JP3928531B2 - Dielectric resonator, filter, duplexer, and high-frequency circuit device - Google Patents

Dielectric resonator, filter, duplexer, and high-frequency circuit device Download PDF

Info

Publication number
JP3928531B2
JP3928531B2 JP2002282978A JP2002282978A JP3928531B2 JP 3928531 B2 JP3928531 B2 JP 3928531B2 JP 2002282978 A JP2002282978 A JP 2002282978A JP 2002282978 A JP2002282978 A JP 2002282978A JP 3928531 B2 JP3928531 B2 JP 3928531B2
Authority
JP
Japan
Prior art keywords
thin film
dielectric
conductor
filter
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002282978A
Other languages
Japanese (ja)
Other versions
JP2004120516A (en
Inventor
芳久 岩下
眞 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002282978A priority Critical patent/JP3928531B2/en
Publication of JP2004120516A publication Critical patent/JP2004120516A/en
Application granted granted Critical
Publication of JP3928531B2 publication Critical patent/JP3928531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、無線通信や電磁波の送受信に利用される、たとえばマイクロ波帯やミリ波帯における誘電体共振器、フィルタ、デュプレクサ、および高周波回路装置に関するものである。
【0002】
【従来の技術】
従来、薄膜多層電極を形成した誘電体共振器等に関して特許文献1が開示されている。
この薄膜多層電極は、導体薄膜と誘電体薄膜とを交互に積層したものであり、高周波において低損失な電極として作用する。特許文献1に開示されている設計方法では、導体薄膜の膜厚および誘電体薄膜の膜厚に、導電率と誘電率に応じて定まる膜厚の最適値が存在する。この導体薄膜と誘電体薄膜のそれぞれの膜厚を最適値にすれば、電流が各導体薄膜の層にバランス良く配分されるため、表皮効果が緩和され、単層電極を用いた場合に比べて低損失に動作する。
【0003】
また、特願2002−238451では、共振モードに応じた誘電体ユニットの各面に形成する薄膜多層電極の構成を定めることによって全体の導体損失を低減した共振器等について出願されている。
【0004】
ここで、従来の薄膜多層電極を備えた誘電体共振器の構成例を断面図として図10に示す。図10において23,33は最下層の導体薄膜、21,31は最上層の導体薄膜、22,32は導体薄膜23,33と21,31との間にそれぞれ設けた誘電体薄膜である。このように導体薄膜23、誘電体薄膜22、導体薄膜21によって一方の薄膜多層電極2を構成し、導体薄膜33、誘電体薄膜32、導体薄膜31によって他方の薄膜多層電極3を構成している。
【0005】
【特許文献1】
国際公開第95/06336号パンフレット
【0006】
【発明が解決しようとする課題】
ところが、特許文献1および上記特願2002−238451の従来技術として示されているような、側面を開放した誘電体ユニットの上下面に薄膜多層電極を設けてなる誘電体共振器においては、導体損失の低減のための誘電体薄膜の誘電率と膜厚の設計条件は狭い範囲となる。
この発明の目的は、側面を開放した誘電体ユニットの上下面に薄膜多層電極を設けてなる誘電体共振器において、薄膜多層電極の誘電体薄膜の設計条件を広げることと、その誘電体共振器を備えたフィルタ、デュプレクサおよび高周波回路装置を提供することにある。
【0007】
【課題を解決するための手段】
この発明は、導体薄膜と誘電体薄膜とを交互に積層した薄膜多層電極を、側面を開放した誘電体ユニットの上下面に設けてなる誘電体共振器において、
前記誘電体薄膜の誘電率を前記誘電体ユニットの誘電率より小さくし、且つ、前記導体薄膜の各層に流入する変位電流が略等量となるように、各導体薄膜の面積を上層より下層にかけて順に小さくしたことを特徴としている。
【0008】
側面を開放した誘電体ユニットの上下面に薄膜多層電極を設けてなる誘電体共振器においては、誘電体薄膜の誘電率が誘電体ユニットの誘電率より小さい場合、各導体薄膜のうち誘電体ユニット側に露出している部分から流入する変位電流量と、その導体薄膜に流れる実電流の量は等しくなる。したがって、各導体薄膜の面積を上層より下層にかけて順に小さくして、導体薄膜の各層に流入する変位電流が略等量となるようにすることによって、各導体薄膜に流れる実電流が略等しくなり、導体損失が最も抑えられる。
【0009】
また、この発明は、上記誘電体共振器に信号入出力部を設けてフィルタを構成する。
【0010】
また、この発明は、上記フィルタを2組設けるとともに、その信号入出力部として、送信信号入力端子、送受信共用入出力端子、および受信信号出力端子を設けてデュプレクサを構成する。
【0011】
また、この発明は、上記誘電体共振器、フィルタ、またはデュプレクサを備えて高周波回路装置を構成する。
【0012】
【発明の実施の形態】
第1の実施形態に係る誘電体共振器について、図1〜図5を参照して説明する。
図1の(A)は誘電体共振器の上面図、(B)はその中央縦断面図である。ここで、1は円柱形状の誘電体ユニットである。2,3はこの誘電体ユニットの上下面に設けた薄膜多層電極ある。ここで破線で示す矢印のループは磁界のベクトル、白抜きの矢印は電界のベクトルを示している。このように円柱形状の誘電体ユニットの同心円状に磁界が回り、薄膜多層電極2,3に対して垂直な方向に電界ベクトルが向くTM010モードの共振器として作用する。
【0013】
図2は薄膜多層電極部分の厚みを誇張して表した誘電体共振器の断面図である。ここで、23は薄膜多層電極2における最下層の導体薄膜、21は最上層の導体薄膜である。22は導体薄膜23と21との間に設けた誘電体薄膜である。導体薄膜23および誘電体薄膜22は、平面パターンとしてはそれぞれ所定幅のリング形状を成している。このようにして導体薄膜23、誘電体薄膜22、導体薄膜21の順に積層された薄膜多層電極2を構成している。
【0014】
同様に33は薄膜多層電極3における最下層の導体薄膜、31は最上層の導体薄膜である。32は導体薄膜33と31との間に設けた誘電体薄膜である。導体薄膜33および誘電体薄膜32は、平面パターンとしてはそれぞれ所定幅のリング形状を成している。このようにして導体薄膜33、誘電体薄膜32、導体薄膜31の順に積層された薄膜多層電極3を構成している。
【0015】
後述するように、下層の導体薄膜23,33を上層の導体薄膜21,31よりその面積を小さくしたことにより、各層の導体薄膜に流れる実電流を略等しくしている。
【0016】
各導体薄膜に流れる電流量は、
[各導体薄膜に流入する変位電流の量] − [流出する変位電流量]
に等しい。電束をD、時間をtとすると、変位電流は(∂D/∂t)である。
【0017】
ここで、誘電体薄膜の誘電率を誘電体ユニットの誘電率より下げ、導体薄膜間での変位電流交換を抑えると、誘電体ユニット側に露出している導体薄膜の一部分から流入する変位電流量と、その導体薄膜に流れる実電流の量は等しくなる。
【0018】
図4の(A)は、誘電体薄膜の誘電率を変化させたときの共振器のQの変化を示している。ここで、横軸は誘電体ユニットの誘電率に対する誘電体薄膜の誘電率の比、縦軸は単層電極に比べてのQの向上比を示している。このように、誘電体薄膜の誘電率が小さい程、Qは向上する。
【0019】
図5は、誘電体ユニットの中心からの半径r方向の位置と、その位置での電束Dとの関係を示している。関数Jo(r)は円柱関数であり、TM010モードの電束分布はこの円柱関数Jo(r)に比例する。TM010モードの電束は、中央で正の最大、周辺部で負の最大となる。ここで、中央位置をr0、電束が0となる位置をr2、周辺位置をr4とし、導体薄膜23,33の内周位置をr1、外周位置をr3とすれば、r0〜r1部分の電束と、r3〜r4部分の電束による変位電流が導体薄膜21,31に流入し、r1〜r3部分の電束による変位電流が導体薄膜23,33に流入する。したがって、次の関係で、r1,r3を求めれば、導体薄膜23,33に流入する変位電流と、導体薄膜21,31に流入する変位電流とが略等しくなる。
先ず、
【0020】
【数1】

Figure 0003928531
【0021】
の関係が成り立つようにr1を求める。
また、
【0022】
【数2】
Figure 0003928531
【0023】
の関係が成り立つようにr3を求める。
このとき理論上導体損失は最小となり、Qは最大となる。
【0024】
次に、図1・図2に示した誘電体共振器の特性をシミュレーションした結果を示す。図3は上記誘電体共振器のシミュレーション用のモデルの断面図である。ここで誘電体ユニット1の上下面のうち一方の電極を薄膜多層電極2とし、他方の電極を完全導体電極3′としている。このようなモデルで各部の寸法を次のように定めた。
【0025】
導体薄膜21の厚み 8.25μm
導体薄膜23の厚み 1μm
誘電体薄膜22の厚み 0.75μm
誘電体薄膜22の誘電率 誘電体ユニットの誘電率の0.01倍の値(比誘電率1400))
誘電体ユニット1の厚み(導体薄膜23と完全導体電極3′との間の距離) 0.2mm
誘電体ユニット1の直径 0.5mm
誘電体ユニット1の比誘電率 140000
誘電体ユニット1の誘電体損 0(無損失)
導体薄膜22,23の導電率 53MS
なお、誘電体ユニット1の側面は磁気壁とした。
【0026】
図4の(B)はその結果を示している。ここで、横軸は上層の導体薄膜21に対する下層の導体薄膜23の径方向の長さ比、縦軸は単層電極に比べてのQの向上比を示している。このように上層の導体薄膜に対する下層の導体薄膜の径方向寸法比を0.55付近(面積比で0.5付近)にしたときQは最も向上する。図中の「理論値」は、上述の〔数1〕および〔数2〕を満足するときの、上層電極に対する下層電極の径方向の長さ比である。
【0027】
次に、第2の実施形態に係る誘電体共振器の構成を断面図として図6に示す。この例では、下層の導体薄膜23,33で挟まれる部分の誘電体部分12と、それ以外の誘電体部分11とで比誘電率を異ならせている。このような構造であっても、各導体薄膜に流入する変位電流が略等量となるように各導体薄膜の面積を定めれば、全体として最適な低損失動作が可能となる。
【0028】
なお、第1・第2の実施形態では、2層の導体薄膜とその間に設けた1層の誘電体薄膜とによって3層構造の薄膜多層電極を設けたが、3層以上の導体薄膜を設けたものにも当然に適用できる。例えば、3層の導体薄膜と2層の誘電体薄膜とを交互に積層した5層構造の薄膜多層電極を構成する場合でも、各導体薄膜に流入する変位電流が略等量となるように、各導体薄膜の面積を上層から下層にかけて順に小さくすればよい。
【0029】
また、第1・第2の実施形態では、円柱形状の誘電体ユニットを用いたが、誘電体ユニットの形状は円柱形状に限らず、四角柱(直方体)形状や多角柱形状であってもよい。
【0030】
次に、第3の実施形態に係るフィルタの構成を図7を基に説明する。
図7において3つの共振器は、第1・第2の実施形態で示したいずれかの共振器であり、これらの共振器間を、図中のコンデンサの記号で表した結合容量で結合させ、さらに、初段および終段の共振器と入出力端子との間を結合容量で結合させることにより、3段の共振器からなる帯域通過フィルタ特性を有するフィルタを構成する。
【0031】
次に、第4の実施形態としてデュプレクサの構成例を図8を参照して説明する。
ここで、送信フィルタと受信フィルタは、いずれも、図7等に示した構造のフィルタである。但し、送信フィルタは送信帯域を通過させ、受信フィルタは受信帯域を通過させるように、それぞれのフィルタ特性を定めておく。
【0032】
送信フィルタの出力ポートと受信フィルタの入力ポートとの間は、送信信号が受信フィルタ側へ回り込まないように、また、受信信号が送信フィルタ側へ回り込まないように、位相調整を行っている。
【0033】
次に、第5の実施形態に係る通信装置の構成を図9に示す。
ここで、デュプレクサは、図8に示した構成のデュプレクサである。このデュプレクサの送信端子には送信回路を、受信端子には受信回路をそれぞれ接続している。また、アンテナ端子にはアンテナを接続している。
【0034】
【発明の効果】
この発明によれば、導体薄膜と誘電体薄膜とを交互に積層した薄膜多層電極のうち導体薄膜の各層に略等量の電流が流れるため、電流集中が緩和され全体の導体損失を効果的に抑制することができる。しかも、導体薄膜の面積(寸法と形成位置)によって導体損失を最も効果的に抑えるようにしたので、薄膜多層電極の誘電体薄膜部分の設計条件が広がる。
【0035】
また、この発明によれば、上記共振器に信号入出力部を設けてフィルタを構成することにより、小型で低挿入損失なフィルタが得られる。
【0036】
また、この発明によれば、上記フィルタを2組備えるとともに、その信号入出力部として、送信信号入力端子、共用入出力端子、および受信信号出力端子を設けてデュプレクサを構成することにより、小型で低挿入損失なデュプレクサが得られる。
【0037】
この発明によれば、上記誘電体共振器、フィルタ、またはデュプレクサを備えて高周波回路装置を構成することにより、小型で低損失な高周波回路が構成でき、それを用いた通信装置の雑音特性および伝送速度などの通信品質を向上させることができる。
【0038】
【図面の簡単な説明】
【図1】第1の実施形態に係る誘電体共振器の構成を示す図
【図2】同誘電体共振器の断面図
【図3】同誘電体共振器の特性シミュレーション用モデルの断面図
【図4】同誘電体共振器の誘電体薄膜の誘電率を変化させたときのQ変化の例、および各層の導体薄膜の面積を変化させた時のQ変化の例を示す図
【図5】TM010モードの電束分布と導体薄膜の形成位置との関係を示す図
【図6】第2の実施形態に係る誘電体共振器の断面図
【図7】第3の実施形態に係るフィルタの構成を示す等価回路図
【図8】第4の実施形態に係るデュプレクサの構成を示すブロック図
【図9】第5の実施形態に係る通信装置の構成を示すブロック図
【図10】従来の誘電体共振器の構成を示す断面図
【符号の説明】
1−誘電体ユニット
2,3−薄膜多層電極
3′−完全導体電極
11,12−誘電体
21,23,31,33−導体薄膜
22,32−誘電体薄膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric resonator, a filter, a duplexer, and a high-frequency circuit device in, for example, a microwave band and a millimeter wave band, which are used for wireless communication and electromagnetic wave transmission / reception.
[0002]
[Prior art]
Conventionally, Patent Document 1 discloses a dielectric resonator in which a thin film multilayer electrode is formed.
This thin film multilayer electrode is formed by alternately laminating a conductor thin film and a dielectric thin film, and acts as a low-loss electrode at a high frequency. In the design method disclosed in Patent Document 1, there are optimum values of the film thickness determined according to the conductivity and the dielectric constant for the film thickness of the conductor thin film and the film thickness of the dielectric thin film. By optimizing the thickness of each of the conductor thin film and dielectric thin film, the current is distributed in a balanced manner to the layers of each conductor thin film, so the skin effect is mitigated and compared with the case of using a single layer electrode. Operates with low loss.
[0003]
In Japanese Patent Application No. 2002-238451, an application is filed for a resonator or the like in which the total conductor loss is reduced by determining the configuration of the thin film multilayer electrode formed on each surface of the dielectric unit according to the resonance mode.
[0004]
Here, FIG. 10 shows a cross-sectional view of a configuration example of a dielectric resonator including a conventional thin film multilayer electrode. In FIG. 10, 23 and 33 are the lowermost conductive thin films, 21 and 31 are the uppermost conductive thin films, and 22 and 32 are dielectric thin films provided between the conductive thin films 23, 33 and 21, 31 respectively. Thus, one thin film multilayer electrode 2 is constituted by the conductor thin film 23, the dielectric thin film 22, and the conductor thin film 21, and the other thin film multilayer electrode 3 is constituted by the conductor thin film 33, the dielectric thin film 32, and the conductor thin film 31. .
[0005]
[Patent Document 1]
International Publication No. 95/06336 Pamphlet [0006]
[Problems to be solved by the invention]
However, in a dielectric resonator in which thin film multilayer electrodes are provided on the upper and lower surfaces of a dielectric unit with open side surfaces, as shown in Patent Document 1 and the prior art of Japanese Patent Application No. 2002-238451, conductor loss The design conditions for the dielectric constant and film thickness of the dielectric thin film for reducing the above are in a narrow range.
An object of the present invention is to provide a dielectric resonator in which thin film multilayer electrodes are provided on the upper and lower surfaces of a dielectric unit having an open side surface, and to widen the design conditions for the dielectric thin film of the thin film multilayer electrode, and the dielectric resonator A filter, a duplexer, and a high-frequency circuit device including the above are provided.
[0007]
[Means for Solving the Problems]
The present invention relates to a dielectric resonator in which thin film multilayer electrodes in which conductor thin films and dielectric thin films are alternately laminated are provided on the upper and lower surfaces of a dielectric unit with open side surfaces.
The area of each conductor thin film is extended from the upper layer to the lower layer so that the dielectric constant of the dielectric thin film is smaller than the dielectric constant of the dielectric unit, and the displacement current flowing into each layer of the conductor thin film is substantially equal. It is characterized by decreasing in order.
[0008]
In a dielectric resonator in which thin film multilayer electrodes are provided on the upper and lower surfaces of a dielectric unit with open side surfaces, when the dielectric constant of the dielectric thin film is smaller than the dielectric constant of the dielectric unit, the dielectric unit of each conductor thin film The amount of displacement current flowing from the portion exposed to the side is equal to the amount of actual current flowing through the conductor thin film. Therefore, by reducing the area of each conductor thin film in order from the upper layer to the lower layer so that the displacement current flowing into each layer of the conductor thin film becomes substantially equal, the actual current flowing through each conductor thin film becomes substantially equal, Conductor loss is minimized.
[0009]
According to the present invention, a signal input / output unit is provided in the dielectric resonator to constitute a filter.
[0010]
Further, according to the present invention, a duplexer is configured by providing two sets of the above filters and providing a transmission signal input terminal, a transmission / reception common input / output terminal, and a reception signal output terminal as signal input / output portions thereof.
[0011]
According to the present invention, a high-frequency circuit device is configured by including the dielectric resonator, the filter, or the duplexer.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The dielectric resonator according to the first embodiment will be described with reference to FIGS.
1A is a top view of a dielectric resonator, and FIG. 1B is a central longitudinal sectional view thereof. Here, 1 is a cylindrical dielectric unit. Reference numerals 2 and 3 denote thin film multilayer electrodes provided on the upper and lower surfaces of the dielectric unit. Here, an arrow loop indicated by a broken line indicates a magnetic field vector, and a white arrow indicates an electric field vector. In this way, the magnetic field rotates concentrically with the cylindrical dielectric unit, and acts as a TM010 mode resonator in which the electric field vector is oriented in a direction perpendicular to the thin film multilayer electrodes 2 and 3.
[0013]
FIG. 2 is a sectional view of a dielectric resonator in which the thickness of the thin film multilayer electrode portion is exaggerated. Here, 23 is the lowermost conductor thin film in the thin film multilayer electrode 2, and 21 is the uppermost conductor thin film. Reference numeral 22 denotes a dielectric thin film provided between the conductive thin films 23 and 21. The conductor thin film 23 and the dielectric thin film 22 each have a ring shape with a predetermined width as a planar pattern. In this way, the thin film multilayer electrode 2 is formed in which the conductor thin film 23, the dielectric thin film 22, and the conductor thin film 21 are laminated in this order.
[0014]
Similarly, 33 is the lowermost conductor thin film in the thin film multilayer electrode 3, and 31 is the uppermost conductor thin film. Reference numeral 32 denotes a dielectric thin film provided between the conductive thin films 33 and 31. The conductor thin film 33 and the dielectric thin film 32 each have a ring shape with a predetermined width as a planar pattern. In this way, the thin film multilayer electrode 3 is formed in which the conductor thin film 33, the dielectric thin film 32, and the conductor thin film 31 are laminated in this order.
[0015]
As will be described later, the area of the lower conductor thin films 23 and 33 is made smaller than that of the upper conductor thin films 21 and 31, so that the actual currents flowing in the conductor thin films of each layer are made substantially equal.
[0016]
The amount of current flowing through each conductor thin film is
[Amount of displacement current flowing into each conductor thin film] − [Amount of displacement current flowing out]
be equivalent to. When the electric flux is D and the time is t, the displacement current is (∂D / ∂t).
[0017]
Here, if the dielectric constant of the dielectric thin film is lowered below the dielectric constant of the dielectric unit to suppress displacement current exchange between the conductor thin films, the amount of displacement current flowing from a part of the conductor thin film exposed on the dielectric unit side And the amount of actual current flowing through the conductor thin film becomes equal.
[0018]
FIG. 4A shows a change in the Q of the resonator when the dielectric constant of the dielectric thin film is changed. Here, the horizontal axis represents the ratio of the dielectric constant of the dielectric thin film to the dielectric constant of the dielectric unit, and the vertical axis represents the improvement ratio of Q compared to the single layer electrode. Thus, Q improves as the dielectric constant of the dielectric thin film decreases.
[0019]
FIG. 5 shows the relationship between the position in the radius r direction from the center of the dielectric unit and the electric flux D at that position. The function Jo (r) is a cylinder function, and the electric flux distribution in the TM010 mode is proportional to the cylinder function Jo (r). The electric flux in the TM010 mode has a positive maximum at the center and a negative maximum at the periphery. Here, assuming that the central position is r0, the position where the electric flux is 0 is r2, the peripheral position is r4, the inner peripheral position of the conductor thin films 23 and 33 is r1, and the outer peripheral position is r3, the electric currents in the r0 to r1 portions. The displacement current due to the bundle and the electric flux at the r3 to r4 portions flows into the conductor thin films 21 and 31, and the displacement current due to the electric flux at the r1 to r3 portions flows into the conductor thin films 23 and 33. Therefore, if r1 and r3 are obtained in the following relationship, the displacement current flowing into the conductor thin films 23 and 33 and the displacement current flowing into the conductor thin films 21 and 31 are substantially equal.
First,
[0020]
[Expression 1]
Figure 0003928531
[0021]
R1 is obtained so that the following relationship holds.
Also,
[0022]
[Expression 2]
Figure 0003928531
[0023]
R3 is obtained so that the following relationship holds.
In this case, theoretically, the conductor loss is minimized and Q is maximized.
[0024]
Next, the result of simulating the characteristics of the dielectric resonator shown in FIGS. 1 and 2 is shown. FIG. 3 is a cross-sectional view of a model for simulation of the dielectric resonator. Here, one of the upper and lower surfaces of the dielectric unit 1 is a thin film multilayer electrode 2, and the other electrode is a complete conductor electrode 3 '. In such a model, the dimensions of each part were determined as follows.
[0025]
Conductor thin film 21 thickness 8.25 μm
Conductor thin film 23 thickness 1 μm
Thickness of dielectric thin film 22 0.75 μm
Dielectric constant of dielectric thin film 22 0.01 times the dielectric constant of dielectric unit (relative dielectric constant 1400))
Thickness of dielectric unit 1 (distance between conductor thin film 23 and perfect conductor electrode 3 ') 0.2 mm
Dielectric unit 1 diameter 0.5 mm
Dielectric constant of dielectric unit 1 140,000
Dielectric loss of dielectric unit 1 0 (no loss)
Conductivity of conductor thin films 22 and 23 53MS
The side surface of the dielectric unit 1 is a magnetic wall.
[0026]
FIG. 4B shows the result. Here, the horizontal axis represents the length ratio of the lower conductor thin film 23 in the radial direction with respect to the upper conductor thin film 21, and the vertical axis represents the improvement ratio of Q compared to the single layer electrode. Thus, when the radial dimension ratio of the lower conductor thin film to the upper conductor thin film is around 0.55 (around 0.5 in area ratio), Q is most improved. The “theoretical value” in the figure is the length ratio of the lower electrode in the radial direction to the upper electrode when the above [Equation 1] and [Equation 2] are satisfied.
[0027]
Next, the configuration of the dielectric resonator according to the second embodiment is shown in a sectional view in FIG. In this example, the relative dielectric constant is different between the dielectric portion 12 between the lower conductive thin films 23 and 33 and the other dielectric portion 11. Even with such a structure, if the area of each conductor thin film is determined so that the displacement current flowing into each conductor thin film becomes substantially equal, an optimum low-loss operation as a whole is possible.
[0028]
In the first and second embodiments, a thin film multilayer electrode having a three-layer structure is provided by two conductive thin films and a single dielectric thin film provided therebetween. However, three or more conductive thin films are provided. Of course, it can also be applied to other things. For example, even when configuring a thin film multilayer electrode having a five-layer structure in which three conductor thin films and two dielectric thin films are alternately stacked, the displacement current flowing into each conductor thin film is substantially equal. What is necessary is just to make small the area of each conductor thin film in order from an upper layer to a lower layer.
[0029]
In the first and second embodiments, the cylindrical dielectric unit is used. However, the shape of the dielectric unit is not limited to the cylindrical shape, and may be a quadrangular prism (rectangular) shape or a polygonal prism shape. .
[0030]
Next, the configuration of the filter according to the third embodiment will be described with reference to FIG.
In FIG. 7, the three resonators are any of the resonators shown in the first and second embodiments, and these resonators are coupled with a coupling capacitance represented by a capacitor symbol in the figure. Furthermore, the first stage and final stage resonators and the input / output terminals are coupled by a coupling capacitor to constitute a filter having a band-pass filter characteristic composed of three stages of resonators.
[0031]
Next, a configuration example of a duplexer will be described as a fourth embodiment with reference to FIG.
Here, both the transmission filter and the reception filter are filters having the structure shown in FIG. However, the respective filter characteristics are determined so that the transmission filter passes the transmission band and the reception filter passes the reception band.
[0032]
Phase adjustment is performed between the output port of the transmission filter and the input port of the reception filter so that the transmission signal does not circulate to the reception filter side and the reception signal does not circulate to the transmission filter side.
[0033]
Next, the configuration of a communication apparatus according to the fifth embodiment is shown in FIG.
Here, the duplexer is a duplexer having the configuration shown in FIG. A transmission circuit is connected to the transmission terminal of the duplexer, and a reception circuit is connected to the reception terminal. An antenna is connected to the antenna terminal.
[0034]
【The invention's effect】
According to the present invention, since a substantially equal amount of current flows through each layer of the conductive thin film in the thin film multilayer electrode in which the conductive thin film and the dielectric thin film are alternately laminated, the current concentration is alleviated and the entire conductor loss is effectively reduced. Can be suppressed. In addition, since the conductor loss is most effectively suppressed by the area (dimension and forming position) of the conductor thin film, the design conditions of the dielectric thin film portion of the thin film multilayer electrode are expanded.
[0035]
Further, according to the present invention, a filter having a small size and a low insertion loss can be obtained by providing a signal input / output unit in the resonator to constitute a filter.
[0036]
In addition, according to the present invention, two sets of the above-described filters are provided, and a duplexer is configured by providing a transmission signal input terminal, a common input / output terminal, and a reception signal output terminal as signal input / output units. A duplexer with low insertion loss can be obtained.
[0037]
According to the present invention, by configuring the high-frequency circuit device with the dielectric resonator, the filter, or the duplexer, a small-sized and low-loss high-frequency circuit can be configured, and the noise characteristics and transmission of the communication device using the same Communication quality such as speed can be improved.
[0038]
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a dielectric resonator according to a first embodiment. FIG. 2 is a cross-sectional view of the dielectric resonator. FIG. 3 is a cross-sectional view of a model for characteristic simulation of the dielectric resonator. FIG. 4 is a diagram showing an example of Q change when the dielectric constant of the dielectric thin film of the dielectric resonator is changed, and an example of Q change when the area of the conductive thin film of each layer is changed. FIG. 6 is a cross-sectional view of a dielectric resonator according to the second embodiment. FIG. 7 is a configuration of a filter according to the third embodiment. FIG. 8 is a block diagram illustrating a configuration of a duplexer according to a fourth embodiment. FIG. 9 is a block diagram illustrating a configuration of a communication device according to a fifth embodiment. Sectional view showing the configuration of the resonator 【Explanation of symbols】
1-dielectric unit 2,3-thin film multilayer electrode 3'-full conductor electrode 11,12-dielectric 21,23,31,33-conductor thin film 22,32-dielectric thin film

Claims (4)

導体薄膜と誘電体薄膜とを交互に積層した薄膜多層電極を、側面を開放した誘電体ユニットの上下面に設けてなる誘電体共振器において、
前記誘電体薄膜の誘電率を前記誘電体ユニットの誘電率より小さくし、且つ、前記導体薄膜の各層に流入する変位電流が略等量となるように、各導体薄膜の面積を上層より下層にかけて順に小さくしたことを特徴とする誘電体共振器。
In a dielectric resonator in which thin film multilayer electrodes in which conductor thin films and dielectric thin films are alternately laminated are provided on the upper and lower surfaces of a dielectric unit with open side surfaces,
The area of each conductor thin film is extended from the upper layer to the lower layer so that the dielectric constant of the dielectric thin film is smaller than the dielectric constant of the dielectric unit, and the displacement current flowing into each layer of the conductor thin film is substantially equal. A dielectric resonator characterized by being made smaller in order.
請求項1に記載の誘電体共振器に信号入出力部を設けたフィルタ。The filter which provided the signal input-output part in the dielectric resonator of Claim 1. 請求項2に記載のフィルタを2組備えるとともに、前記信号入出力部として、送信信号入力端子、送受信共用入出力端子、および受信信号出力端子を設けて成るデュプレクサ。A duplexer comprising two sets of the filters according to claim 2 and having a transmission signal input terminal, a transmission / reception common input / output terminal, and a reception signal output terminal as the signal input / output unit. 請求項1に記載の共振器、請求項2に記載のフィルタ、もしくは請求項3に記載のデュプレクサを備えた高周波回路装置。A high-frequency circuit device comprising the resonator according to claim 1, the filter according to claim 2, or the duplexer according to claim 3.
JP2002282978A 2002-09-27 2002-09-27 Dielectric resonator, filter, duplexer, and high-frequency circuit device Expired - Lifetime JP3928531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002282978A JP3928531B2 (en) 2002-09-27 2002-09-27 Dielectric resonator, filter, duplexer, and high-frequency circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002282978A JP3928531B2 (en) 2002-09-27 2002-09-27 Dielectric resonator, filter, duplexer, and high-frequency circuit device

Publications (2)

Publication Number Publication Date
JP2004120516A JP2004120516A (en) 2004-04-15
JP3928531B2 true JP3928531B2 (en) 2007-06-13

Family

ID=32276982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002282978A Expired - Lifetime JP3928531B2 (en) 2002-09-27 2002-09-27 Dielectric resonator, filter, duplexer, and high-frequency circuit device

Country Status (1)

Country Link
JP (1) JP3928531B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4744949B2 (en) * 2005-06-24 2011-08-10 三菱電機株式会社 Radio wave shielding device
JP5062576B2 (en) * 2006-07-31 2012-10-31 国立大学法人京都大学 Waveguide and resonator capable of suppressing loss due to skin effect

Also Published As

Publication number Publication date
JP2004120516A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
US7126444B2 (en) Multi-layer band-pass filter
US9373876B2 (en) Multiple-mode filter for radio frequency integrated circuits
US6222431B1 (en) Balanced dielectric filter
JP2011071921A (en) Multilayer band pass filter
JP4629571B2 (en) Microwave circuit
JP2005269590A (en) Resonator device, filter, duplexer and communications device
JP4693587B2 (en) Bandpass filter
JP3928531B2 (en) Dielectric resonator, filter, duplexer, and high-frequency circuit device
JP3901130B2 (en) Resonator, filter, and communication device
JPH1028006A (en) Laminated resonator, laminated dielectric filter and method for adjusting resonance characteristic of laminated dielectric filter
JP3603826B2 (en) Spiral line assembly element, resonator, filter, duplexer and high frequency circuit device
JPH11261362A (en) Stacked band pass filter
JP4336319B2 (en) Multilayer stripline filter
JP2009200988A (en) Filter device
JP2003218604A (en) Laminated dielectric resonator and laminated dielectric filter
JP2004266697A (en) Laminated band-pass filter
JP2002232209A (en) Bandpass filter
JPH10190309A (en) Lamination type dielectric filter
JPH0818306A (en) Dielectric filter
JPH10126104A (en) Laminated-type dielectric filter
JPH1051203A (en) Strip line filter
WO2004086553A2 (en) Resonator, resonator producing method, filter, duplexer, and communication device
JPH11284406A (en) Stacked dielectric filter
JP5361638B2 (en) Filter device
JPH11340042A (en) Laminating inductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R150 Certificate of patent or registration of utility model

Ref document number: 3928531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

EXPY Cancellation because of completion of term