JP3930379B2 - Measurement data analysis apparatus and analysis method - Google Patents

Measurement data analysis apparatus and analysis method Download PDF

Info

Publication number
JP3930379B2
JP3930379B2 JP2002165593A JP2002165593A JP3930379B2 JP 3930379 B2 JP3930379 B2 JP 3930379B2 JP 2002165593 A JP2002165593 A JP 2002165593A JP 2002165593 A JP2002165593 A JP 2002165593A JP 3930379 B2 JP3930379 B2 JP 3930379B2
Authority
JP
Japan
Prior art keywords
measurement data
structural member
shape
data
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002165593A
Other languages
Japanese (ja)
Other versions
JP2004013492A (en
Inventor
正美 三浦
隆之 河野
秀紀 鶴田
剛 中濱
康彦 吉田
英二 椎葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002165593A priority Critical patent/JP3930379B2/en
Publication of JP2004013492A publication Critical patent/JP2004013492A/en
Application granted granted Critical
Publication of JP3930379B2 publication Critical patent/JP3930379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、計測データの解析装置及び解析方法に係わり、特に、本来の設置状態とは異なる状態で加工等の作業が行なわれる大型船舶等の大型構造物の構造部材の計測データを解析し、現場作業者に作業を指示する、計測データの解析装置及び解析方法に関する。
【0002】
【従来の技術】
大型船舶等の大型構造物に使用される板材等の構造部材は、図6に示すように、本来、構造物50の一部に部材52として組み込まれて設置された状態(以下「本来の設置状態」と呼ぶ)にある。
一方、これらの構造部材52について溶接等の加工作業が行われるときは、十分な作業スペースの確保が難しいため、図7に示すように構造部材52を支持体54等で支持したりして、作業のしやすい状態にして作業が行われる。このため、構造部材52の作業時の設置状態(以下「作業状態」と呼ぶ)は、上述した構造部材52の本来の設置状態又はCAD設計上の設置状態と異なった状態となる。
また、これらの構造部材52は、部材の長手方向の長さが数百メートルに対し、厚さが十数ミリという寸法のオーダーであるため、部材の加工等の作業の際に部材を作業状態に設置すると、部材はその設置状態に応じて自重等の影響を受けて大きなたわみを生じ、大きく変形してしまう(図7参照)。
したがって、大型船舶等の大型構造物における構造部材の加工作業や組立作業では、このような構造部材の作業状態に応じた部材形状の変形が、構造部材の加工精度や組立精度にも影響を及ぼし、作業能率の低下をまねく大きな要因ともなっている。
このようなことから、大型構造物における構造部材の加工精度や組立精度を高めつつ、作業能率を向上させるためにも、当業者らによって部材形状の変形に最も影響を及ぼす要因と考えられている部材の自重に着目し、この自重が部材形状に及ぼす影響を計測データ等により定量的に明らかにする必要がある。また、これらの計測データ等をうまく現場作業で活用してゆくことも必要である。
【0003】
【発明が解決しようとする課題】
しかしながら、大型船舶等の大型構造物における構造部材の加工作業や組立作業では、上述したような自重の影響を考慮した部材形状に関する理論的な解析データや実際の計測データを得るのに手間と時間がかかる等の理由から、これらのデータを有効に利用しようとせず、熟練工による経験と勘による作業に頼っているのが現状である。このため、作業の標準化についても十分な確立がなされず、作業能率を向上させることができないという問題がある。
また、現在、これらの熟練工の数も年々減少しており、一般の作業員たちが将来的に熟練技術を継承し続けていくことは難しいという深刻な問題がある。
このような問題から、当業者間では、熟練技術を熟練工以外の一般作業員にも再現できるように熟練技術のノウハウをシステム化したいという要請がある。
【0004】
そこで、本発明は、従来技術からの要請に基づいてなされたものであり、本来の設置状態とは異なる状態で加工等の作業が行なわれる大型船舶等の大型構造物の構造部材の計測データを解析し、これらの解析データに基づいて、現場作業者に作業を指示する計測データの解析装置及び解析方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
上記の目的を達成するために、本発明の第1の発明は、本来の設置状態とは異なる状態で加工等の作業が行なわれる大型構造物の構造部材の計測データを解析するための計測データ解析装置であって、作業状態に設置された構造部材の形状及び設置状態の計測データを入力する第1入力手段と、この計測データを記憶する第1記憶手段と、上記計測データを使用して、微分幾何学に基づく曲率線解析によって、作業状態に設置された構造部材の任意曲面を定め、2次元のはり問題を適用することにより、自重の影響を取り除いた構造部材の形状を算出する解析手段と、上記構造部材の目標形状の設計データを入力する第2入力手段と、この目標設計データを記憶する第2記憶手段と、上記自重の影響を取り除いた構造部材の形状と目標形状とを比較し、その差を計算する計算手段と、を有すことを特徴としている。
【0009】
本発明の第2の発明は、本来の設置状態とは異なる状態で加工等の作業が行なわれる大型構造物の構造部材の計測データを解析するための計測データ解析方法であって、作業状態に設置された構造部材の形状及び設置状態の計測データを入力する第1入力工程と、この計測データを記憶する第1記憶工程と、上記計測データを使用して、微分幾何学に基づく曲率線解析によって、作業状態に設置された構造部材の任意曲面を定め、2次元のはり問題を適用することにより、自重の影響を取り除いた構造部材の形状を算出する解析工程と、上記構造部材の目標形状の設計データを入力する第2入力工程と、この目標設計データを記憶する第2記憶工程と、上記自重の影響を取り除いた構造部材の形状と目標形状とを比較し、その差を計算する計算工程と、を有することを特徴としている。
【0012】
【発明の実施の形態】
以下本発明の一実施形態について図1及び図2を参照して説明する。
図1は、本発明に係わる計測データ解析装置の一実施形態のシステムを示す基本構成図である。
図1に示すように、大型構造物における作業状態に設置された構造部材に関して計測したデータを解析する計測データ解析装置1は、大型構造物における作業状態に設置された構造部材について各計測装置で計測した計測データを入力する、キーボードやマウス等を含む入力手段2と、計測データ解析プログラム14(詳細は後述する)の実行等を行うCPU4と、解析途中及び解析結果のデータを格納するRAM6と、解析結果や解析結果に基づいた作業指示を表示又は印刷するディスプレイ又はプリンタ等の出力手段8と、メモリファイル10と、これらの入力手段2、CPU4、RAM6、出力手段8及びメモリファイル10と接続するバス線12と、から構成されている。
【0013】
また、メモリファイル10には、計測データの処理を実行させる計測データ解析プログラム14と、実際の構造部材の加工や組立作業状態における構造物に関する計測データ16と、CAD設計によって定められた構造部材の目標形状等に関するCADデータ18とが記憶されている。
【0014】
さらに、この計測データ16は、具体的には、実際の構造部材の加工や組立作業状態における構造部材の形状を計測した形状データ20と、実際の構造部材の加工や組立作業状態の設置状態を計測した設置状態データ22とを含む。
また、この設置状態データ22は、構造部材の重心位置や支持位置を計測した位置データ22aと、構造部材に作用している拘束力等の構造部材の拘束状態を計測した拘束状態データ22bと、構造部材の機械的特性や、熱応力及び残留応力等に関して測定した材料データ22c等を含む。
【0015】
次に、図2は、本実施形態による計測データ解析装置において実行される処理のフローチャートである。
ここで、図2を参照して、計測データ解析装置1おいて実行される計測データ解析プログラム14の処理を具体的に説明する。図2における「S」は、各ステップを示している。
まず、S1において、実際の加工や組立作業状態における計測すべき構造部材の姿勢や設置状態を定める。
つぎに、S2において、オブジェクト3点法により実際の構造部材の形状に座標系を導入し、構造部材の任意点の座標を決める。
また、S3において、上述した座標系で定められた任意点の座標から、部材の任意部分の曲率や長さ寸法等を計測し、この計測したデータを入力手段2でメモリーファイル10に入力し、計測データ16の中の形状データ20として保存する。
必要に応じて、これらの形状データ20を解析して、部材の全体形状等の最終形状を決定し、これらのデータも形状データ20として保存する。
【0016】
さらに、S4において、上述した座標系によって部材の重心位置や支持位置を計測し、この計測したデータを入力手段2でメモリーファイル10に入力し、計測データ16の中の設置状態データ22である位置データ22aとして保存する。
また、S4において、実際の構造部材の計測した支持位置での拘束力等も測定し、この測定したデータを入力手段2でメモリーファイル10に入力し、計測データ16の中の設置状態データ22である拘束状態データ22bとして保存する。
同様に、S4において、実際の構造部材の機械的特性や、熱応力及び残留応力等も測定し、この測定したデータを入力手段2でメモリーファイル10に入力し、計測データ16の中の設置状態データ22である材料データ22cとして保存する。
【0017】
つぎに、S5において、CADを用いて、本来の設置状態における構造部材の目標形状を設計し、この設計したデータを入力手段2でメモリーファイル10に入力し、CADデータ18として保存する。
また、S6において、S4で得られた設置状態データ22(位置データ22a、拘束状態データ22b、材料データ22c)と、S5で得られたCADデータ18とを使用して、構造部材の自重による変形を考慮した有限要素法による形状解析を行い、作業状態での構造部材の目標形状を定める。
さらに、S7において、S6で得られた有限要素法による部材形状(作業状態での目標部材形状)の解析結果のデータをRAM6又はCADデータ18に保存する。また、必要に応じて、これらの解析結果を出力手段10で出力する。
【0018】
つぎに、S8において、S7でRAM6又はCADデータ18に保存された有限要素法解析による部材形状のデータを呼び出し、この有限要素法の解析結果の部材形状と、S3で得られた形状データ20による部材形状とを共通な座標系で比較し、形状差を解析する。
また、S9において、S8の形状差解析で得られた形状差が許容差の範囲内にないと判断した場合は、S10に進み、形状差を許容差の範囲内におさめるために実際の構造部材をあとどの程度加工すべきか等の加工指示を出力手段8で出力する。
さらに、S11において、S10で出力された加工指示に従って構造部材の加工を行ったら、再びS1に進み、その加工後の構造部材について、S1からS11までの一連のステップ処理を繰り返して行う。
【0019】
また、S9において、S8の形状差解析で得られた形状差が許容差の範囲内にあると判断した場合は、S12に進み、構造部材の加工作業を行う必要がないことを出力手段10で出力し、処理を終了する。
【0020】
上述のように、本実施形態の計測データ解析装置は、実際の構造部材の作業状態に応じた形状や設置状態の計測データと、構造部材の目標形状のCADデータとを合せて解析して、比較することができる。このため、部材の自重等が部材形状に及ぼす影響を定量的に明らかにすることができる。
また、本実施形態の計測データ解析装置は、これらの形状解析の結果に基づいて、構造部材の加工指示を行うこともできる。このため、従来、熟練工の経験と勘に頼っていた大型構造物の構造部材の現場の加工及び組立作業において、作業能率を向上させることができる。
【0021】
つぎに、本発明の他の実施形態について図3乃至図5を参照して説明する。
本発明に係わる計測データ解析装置の他の実施形態のシステムについては、図1と同様である。
図3は、本発明の他の実施形態による計測データ解析装置1において実行される計測データ解析プログラム14の処理のフローチャートである。
ここで、図3において、図2と同一の構成については同一の符号を付し、それらの説明を省略する。
【0022】
まず、S1の後、S20において、微分幾何学の曲面論による曲率線(穂坂衛,CAD/CAMにおける曲線曲面のモデリング,東京電気大学出版局,(1996),p90−130)に基づいた直交座標を構造部材の任意曲面に導入する。
ここで、この曲率線に基づいた直交座標について、以下に詳細に説明する。
図4は、構造部材の任意曲面を示した概略的な斜視図である。
図4に示すように、構造部材の曲面上の任意の点Pにおける単位法線ベクトルnと単位接線ベクトルtを含む平面30(以下「法平面」と呼ぶ)をこの単位法線ベクトルnのまわりに角度θ°だけ回転させる。
この回転角度θが0°以上180°以下の角度において、法平面30と曲面32との交線34(以下「法断面」と呼ぶ)上の点Pにおける曲率κ(以下「法曲率」と呼ぶ)が、最大又は最小となる箇所がそれぞれ1つずつ存在することが、微分幾何学の曲面論によって明らかとなっている。
【0023】
微分幾何学の曲面論では、この法曲率κが最大となる法曲率κmaxと、最小となる法曲率κminを共に「主曲率」と定義している。
また、この主曲率である最大法曲率κmaxと最小法曲率κminのそれぞれは、互いに直交する性質を持つことが微分幾何学の曲面論によって明らかとなっている。
さらに、曲面32上の曲線上の各点における接線がこの主曲率の方向と一致しているとき、この曲線を「曲率線」と定義している。
【0024】
また、微分幾何学の曲面論によれば、すべての曲面は、主曲率κmax,κminの平均曲率κm(数式1)と、主曲率κmax,κminの積κg(数式2)(以下「ガウス曲率」と呼ぶ)を用いて表現することができる。
【0025】
【数1】
κm=(κmax+κmin)/2
【数2】
κg=κmax・κmin
【0026】
図5は、平均曲率κmとガウス曲率κgの組み合わせによって表現される曲面形状の分類を示す。
S20では、まず、上述した主曲率κmaxとκminの方向とそれぞれ一致する2つの曲率線を用いて、直交座標を構造部材の曲面に当てはめる。この構造部材の曲面上に当てはめた曲率線の直交座標の座標データから、平均曲率κm及びガウス曲率κgを計算し、図5に分類されるような形状によって、構造部材の任意曲面の形状を定める。
また、この定められた構造部材の任意曲面の形状に関するデータをS3と同様に入力手段2でメモリーファイル10に入力し、計測データ16の中の形状データ20として保存する。
必要に応じて、これらの形状データ20を解析して、部材の全体形状等の最終形状を決定し、これらのデータも形状データ20として保存する。
次いで、この構造部材の曲面上に当てはめた曲率線の直交座標の座標データをS4と同様に入力手段2でメモリーファイル10に入力し、計測データ16の中の設置状態データ22である位置データ22aとして保存する。
さらに、実際の構造部材の支持位置での拘束力等も測定し、この測定したデータをS4と同様に入力手段でメモリーファイルに入力し、計測データ16の中の設置状態データ22である拘束状態データ22bとして保存する。
【0027】
つぎに、S21において、S3及びS4で保存された計測データ16に基づいて、実際の作業状態に設置された構造部材の曲面上の任意の要素を曲率線を含む面で適当に分割し、2次元のはり要素とする。このはり要素において、自重の影響を取り除いた状態のはりのたわみ問題を解くことによって、構造部材の形状解析を行い、この解析結果のデータをRAM6に格納する。
ここで、上述した自重の影響を取り除いた状態のはりのたわみ解析では、S4で拘束状態データ22bとして保存したデータ等を用いて、はりに予め自重に相当する反力を与えることによって、自重の影響を取り除く。
【0028】
また、S22において、S5で得られた自重の影響を考慮していない構造部材の目標形状についても、S20と同様に、主曲率κmaxとκminの方向とそれぞれ一致する2つの曲率線を用いて、直交座標を構造部材の曲面に当てはめる。
この構造部材の曲面上に当てはめた曲率線の直交座標の座標データを入力手段2でメモリーファイル10に入力し、CADデータ18として保存する。
さらに、この構造部材の曲面上に当てはめた曲率線の直交座標の座標データから、平均曲率κm及びガウス曲率κgを計算し、図5に分類されるような形状によって、構造部材の任意曲面の形状を定める。
この形状に関するデータを入力手段2でメモリーファイル10に入力し、CADデータ18として保存する。
【0030】
つぎに、S8において、RAM6に格納されたS21における形状解析の結果のデータとS22で保存したデータを比較し、形状差解析を行い、S9に進む。
また、S9以後のステップの処理については、最初に述べた実施形態と同様な処理となる。
【0031】
上述のように、本発明の他の実施形態の計測データ解析装置は、曲率線を用いることによって、構造部材の曲面の特徴を表現して、この曲面を計測したデータから自重の影響を取り除いた構造部材の形状を解析することができる。
また、本発明の他の実施形態の計測データ解析装置は、部材の実際の形状と目標形状との形状差から加工すべき曲面を指示することもできる。このため、従来、熟練工の経験と勘に頼っていた大型構造物の構造部材の現場の加工及び組立作業おいても、作業能率を向上させることができる。
【0032】
なお、上述した本発明の2つの実施形態においては、構造部材の実際の形状と目標形状における形状解析を行うのに、有限要素法解析や微分幾何学の曲面論に基づく曲率線解析を利用したが、これらの解析方法に限定されず、他の解析方法を利用してもよい。
また、上述した本発明の2つの実施形態では、計測データを利用した解析の対象として部材の形状を取り上げ、部材の形状解析を行っているが、本実施形態で行う解析については、部材の形状解析に限定されず、必要な計測データを適宜利用して部材の応力解析等の他の解析を行ってもよい。
【0033】
【発明の効果】
以上説明したように、本発明の計測データの解析装置及び解析方法によれば、大型構造物における構造部材の作業状態に応じた計測データに基づいて、現場作業者に作業を有効に指示することができ、また、熟練技術を軽減して作業能率を向上させることができる。
【図面の簡単な説明】
【図1】本発明による計測データ解析装置のシステム構成図である。
【図2】本発明の一実施形態による計測データ解析装置おいて実行される処理のフローチャートである。
【図3】本発明の他の実施形態による計測データ解析装置おいて実行される処理のフローチャートである。
【図4】構造部材の任意曲面を示した概略的な斜視図である。
【図5】平均曲率κmとガウス曲率κgの組み合わせによって表現される曲面形状の分類を示す。
【図6】本来の設置状態の構造部材の概略図を示す。
【図7】作業状態の構造部材の概略図を示す。
【符号の説明】
1 計測データ解析装置
2 入力手段
4 CPU
6 RAM
8 出力手段
10 メモリファイル
12 バス線
14 計測データ解析プログラム
16 計測データ
18 CADデータ
20 形状データ
22 設置状態データ
22a 位置データ
22b 拘束状態データ
22c 材料データ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and method for analyzing measurement data, and in particular, analyzes measurement data of structural members of a large structure such as a large ship where operations such as processing are performed in a state different from the original installation state, The present invention relates to a measurement data analysis apparatus and analysis method for instructing a field worker to perform work.
[0002]
[Prior art]
As shown in FIG. 6, structural members such as plate members used for large structures such as large ships are originally installed in a part of the structure 50 as members 52 (hereinafter “original installation”). Called "state").
On the other hand, when processing operations such as welding are performed on these structural members 52, it is difficult to secure a sufficient working space, so the structural member 52 is supported by a support 54 as shown in FIG. Work is performed in a state where it is easy to work. For this reason, the installation state (hereinafter referred to as “working state”) of the structural member 52 is different from the original installation state or the CAD design installation state of the structural member 52 described above.
In addition, since these structural members 52 are of the order of a thickness of several tens of millimeters with respect to the length in the longitudinal direction of the members of several hundred meters, the members are in a working state during work such as processing of the members. If installed, the member is greatly deflected due to the influence of its own weight or the like according to its installation state, and is greatly deformed (see FIG. 7).
Therefore, in the processing work and assembly work of structural members in large structures such as large ships, the deformation of the member shape according to the working state of such structural members also affects the processing precision and assembly precision of the structural members. This is also a major factor in reducing work efficiency.
For this reason, it is considered by those skilled in the art as the most influential factor in the deformation of the member shape in order to improve the working efficiency while increasing the processing accuracy and assembly accuracy of the structural member in the large structure. Focusing on the weight of the member, it is necessary to quantitatively clarify the influence of the weight on the shape of the member by measurement data or the like. In addition, it is necessary to make good use of these measurement data in field work.
[0003]
[Problems to be solved by the invention]
However, in the processing work and assembly work of structural members in large structures such as large ships, it takes time and effort to obtain theoretical analysis data and actual measurement data regarding the member shape in consideration of the influence of its own weight as described above. For this reason, the current situation is that these data are not used effectively but rely on the experience and intuition of skilled workers. For this reason, there is a problem that work standardization is not sufficiently established and work efficiency cannot be improved.
At present, the number of skilled workers is decreasing year by year, and there is a serious problem that it is difficult for ordinary workers to continue to inherit skilled skills in the future.
Due to such problems, there is a demand among those skilled in the art to systemize the know-how of skilled techniques so that the skilled techniques can be reproduced by general workers other than skilled workers.
[0004]
Therefore, the present invention has been made based on a request from the prior art, and measurement data of structural members of a large structure such as a large ship in which processing such as processing is performed in a state different from the original installation state. An object of the present invention is to provide a measurement data analysis apparatus and analysis method for analyzing and instructing a field worker to perform work based on these analysis data.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the first invention of the present invention is a measurement data for analyzing measurement data of structural members of a large structure in which processing such as processing is performed in a state different from the original installation state. A first input means for inputting measurement data of the shape of the structural member installed in the working state and the installation state; a first storage means for storing the measurement data; and the measurement data. An analysis that calculates the shape of a structural member without the influence of its own weight by defining an arbitrary curved surface of a structural member installed in the working state by applying a curvature line analysis based on differential geometry and applying a two-dimensional beam problem and means, second input means for inputting the design data of the target shape of the structural member, a second storage means for storing the target design data, the shape and the target shape of the structural member removed the influence of the self-weight Comparison, and a calculation means for calculating the difference, characterized in that having a.
[0009]
A second invention of the present invention is a measurement data analysis method for analyzing measurement data of a structural member of a large structure in which work such as machining is performed in a state different from the original installation state, A first input step for inputting measurement data of the shape and installation state of the installed structural member, a first storage step for storing the measurement data, and a curvature line analysis based on differential geometry using the measurement data By defining an arbitrary curved surface of the structural member installed in the working state and applying the two-dimensional beam problem, the analysis step for calculating the shape of the structural member without the influence of its own weight, and the target shape of the structural member meter to a second input step, comparing a second storage step of storing the target design data, the shape and the target shape of the structural member removed the effect of the own weight, to calculate the difference of inputting design data It is characterized by having a step.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a basic configuration diagram showing a system of an embodiment of a measurement data analyzing apparatus according to the present invention.
As shown in FIG. 1, a measurement data analysis apparatus 1 that analyzes data measured with respect to a structural member installed in a working state in a large structure is provided with each measuring device for the structural member installed in the working state in a large structure. An input means 2 including a keyboard and a mouse for inputting measured measurement data, a CPU 4 for executing a measurement data analysis program 14 (details will be described later), and a RAM 6 for storing data on the way of analysis and analysis results Connected to the output means 8 such as a display or a printer for displaying or printing analysis results and work instructions based on the analysis results, the memory file 10, the input means 2, the CPU 4, the RAM 6, the output means 8 and the memory file 10. And a bus line 12 to be connected.
[0013]
The memory file 10 also includes a measurement data analysis program 14 for executing processing of measurement data, measurement data 16 relating to a structure in an actual working state of a structural member and an assembly work state, and structural members determined by CAD design. CAD data 18 relating to the target shape and the like is stored.
[0014]
Further, the measurement data 16 specifically includes shape data 20 obtained by measuring the shape of the structural member in the actual structural member processing or assembly work state, and the actual structural member processing or assembly work state installation state. And measured installation state data 22.
Further, the installation state data 22 includes position data 22a obtained by measuring the gravity center position and the support position of the structural member, restraint state data 22b obtained by measuring a restraint state of the structural member such as a restraining force acting on the structural member, It includes material data 22c measured with respect to the mechanical properties of the structural member, thermal stress, residual stress, and the like.
[0015]
Next, FIG. 2 is a flowchart of processing executed in the measurement data analysis apparatus according to the present embodiment.
Here, with reference to FIG. 2, the process of the measurement data analysis program 14 executed in the measurement data analysis apparatus 1 will be specifically described. “S” in FIG. 2 indicates each step.
First, in S1, the posture and installation state of the structural member to be measured in the actual processing and assembly work state are determined.
Next, in S2, a coordinate system is introduced into the shape of the actual structural member by the object three-point method to determine the coordinates of the arbitrary point of the structural member.
In S3, the curvature or length dimension of an arbitrary part of the member is measured from the coordinates of an arbitrary point determined in the coordinate system described above, and the measured data is input to the memory file 10 by the input means 2, It is stored as shape data 20 in the measurement data 16.
If necessary, the shape data 20 is analyzed to determine the final shape such as the overall shape of the member, and these data are also stored as the shape data 20.
[0016]
Further, in S4, the position of the center of gravity and the support position of the member are measured by the coordinate system described above, and the measured data is input to the memory file 10 by the input means 2, and the position as the installation state data 22 in the measurement data 16 is obtained. Save as data 22a.
In S 4, the restraining force at the measured support position of the actual structural member is also measured, and the measured data is input to the memory file 10 by the input means 2, and the installation state data 22 in the measurement data 16 is input. It is stored as certain restraint state data 22b.
Similarly, in S4, the mechanical characteristics of the actual structural member, thermal stress, residual stress, and the like are also measured, and the measured data is input to the memory file 10 by the input means 2, and the installation state in the measurement data 16 is measured. Data 22 is saved as material data 22c.
[0017]
Next, in S 5, the target shape of the structural member in the original installation state is designed using CAD, and the designed data is input to the memory file 10 by the input means 2 and stored as CAD data 18.
In S6, the installation state data 22 (position data 22a, restraint state data 22b, material data 22c) obtained in S4 and the CAD data 18 obtained in S5 are used to deform the structural member by its own weight. The shape analysis by the finite element method considering the above is performed to determine the target shape of the structural member in the working state.
Further, in S7, data of the analysis result of the member shape (target member shape in the working state) by the finite element method obtained in S6 is stored in the RAM 6 or the CAD data 18. Moreover, these analysis results are output by the output means 10 as needed.
[0018]
Next, in S8, the member shape data obtained by the finite element method analysis stored in the RAM 6 or the CAD data 18 in S7 is called, and the result of the finite element method analysis and the shape data 20 obtained in S3 are used. The member shape is compared with a common coordinate system, and the shape difference is analyzed.
In S9, if it is determined that the shape difference obtained by the shape difference analysis in S8 is not within the tolerance range, the process proceeds to S10, and the actual structural member is used to keep the shape difference within the tolerance range. The output means 8 outputs a processing instruction, such as how much more to be processed.
Further, in S11, when the structural member is processed in accordance with the processing instruction output in S10, the process proceeds to S1 again, and the series of step processing from S1 to S11 is repeated for the processed structural member.
[0019]
In S9, if it is determined that the shape difference obtained in the shape difference analysis in S8 is within the tolerance range, the process proceeds to S12, and the output means 10 indicates that there is no need to perform the processing operation of the structural member. Output and finish the process.
[0020]
As described above, the measurement data analysis apparatus of the present embodiment analyzes the measurement data of the shape and installation state according to the actual working state of the structural member and the CAD data of the target shape of the structural member, Can be compared. For this reason, the influence which the weight of a member etc. has on a member shape can be clarified quantitatively.
Moreover, the measurement data analysis apparatus of this embodiment can also instruct | indicate the process of a structural member based on the result of these shape analysis. For this reason, work efficiency can be improved in the field processing and assembling work of the structural member of a large-sized structure conventionally dependent on the experience and intuition of a skilled worker.
[0021]
Next, another embodiment of the present invention will be described with reference to FIGS.
The system of another embodiment of the measurement data analysis apparatus according to the present invention is the same as that shown in FIG.
FIG. 3 is a flowchart of the process of the measurement data analysis program 14 executed in the measurement data analysis apparatus 1 according to another embodiment of the present invention.
Here, in FIG. 3, the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.
[0022]
First, after S1, in S20, Cartesian coordinates based on the curved surface of differential geometry surface theory (Hosaka Mamoru, modeling of curved surfaces in CAD / CAM, Tokyo Denki University Press, (1996), p90-130). Is introduced into an arbitrary curved surface of the structural member.
Here, the orthogonal coordinate based on this curvature line is demonstrated in detail below.
FIG. 4 is a schematic perspective view showing an arbitrary curved surface of the structural member.
As shown in FIG. 4, a plane 30 (hereinafter referred to as “normal plane”) including a unit normal vector n and a unit tangent vector t at an arbitrary point P on the curved surface of the structural member is surrounded by the unit normal vector n. Is rotated by an angle θ °.
When the rotation angle θ is 0 ° or more and 180 ° or less, the curvature κ (hereinafter referred to as “normal curvature”) at a point P on the intersection line 34 (hereinafter referred to as “normal section”) between the normal plane 30 and the curved surface 32. However, it is clear from the surface theory of differential geometry that there is one point where the maximum or minimum value exists.
[0023]
In the curved surface theory of differential geometry, the normal curvature κmax at which the normal curvature κ is maximum and the normal curvature κmin at which the normal curvature κ is minimum are both defined as “main curvature”.
Further, it has been clarified by the surface theory of differential geometry that each of the maximum normal curvature κmax and the minimum normal curvature κmin, which are the main curvatures, has a property of being orthogonal to each other.
Further, when the tangent line at each point on the curved surface 32 coincides with the direction of the main curvature, this curve is defined as a “curvature line”.
[0024]
Further, according to the curved surface theory of differential geometry, all curved surfaces have an average curvature κm (formula 1) of principal curvatures κmax and κmin and a product κg (formula 2) of principal curvatures κmax and κmin (hereinafter “Gaussian curvature”). It can be expressed using
[0025]
[Expression 1]
κm = (κmax + κmin) / 2
[Expression 2]
κg = κmax ・ κmin
[0026]
FIG. 5 shows the classification of curved surface shapes expressed by combinations of average curvature κm and Gaussian curvature κg.
In S20, first, orthogonal coordinates are applied to the curved surface of the structural member using the two curvature lines that respectively match the directions of the principal curvatures κmax and κmin. The mean curvature κm and the Gaussian curvature κg are calculated from the coordinate data of the orthogonal coordinates of the curvature line fitted on the curved surface of the structural member, and the shape of the arbitrary curved surface of the structural member is determined by the shapes classified in FIG. .
Further, data relating to the shape of the arbitrary curved surface of the determined structural member is input to the memory file 10 by the input means 2 in the same manner as S3, and is stored as the shape data 20 in the measurement data 16.
If necessary, the shape data 20 is analyzed to determine the final shape such as the overall shape of the member, and these data are also stored as the shape data 20.
Next, the coordinate data of the orthogonal coordinates of the curvature line fitted on the curved surface of the structural member is input to the memory file 10 by the input means 2 as in S4, and the position data 22a which is the installation state data 22 in the measurement data 16 is input. Save as.
Further, the restraining force or the like at the support position of the actual structural member is also measured, and the measured data is input to the memory file by the input means as in S4, and the restraint state which is the installation state data 22 in the measurement data 16 Save as data 22b.
[0027]
Next, in S21, based on the measurement data 16 stored in S3 and S4, an arbitrary element on the curved surface of the structural member installed in the actual working state is appropriately divided by the plane including the curvature line. Dimensional beam element. In this beam element, the shape analysis of the structural member is performed by solving the beam deflection problem in which the influence of its own weight is removed, and the data of the analysis result is stored in the RAM 6.
Here, in the deflection analysis of the beam in which the influence of the above-mentioned weight is removed, the reaction force corresponding to the weight is given to the beam in advance by using the data saved as the restraint state data 22b in S4. Remove the influence.
[0028]
Also, in S22, for the target shape of the structural member that does not consider the influence of its own weight obtained in S5, similarly to S20, using two curvature lines respectively corresponding to the directions of the main curvatures κmax and κmin, The orthogonal coordinates are applied to the curved surface of the structural member.
The coordinate data of the orthogonal coordinates of the curvature line fitted on the curved surface of the structural member is input to the memory file 10 by the input means 2 and stored as CAD data 18.
Further, the average curvature κm and the Gaussian curvature κg are calculated from the coordinate data of the orthogonal coordinates of the curvature line fitted on the curved surface of the structural member, and the shape of the arbitrary curved surface of the structural member is calculated according to the shape classified in FIG. Determine.
Data relating to this shape is input to the memory file 10 by the input means 2 and stored as CAD data 18.
[0030]
Next, at S8, to compare the data stored in the result of the data of the shape analysis of definitive to S2 1 stored in the RAM 6 S22, performs shape difference analysis, the process proceeds to S9.
Further, the processing of the steps after S9 is the same processing as in the first embodiment.
[0031]
As described above, the measurement data analysis apparatus according to another embodiment of the present invention expresses the characteristics of the curved surface of the structural member by using the curvature line, and removes the influence of its own weight from the data obtained by measuring the curved surface. The shape of the structural member can be analyzed.
In addition, the measurement data analysis apparatus according to another embodiment of the present invention can indicate a curved surface to be processed based on a shape difference between an actual shape of a member and a target shape. For this reason, work efficiency can be improved also in the field processing and assembly work of the structural member of a large-sized structure which depended on the experience and intuition of the skilled worker conventionally.
[0032]
In the above-described two embodiments of the present invention, the shape analysis of the actual shape and the target shape of the structural member is performed using a finite element method analysis or a curvature line analysis based on the surface theory of differential geometry. However, the present invention is not limited to these analysis methods, and other analysis methods may be used.
In the two embodiments of the present invention described above, the shape of a member is taken up as an object of analysis using measurement data, and the shape of the member is analyzed. The present invention is not limited to analysis, and other analysis such as stress analysis of members may be performed by appropriately using necessary measurement data.
[0033]
【The invention's effect】
As described above, according to the measurement data analysis apparatus and analysis method of the present invention, the work is effectively instructed to the field worker based on the measurement data according to the work state of the structural member in the large structure. In addition, the skill level can be reduced and the work efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a measurement data analysis apparatus according to the present invention.
FIG. 2 is a flowchart of processing executed in a measurement data analysis apparatus according to an embodiment of the present invention.
FIG. 3 is a flowchart of processing executed in a measurement data analysis apparatus according to another embodiment of the present invention.
FIG. 4 is a schematic perspective view showing an arbitrary curved surface of a structural member.
FIG. 5 shows a classification of a curved surface shape expressed by a combination of an average curvature κm and a Gaussian curvature κg.
FIG. 6 is a schematic view of a structural member in an original installation state.
FIG. 7 shows a schematic view of a structural member in a working state.
[Explanation of symbols]
1 Measurement data analyzer 2 Input means 4 CPU
6 RAM
8 Output means 10 Memory file 12 Bus line 14 Measurement data analysis program 16 Measurement data 18 CAD data 20 Shape data 22 Installation state data 22a Position data 22b Restraint state data 22c Material data

Claims (2)

本来の設置状態とは異なる状態で加工等の作業が行なわれる大型構造物の構造部材の計測データを解析するための計測データ解析装置であって、
作業状態に設置された構造部材の形状及び設置状態の計測データを入力する第1入力手段と、
この計測データを記憶する第1記憶手段と、
上記計測データを使用して、微分幾何学に基づく曲率線解析によって、作業状態に設置された構造部材の任意曲面を定め、2次元のはり問題を適用することにより、自重の影響を取り除いた構造部材の形状を算出する解析手段と、
上記構造部材の目標形状の設計データを入力する第2入力手段と、
この目標設計データを記憶する第2記憶手段と、
上記自重の影響を取り除いた構造部材の形状と目標形状とを比較し、その差を計算する計算手段と、を有することを特徴とする計測データ解析装置。
A measurement data analysis device for analyzing measurement data of structural members of large structures in which work such as processing is performed in a state different from the original installation state,
First input means for inputting measurement data of the shape of the structural member installed in the working state and the installed state ;
First storage means for storing the measurement data;
Using the above measurement data, a curved line analysis based on differential geometry is used to define an arbitrary curved surface of a structural member installed in the working state, and a structure that removes the influence of its own weight by applying a two-dimensional beam problem An analysis means for calculating the shape of the member ;
Second input means for inputting design data of a target shape of the structural member;
Second storage means for storing the target design data;
A measurement data analyzing apparatus , comprising: a calculation unit that compares the shape of the structural member from which the influence of the self-weight is removed and a target shape, and calculates a difference therebetween.
本来の設置状態とは異なる状態で加工等の作業が行なわれる大型構造物の構造部材の計測データを解析するための計測データ解析方法であって、
作業状態に設置された構造部材の形状及び設置状態の計測データを入力する第1入力工程と、
この計測データを記憶する第1記憶工程と、
上記計測データを使用して、微分幾何学に基づく曲率線解析によって、作業状態に設置された構造部材の任意曲面を定め、2次元のはり問題を適用することにより、自重の影響を取り除いた構造部材の形状を算出する解析工程と、
上記構造部材の目標形状の設計データを入力する第2入力工程と、
この目標設計データを記憶する第2記憶工程と、
上記自重の影響を取り除いた構造部材の形状と目標形状とを比較し、その差を計算する計算工程と、を有することを特徴とする計測データ解析方法。
A measurement data analysis method for analyzing measurement data of a structural member of a large structure in which work such as processing is performed in a state different from the original installation state,
A first input step for inputting measurement data of the shape of the structural member installed in the working state and the installation state ;
A first storage step for storing the measurement data;
Using the above measurement data, a curved line analysis based on differential geometry is used to define an arbitrary curved surface of a structural member installed in the working state, and a structure that removes the influence of its own weight by applying a two-dimensional beam problem An analysis process for calculating the shape of the member ;
A second input step for inputting design data of a target shape of the structural member;
A second storage step for storing the target design data;
Measurement data analysis method characterized in that it comprises comparing the shape and the target shape of the structural member removed the influence of the self-weight, a calculation step of calculating the difference, the.
JP2002165593A 2002-06-06 2002-06-06 Measurement data analysis apparatus and analysis method Expired - Fee Related JP3930379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165593A JP3930379B2 (en) 2002-06-06 2002-06-06 Measurement data analysis apparatus and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165593A JP3930379B2 (en) 2002-06-06 2002-06-06 Measurement data analysis apparatus and analysis method

Publications (2)

Publication Number Publication Date
JP2004013492A JP2004013492A (en) 2004-01-15
JP3930379B2 true JP3930379B2 (en) 2007-06-13

Family

ID=30433394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165593A Expired - Fee Related JP3930379B2 (en) 2002-06-06 2002-06-06 Measurement data analysis apparatus and analysis method

Country Status (1)

Country Link
JP (1) JP3930379B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101348345B1 (en) * 2012-08-10 2014-01-08 삼성중공업 주식회사 Apparatus and method for simulating a leg installation of a wind turbine installation vessel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7384379B2 (en) * 2019-09-20 2023-11-21 国立研究開発法人 海上・港湾・航空技術研究所 Work support method for flat plate press processing, work support program for flat plate press work, and work support system for flat plate press work
CN111815619B (en) * 2020-07-22 2024-03-15 西北工业大学 Manufacturing feature small corner detection and driving geometric construction method based on Gaussian curvature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101348345B1 (en) * 2012-08-10 2014-01-08 삼성중공업 주식회사 Apparatus and method for simulating a leg installation of a wind turbine installation vessel

Also Published As

Publication number Publication date
JP2004013492A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
US8589132B2 (en) Method, device, program, and recording medium of analyzing cause of springback
US7395128B2 (en) System, method, and device for designing a die to stamp metal parts to an exact final dimension
US7870792B2 (en) Forming limit strain analysis
Zimmermann et al. Non-linear reduced order models for steady aerodynamics
US8000942B2 (en) Broach tool design methodology and systems
US8689637B2 (en) Fracture analysis method, device, and program for spot welded portion, and computer-readable recording medium
Wan et al. Investigation of influence of fixture layout on dynamic response of thin-wall multi-framed work-piece in machining
EP2371464B1 (en) Method, device, program and recording medium of analyzing cause of springback
US20030050765A1 (en) System, method, and computer program product for aiding optimization of die assembly shape for plasticity manufacturing
JP2009289260A (en) System and method for regulating contact penetration in numerical simulation of non linear structural response
CN110941920A (en) Method for calculating and post-processing flight load data of unmanned aerial vehicle
CN111339605B (en) Load calculation device and aircraft
Meinders Developments in numerical simulations of the real-life deep drawing process
Hartmann et al. Geometrical compensation of deterministic deviations for part finishing in bulk forming
JP3930379B2 (en) Measurement data analysis apparatus and analysis method
Liu et al. Hybrid nonlinear variation modeling of compliant metal plate assemblies considering welding shrinkage and angular distortion
JP2004303227A (en) Method for estimating relation between element distortion and analytic error, method for estimating analytic error, method for numerical analysis, and computer program for carrying out the methods
JP2016212863A (en) Methods and systems for conducting time-marching numerical simulation of structure expected to experience metal necking failure
Boer et al. Multibody modelling and optimization of a curved hinge flexure
CN112632691B (en) Virtual product assessment by adjusting the orientation of virtual component models
Slon et al. An Optimization Framework for Fixture Layout Design for Nonrigid Parts
EP3764177B1 (en) Tool path generation method
Fourment et al. Efficient formulations for quasi-steady processes simulations: Multi-mesh method, arbitrary Lagrangian or Eulerian formulation and free surface algorithms
JP5896150B2 (en) Break determination device, break determination method, and break determination program
JP6375963B2 (en) Structure design support device that can detect mechanical weak points of structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees