobile communication device, a dielectric multilayer substrate (1), an input terminal conductor film (2) formed on the upper surface of the dielectric multilayer substrate (1), and an output terminal conductor film (6) A plurality of linear conductor films (3, 4, 5) provided between the input terminal conductor film and the output terminal conductor film, and a plurality of conductor films provided on the back surface of the dielectric multilayer substrate (1). Of the linear conductor films (7, 8, 9, 10), the input terminal conductor film (2) and one end of the plurality of linear conductor films provided on the back surface of the dielectric multilayer substrate (1). A linear conductor film (7) on the back surface connected to the input terminal conductor film and the upper surface of the dielectric multilayer substrate (1), and connected to the input terminal conductor film; It is arranged adjacent the linear conductive film and (3) connect, et provided on the back surface of the sequentially the dielectric multilayer substrate (1) And a line conductor layer and said dielectric line conductor film provided on the upper surface of the multilayer substrate (1) is connected, the other of the plurality of linear conductive film provided on the back surface of the dielectric multilayer substrate In order to form a coiled conductor path wound by connecting the output terminal conductor film (6) with the one located on the end side (10), the linear conductor film on the upper surface and the linear pattern on the lower surface and said dielectric plurality of through holes provided in the multilayer substrate (1) (11-18) in order to electrically connect the conductive film, to surround the coiled conductor, said dielectric multilayer substrate (1 ) And the dielectric multilayer substrate (1) so as to be disposed inside the winding of the linear conductor film of the dielectric multilayer substrate (1). And a space portion (31) provided inside .
[0012]
(B) The dielectric multilayer substrate coil according to (1), wherein the dielectric multilayer substrate is made of a glass epoxy material or a polyimide material .
[0013]
[Action]
According to the dielectric multilayer substrate coil described in (A) above, the air-core coil can be approximately realized by the dielectric multilayer substrate. That is, the winding of the coil is closed every time through the through hole, and a high Q value that cannot be obtained by a stripline or a rectangular spiral coil as in the conventional case can be realized. In particular, by providing an intermediate part in the dielectric multilayer substrate, it can be made closer to an air-core coil, realizing a higher Q value that cannot be obtained with conventional stripline or rectangular spiral coils. can do.
[0015]
【Example】
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
[0016]
1 is a top perspective view of a dielectric multilayer substrate coil according to a first embodiment of the present invention, FIG. 2 is a rear perspective view of the dielectric multilayer substrate coil, and FIG. 3 is a cross-sectional view taken along line AA of FIG. .
[0017]
As shown in these drawings, an input terminal conductor film 2, linear conductor films 3, 4, 5 and an output terminal conductor film 6 are formed on the upper surface of the dielectric multilayer substrate 1.
[0018]
On the other hand, linear conductor films 7, 8, 9, and 10 are formed on the back surface of the dielectric multilayer substrate 1.
[0019]
Further, in order to connect the end of the input terminal conductor film 2 and one end of the linear conductor film 7, the through hole 11, the other end of the linear conductor film 7 and one end of the linear conductor film 3 are connected. The through-hole 13, the other end of the linear conductor film 8, and the one end of the linear conductor film 4 are connected to connect the other end of the linear conductor film 3 and one end of the linear conductor film 8. In order to connect the through hole 14, the other end of the linear conductor film 4 and one end of the linear conductor film 9, the through hole 15, the other end of the linear conductor film 9 and one end of the linear conductor film 5 are connected. To connect the through hole 16, the other end of the linear conductor film 5 and one end of the linear conductor film 10 to connect the through hole 17, the other end of the linear conductor film 10 and one of the output terminal conductor films 6 Through holes 18 are respectively formed to connect the ends, and the input terminal conductor film 2 on the upper surface. Linear conductor film 7-Linear conductor film 3-Linear conductor film 8-Linear conductor film 4-Linear conductor film 9-Linear conductor film 5-Linear conductor film 10-Output terminal conductor film 6 ing. Reference numeral 21 denotes a ground plane.
[0020]
7 is a top perspective view of a dielectric multilayer substrate coil showing a second embodiment of the present invention, FIG. 8 is a rear perspective view of the dielectric multilayer substrate coil, and FIG. 9 is a sectional view taken along line BB of FIG. . The same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0021]
As is apparent from FIG. 9, the differences between the second embodiment and the first embodiment are formed on the linear conductor films 3, 4, 5 formed on the upper surface of the dielectric substrate 1, and on the back surface. The space 31 is formed in the dielectric substrate 1 between the linear conductor films 7, 8, 9, 10. That is, in this embodiment, the characteristics of the air-core coil are realized by the dielectric multilayer substrate coil.
[0022]
Hereinafter, the dielectric multilayer substrate coil of the present invention is compared with the conventional coil.
[0023]
First, the L value and Q value of the air-core coil shown in FIG.
[0024]
L = k 1 · n 2 · d 2 {1- (d / D) 2 } b (1)
Where n = 1 / τ: the number of turns per unit length
b: Length of coil
d: Coil winding inner diameter
H: Case height
D: As the case width, as the optimum winding condition of the solenoid coil,
1.0 <b / d <4, 0.4 <d 0 /τ<0.6 (b / d = 1.5),
0.5 <d 0 /τ<0.7 (b / d = 4.0),
τ <d / 2.0 (2)
Given in.
[0025]
The unloaded Qu of the resonator is
Qu≈61.0 · D · (f O ) 1/2 · {(d / D) − (d / D) 3 } /
{1.5+ (d / D) 3 }
≒ 20.0 ・ D ・ (f O ) 1/2 (3)
However, 0.4 <d / D <0.6,
1.0 <b / d <3.0
Given in.
[0026]
Here, D = 1.0 (inch),
d = 0.55 (inch)
Is set, the normalized element value is calculated from the equation (1).
L = 1.111 2 × 0.55 2 × (1.0−0.55 2 ) × 0.825
= 0.215
Next, f O = 900 (MHz) ,
At R O = 50 (Ω),
L = 1.9 (nH)
In addition, Qu in this shape is obtained from the equation (3):
Qu = 20.0 × 1.0 × √900 = 600
It becomes.
[0027]
Next, the L H value and Q H value of the rectangular spiral coil shown in FIG.
[0028]
L H = 8.5 × 10 −10 × d O × n 5/3 (nH)
= 8.5 × 10 −10 × A / W 5/3 (4)
Where d O : peripheral side length (cm)
n: Number of turns
W = S
A: Coil surface area (cm 2 )
W: Conductor width (cm)
S: Conductor spacing (cm)
Q H = 12.4 × (f / f O ) × (t 2 / ρ) × (1 / n 4 / a) × 10 4
... (5)
Where t: thickness of conductor film (cm)
ρ: Specific resistance.
[0029]
Here, A = d O = 1.0 × 1.0 = 1.00 (cm 2 ),
W = 0.04 (cm),
n = 10
Is set, the L H value is
L H = 8.5 × 0.1 × 1.00 = 10 5/3 = 39.4 (nH)
T = 0.01 (cm),
d = 0.01 (cm),
f = 10 9 (Hz),
ρ-1.071 × 10 −3 × d × (f) 1/2
To set
Q H = 12.4 × (0.01) 2 × 10 4 /(1.071×0.01×
10 −3 × √109) = 36.6
It becomes.
[0030]
Next, the equivalent L S value and equivalent Q S value of the stripline shown in FIG. 6 are calculated.
[0031]
The strip line in FIG. 6A is represented as an equivalent circuit as shown in FIG. 6B, and the equivalent L S value and the equivalent Q S value for this FIG.
[0032]
λ / 2, short circuit line L S = π · Z O / (2 · W O ) (nH) (6)
Here, Z O : characteristic impedance W O : angular resonance frequency (= 2πf O , f O : resonance frequency)
Q S = π / (2 · α · l) (7)
Where α: Line loss
l: Line length Here, characteristic impedance Z O = 50 (Ω)
Resonance frequency f O = 10 9 (Hz)
Is set, the equivalent L S value is obtained from equation (6):
L S = π × 50 / (2 × 2 × π × 10 9 ) = 12.5 (nH)
Next, equivalent Q S value is 10 9 line length l = 0.15 in (Hz) (m), by setting the line loss alpha = 0.15 dB, from the equation (7),
Q S = π / (2 × 0.30 × 0.075) = 69.8
It becomes.
[0033]
An example of the above calculation is shown in Table 1 (air-core coil), and Table 2 shows an implementation example of an equivalent L value and an equivalent Q value in a dielectric multilayer substrate by strip lines.
[0034]
[Table 1]
Figure 0003930918
[0035]
[Table 2]
Figure 0003930918
[0036]
In Table 1, in the air core coil circuit of FIG. 4, L is 1.9 nH, Q is 600, f 0 is 1000 MHz, and in the rectangular spiral coil circuit of FIG. 5, L is 39.4 nH and Q is 36.6. , F 0 is 1000 MHz, and in the stripline circuit of FIG. 6, L is 12.5 nH, Q is 69.8, and f 0 is 1000 MHz.
[0037]
Further, in Table 2, in an example of realizing an equivalent L value and an equivalent Q value on a dielectric multilayer substrate by stripline, L is 5.92 nH, Q is 92.5, and f 0 is 950 MHz.
[0038]
Table 3 shows data of the substrate coil L in which the inside of the dielectric multilayer substrate of the first embodiment of the present invention is indicated by a glass epoxy material (dielectric constant 4.8) and a polyimide material (dielectric constant 3.3). Table 4 shows the L and Q values of the measured values obtained from the second example of the present invention.
[0039]
[Table 3]
Figure 0003930918
[0040]
[Table 4]
Figure 0003930918
[0041]
In Table 3, in the case of the glass epoxy material of the present invention (dielectric constant 4.8), L is 74.6 nH, Q is 225, f 0 is 888.3 MHz, α P is 17.6 dB, polyimide material ( In the case of dielectric constant 3.3), L is 78 nH, Q is 371, f 0 is 895.3 MHz, and α P is 21.0 dB.
[0042]
In Table 4, when a space is formed in the substrate according to the second embodiment of the present invention (FIGS. 7 to 9), L is 76.9 nH, Q is 432, f 0 is 895.3 MHz, and α P is 22 .3 dB.
[0043]
As shown in Table 4, when the space portion is formed in the substrate according to the second embodiment of the present invention, Q is increased by about 20% when L≈70 (nH).
[0044]
As is apparent from Tables 1, 2 and 4, when compared with the Q value, the substrate coil L of the present invention is about 10 times higher than the conventional rectangular spiral coil shown in FIG. 5, and the strip shown in FIG. It is 4 to 6 times higher than the Q value of L realized by the dielectric multilayer substrate of the line, and a value close to the Q value of the air-core coil shown in FIG. 4 is obtained. This is due to the difference in electromagnetic field distribution between the air-core coil and the square spiral coil.
[0045]
The air-core coil forms a closed space for each turn, whereby the magnetic flux is confined to reduce the leakage magnetic flux, and the rectangular spiral coil does not form a closed space for each turn, so that the leakage magnetic flux increases.
[0046]
In the first and second embodiments of the present invention, as shown in FIGS. 1 to 3 and FIGS. 7 to 9, the substrate coil L is passed from the upper surface of the dielectric multilayer substrate to the back surface through the through hole. This approximates the electromagnetic field distribution of the air-core coil.
[0047]
Therefore, the dielectric multilayer substrate coil L of the present invention constitutes an approximate air-core coil, can obtain a high Q value, and can satisfy small size, low cost, and high performance.
[0048]
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.
[0049]
【The invention's effect】
As explained in detail above,
According to the invention Motomeko 1, is to approximately achieve the air-core coil by a dielectric multi-layer substrate. That is, the winding of the coil is closed every time through the through hole, and a high Q value that cannot be obtained by a stripline or a rectangular spiral coil as in the prior art can be realized. In particular, by providing an intermediate part in the dielectric multilayer substrate, it can be made closer to an air-core coil, realizing a higher Q value that cannot be obtained with a conventional stripline or rectangular spiral coil. can do.
[Brief description of the drawings]
FIG. 1 is a top perspective view of a dielectric multilayer substrate coil according to a first embodiment of the present invention.
FIG. 2 is a rear perspective view of the dielectric multilayer substrate coil according to the first embodiment of the present invention.
FIG. 3 is a cross-sectional view taken along line AA in FIG.
FIG. 4 is a configuration diagram of a conventional air-core coil.
FIG. 5 is a configuration diagram of a conventional rectangular spiral coil.
FIG. 6 is a configuration diagram of a strip line using a conventional multilayer substrate.
FIG. 7 is a top perspective view of a dielectric multilayer substrate coil according to a second embodiment of the present invention.
FIG. 8 is a rear perspective view of a dielectric multilayer substrate coil according to a second embodiment of the present invention.
9 is a cross-sectional view taken along line BB in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dielectric multilayer substrate 2 Input terminal conductor film 3, 4, 5, 7, 8, 9, 10 Linear conductor film 6 Output terminal conductor film 11, 12, 13, 14, 15, 16, 17, 18 Through-hole 21 Ground plane 31 Space

Claims (2)

移動体通信機器用フィルタに用いるコイルにおいて、
(a)誘電体多層基板と、
(b)該誘電体多層基板の上面に形成される入力端子導体膜と、出力端子導体膜と、該入力端子導体膜と該出力端子導体膜との間に設けられた複数の線状導体膜と、
(c)前記誘電体多層基板の裏面に設けられた複数の線状導体膜と、
(d)前記入力端子導体膜と前記誘電体多層基板の裏面に設けられた複数の線状導体膜のうちの一端に位置するものとを接続し、該入力端子導体膜と接続された裏面の線状導体膜と前記誘電体多層基板の上面に設けられ、前記入力端子導体膜と隣り合って配置された線状導体膜とを接続し、順次前記誘電体多層基板の裏面に設けられた線状導体膜と前記誘電体多層基板の上面に設けられた線状導体膜とを接続し、前記誘電体多層基板の裏面に設けられた複数の線状導体膜のうちの他端側に位置するものと前記出力端子導体膜とを接続することで巻回されるコイル状導体路を形成すべく、前記上面の線状導体膜と前記下面の線状導体膜とを電気的に接続するために前記誘電体多層基板に設けられた複数のスルーホールと、
(e)前記コイル状導体路を取り囲むべく、前記誘電体多層基板の上面及び裏面の周囲に設けられた接地面と、
(f)前記誘電体多層基板の線状導体膜の巻回内部に配置されるように、該誘電体多層基板内に設けられた空間部と、
を有することを特徴とする誘電体多層基板コイル。
In a coil used for a filter for mobile communication equipment,
(A) a dielectric multilayer substrate;
(B) An input terminal conductor film formed on the upper surface of the dielectric multilayer substrate , an output terminal conductor film, and a plurality of linear conductor films provided between the input terminal conductor film and the output terminal conductor film When,
(C) a plurality of linear conductor films provided on the back surface of the dielectric multilayer substrate;
; (D) connecting the input terminal conductor film and to those located at one end of the plurality of linear conductive film provided on the back surface of the dielectric multilayer substrate, the back surface that is connected to the input terminal conductor film Wires provided on the upper surface of the dielectric multilayer substrate, connected to the linear conductor film disposed adjacent to the input terminal conductor film, and sequentially provided on the back surface of the dielectric multilayer substrate The conductive film is connected to the linear conductive film provided on the top surface of the dielectric multilayer substrate, and is located on the other end side of the plurality of linear conductive films provided on the back surface of the dielectric multilayer substrate. In order to electrically connect the linear conductor film on the upper surface and the linear conductor film on the lower surface so as to form a coiled conductor path wound by connecting a thing and the output terminal conductor film A plurality of through holes provided in the dielectric multilayer substrate ;
(E) a ground plane provided around the upper surface and the back surface of the dielectric multilayer substrate to surround the coiled conductor path ;
(F) a space provided in the dielectric multilayer substrate so as to be disposed inside the winding of the linear conductor film of the dielectric multilayer substrate;
The dielectric multilayer substrate coil and having a.
請求項1記載の誘電体多層基板コイルにおいて、前記誘電体多層基板はガラスエポキシ材あるいはポリイミド材からなることを特徴とする誘電体多層基板コイル。2. The dielectric multilayer substrate coil according to claim 1, wherein the dielectric multilayer substrate is made of a glass epoxy material or a polyimide material.
JP01296195A 1995-01-30 1995-01-30 Dielectric multilayer substrate coil Expired - Fee Related JP3930918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01296195A JP3930918B2 (en) 1995-01-30 1995-01-30 Dielectric multilayer substrate coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01296195A JP3930918B2 (en) 1995-01-30 1995-01-30 Dielectric multilayer substrate coil

Publications (2)

Publication Number Publication Date
JPH08203738A JPH08203738A (en) 1996-08-09
JP3930918B2 true JP3930918B2 (en) 2007-06-13

Family

ID=11819861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01296195A Expired - Fee Related JP3930918B2 (en) 1995-01-30 1995-01-30 Dielectric multilayer substrate coil

Country Status (1)

Country Link
JP (1) JP3930918B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047654A1 (en) * 2014-09-26 2016-03-31 株式会社村田製作所 Inductor component and production method therefor

Also Published As

Publication number Publication date
JPH08203738A (en) 1996-08-09

Similar Documents

Publication Publication Date Title
JP4508192B2 (en) 2-port isolator and communication device
JPH1187620A (en) Distributed constant element
US4870729A (en) Method of making a noise filter
US20050046521A1 (en) Coil filter and method for manufacturing the same
EP1357564B1 (en) Choke coil
JP2006100465A (en) Coil and filter circuit using it
JPH10308315A (en) Inductance element part
JP3930918B2 (en) Dielectric multilayer substrate coil
JP2003087074A (en) Laminated filter
JPH05291865A (en) Lc filter
US4563658A (en) Noise filter
JP2000252124A (en) Common mode filter
JPH1065476A (en) Lc low pass filter
JPH08186461A (en) Resonant lc filter and resonance frequency control method for the same
JPH06231985A (en) Common-mode choke coil
JPH09326317A (en) Microwave inductor coil
JP2002270427A (en) Inductor
JPH0227533Y2 (en)
JPH04245410A (en) Printed coil for double-tuned circuit use
JPH09214273A (en) Multilayered high frequency low pass filter
JP2867787B2 (en) Inductor
JPH05121987A (en) Resonance filter
JP3114392B2 (en) Thin-film magnetic induction element
JPH0247627Y2 (en)
JP2001285005A (en) Noise filter

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040409

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040521

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060923

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees