JP3928047B2 - Performance evaluation method and index value of humidity control materials used for the purpose of preventing dryness in living environment - Google Patents

Performance evaluation method and index value of humidity control materials used for the purpose of preventing dryness in living environment Download PDF

Info

Publication number
JP3928047B2
JP3928047B2 JP2003041922A JP2003041922A JP3928047B2 JP 3928047 B2 JP3928047 B2 JP 3928047B2 JP 2003041922 A JP2003041922 A JP 2003041922A JP 2003041922 A JP2003041922 A JP 2003041922A JP 3928047 B2 JP3928047 B2 JP 3928047B2
Authority
JP
Japan
Prior art keywords
humidity
drying
water vapor
humidity control
control material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003041922A
Other languages
Japanese (ja)
Other versions
JP2004251735A (en
Inventor
雅喜 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003041922A priority Critical patent/JP3928047B2/en
Publication of JP2004251735A publication Critical patent/JP2004251735A/en
Application granted granted Critical
Publication of JP3928047B2 publication Critical patent/JP3928047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、居住環境の快適性に寄与する目的で使用する調湿材料の乾燥防止性能を客観的に評価する方法に関するものであり、更に詳しくは、調湿材料の性能を乾燥抑制能力、過乾燥防止能力及び乾燥防止性能として数値化し、その指標値に基づいて調湿材料の調湿能力を客観的に評価することを可能とする調湿材料の性能評価方法に関するものである。
【0002】
【従来の技術】
近年、建物はサッシや断熱材が多く用いられ、室内の気密性が高くなってきている。そのため、冬期の暖房使用時においては、気密性の高い建物では温度上昇に伴う空気の乾燥が人体に悪影響を与えることから、加湿器等を併用しているが、暖房運転停止時には、温度低下に伴う相対湿度上昇により、過剰な水蒸気が結露を発生させることも問題となっている。
【0003】
これらの問題を解決するために、一般的には空調設備が取り付けられるが、空調設備の運転にはエネルギー消費を伴い、運転費の面からも好ましくない。このようなことから、建材自体に調湿機能を持たせ、空調設備や動力などを必要とせずに室内の湿度調整を行い、防露性、防かび性を得ることができる調湿建材の開発が行われている。
【0004】
セラミック系調湿材料だけに着目しても、例えば、床下調湿材(特許文献1)、繰り返し利用可能な調湿材料及びその製造方法(特許文献2)、調湿材料の製造方法(特許文献3)、自律的調湿機能を有する多孔質材料(特許文献4)、アルミナ系調湿材料の製造方法(特許文献5)、高湿度条件下において優れた吸水挙動を示す調湿材料(特許文献6)、結露防止材として有効な多孔質材料及びその製造方法(特許文献7)等が開発されている。
【0005】
一方、調湿には乾燥防止の側面もあるが、加湿器等を用いることで水蒸気を供給する方法が一般的である。しかし、水の補充のため、タンク式の場合は頻繁に給水しなければならないし、配管式では設備工事が必要となるなどの難点があるため、吸着剤に対する水分の吸着と脱着を利用し、空気の加湿や除湿を行う空調装置(特許文献8)等も提案されている。
【0006】
我国はモンスーン気候帯に属し、比較的湿潤な環境条件であることから、従来の調湿対策は除湿や結露防止が主目的であったが、相対湿度が低下した場合、調湿材料は水蒸気を放出できるものもあり、乾燥防止材料としての利用も可能である。しかしながら、乾燥防止性能を客観的に判断する評価基準が定められていないため、製品間の優劣を比較検討することや施工条件に適した調湿材料を選択するための判断は困難であった。
【0007】
建築材料としての視点からは、必要性の高い湿気物性項目については(財)建材試験センターが中心となって、その測定方法の標準化が進められ、「建築材料の平衡含水率測定方法(JIS原案作成中)」や「調湿建材の吸放湿性能試験方法(JIS A1470−1及びJIS A1470−2)」等が公表されているが、これらは乾燥防止能力を判断する指標として必ずしも十分な規格とは言えない。
【0008】
本発明者は、調湿材料の開発とその調湿特性の評価技術に関し鋭意研究を進めた結果、調湿性能の評価指標としても、床下調湿材料の性能評価方法及びその指標値(特許文献9)や調湿材料の性能の評価方法(特許文献10)を開発してきたが、これらの評価方法は乾燥防止能力を判断する指標としては必ずしも適してはいなかった。
【0009】
従って、当該技術分野において、居住環境の乾燥防止目的で使用する調湿材料の性能を客観的に評価するためには、人が快適に生活できる湿度範囲を持続し、乾燥を防止得るかどうかを客観的に評価できる判断基準が求められていた。
【0010】
【特許文献1】
特開2002−1052号公報
【特許文献2】
特開2000−189789号公報
【特許文献3】
特開2000−189744号公報
【特許文献4】
特開平9−294931号公報
【特許文献5】
特開平11−11939号公報
【特許文献6】
特開2002−052337号公報
【特許文献7】
特願2002−198939号公報
【特許文献8】
特許第2989513号公報
【特許文献9】
特願2002−198801号公報
【特許文献10】
特願2002−352043号公報
【0011】
【発明が解決しようとする課題】
このような状況の中で、本発明者は、調湿材料の開発とその調湿特性の評価技術に関し鋭意研究を進めた結果、水蒸気脱着等温線から人が快適に生活できる相対湿度範囲における水蒸気吸着量の調湿材料の自重(絶乾重量)に対する百分率を乾燥防止能力とすることで調湿性能を評価できることを見出し、本発明を完成するに至ったものである。
本発明の目的は、居住環境の乾燥防止目的で使用する調湿材料の性能を客観的に判断するため、人が快適と感じる湿度範囲を長期間に亘って保つことができる能力を数値化し、調湿能力の評価指標として提供することにある。
【0012】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)居住環境の乾燥防止目的で使用する調湿材料の性能を客観的に評価する方法であって、1)標準的な湿度条件時における水蒸気吸着量と、居住環境の快適性に寄与する目的で使用する調湿材料が維持すべきと期待される下限の湿度条件時における水蒸気吸着量との差を算出し、これを材料単位当たりに換算して求められる値(乾燥抑制能力)、2)居住環境の快適性に寄与する目的で使用する調湿材料が維持すべきと期待される下限の湿度条件時における水蒸気吸着量と、乾燥が問題となる湿度条件時における水蒸気吸着量との差を算出し、これを材料単位当たりに換算して求められる値(過乾燥防止能力)及び3)標準的な湿度条件時における水蒸気吸着量と、乾燥が問題となる湿度条件時における水蒸気吸着量との差を算出し、これを材料単位当たりに換算して求められる値(乾燥防止能力)を指標として、これらの指標を単独あるいは複数を組み合わせて表示することにより、調湿材料の乾燥防止性能を評価することを特徴とする調湿材料の性能評価方法。
)標準的な湿度条件である相対湿度55%前後における水蒸気吸着量と、居住環境の快適性に寄与する目的で使用する調湿材料が維持すべきと期待される下限の湿度40%前後における水蒸気吸着量との差を算出する前記()記載の調湿材料の性能評価方法。
)居住環境の快適性に寄与する目的で使用する調湿材料が維持すべきと期待される下限の湿度40%前後における水蒸気吸着量と、乾燥が問題となる湿度25%前後における水蒸気吸着量との差を算出する前記()記載の調湿材料の性能評価方法。
)標準的な湿度条件である相対湿度55%前後における水蒸気吸着量と、乾燥が問題となる湿度25%前後における水蒸気吸着量との差を算出する前記()記載の調湿材料の性能評価方法。
)前記(1)から()のいずれかに記載の、居住環境の快適性に寄与する目的で使用する調湿材料の乾燥防止性能の指標値を用いて、当該指標値による調湿材料の性能表示を製品の任意の位置に付したことを特徴とする調湿材料。
【0013】
【発明の実施の形態】
次に、本発明について詳細に説明する。
本発明に係る調湿材料の性能評価方法の基本的な考え方は、人が快適と感じる湿度の下限に至るまで、あるいは、人が快適と感じる湿度の下限から乾燥が問題となる相対湿度に至るまで長期間に亘って保つことができる能力を判断するために必要な相対湿度における平衡含水率を複数点で求め、その平衡含水率を組み合わせて評価指標を算出し、該指標を用いることにより調湿材料の乾燥防止性能を評価することを特徴とするものである。
【0014】
平衡含水率とは、ある温湿度状態の雰囲気中における材料の吸放湿性の平衡状態をみるものである。水蒸気吸着量は一定の温湿度条件下において無限時間保持した場合、平衡水蒸気吸着量となるが、目的に応じ、所定時間経過後の水蒸気吸着量を指標値の計算に用いることを妨げるものではない。
【0015】
平衡含水率は、ある相対湿度及び温度の雰囲気中に試料を入れ、吸湿又は放湿による平衡状態に達した試料の質量を測定し、試料の乾燥質量を基準とし次式により求められる。
u=(m−m0 )/m0 ×100
u:平衡質量含水率(%),m:恒量時の試料の質量(kg),m0 :試料の乾燥質量(kg)
【0016】
試料を、はじめ乾燥状態にし、雰囲気の湿度を吸湿する場合(吸湿過程という)と、試料を、はじめ湿潤状態にして雰囲気に水蒸気を放出する場合(放湿過程という)がある。0から100%の間の相対湿度を適当な間隔で選び、各々の相対湿度での平衡含水率の値を結んで作成した吸湿過程及び放湿過程の平衡含水率曲線を吸着・脱着等温線という。
【0017】
吸着・脱着等温線は必ずしも一致しない(これをヒステリシスがあるという)ので、吸湿過程の平衡含水率を求めるには、求めたい相対湿度よりも低湿度側で試料を吸湿飽和させた後、所定の相対湿度まで加湿させる。放湿過程の平衡含水率を求めるには、逆の操作が必要となることは言うまでもない。
【0018】
乾燥を抑制し、人が快適と感じる湿度環境を長期間に亘って保つことができる能力を判断するには、標準的な湿度と人が快適と感じる下限とすべき湿度における平衡含水率を求め、その差をもって湿度低下を抑制する能力を判断しなければならない。それは、それぞれの平衡含水率の差は、標準的な湿度から人が快適と感じる下限とすべき湿度まで湿度が変化する際に、材料から放出される水分量であり、放出された水分は水蒸気となって湿度低下を抑制することができるからである。
【0019】
ここで、平均湿度は60%前後と言われていることから、本発明では、好適には、例えば、標準的な湿度を55%とし、人が快適と感じる下限に関しては40%とし、また、温度条件としては25℃を標準とするが、これらの条件に関しては、必ずしもこの限りである必要はない。
【0020】
過乾燥を防止し、乾燥が問題となる湿度環境に至ることを抑制する能力を判断するには、人が快適と感じる下限とすべき湿度と乾燥が問題となる湿度における平衡含水率を求め、その差をもって湿度低下を防止する能力を判断しなければならない。それは、それぞれの平衡含水率の差は、人が快適と感じる下限とすべき湿度から乾燥が問題となる湿度まで湿度が変化する際に、材料から放出される水分量であり、放出された水分は水蒸気となって湿度低下を抑制することができるからである。
【0021】
本発明において、過乾燥防止能力は、好適には、例えば、放湿過程における相対湿度40%の平衡含水率−放湿過程における相対湿度25%の平衡含水率とし、また、温度条件としては25℃を標準とするが、これらの条件に関しては、必ずしもこの限りである必要はない。
【0022】
本発明では、乾燥抑制能力と過乾燥防止能力を組み合わせ、総合的な乾燥防止能力を判断することが可能であり、具体的には、標準的な湿度と乾燥が問題となる湿度における平衡含水率を求め、その差をもって湿度低下を防止する能力を判断することができる。
【0023】
本発明において、乾燥防止能力は、好適には、例えば、放湿過程における相対湿度55%の平衡含水率−放湿過程における相対湿度25%の平衡含水率とし、また、温度条件としては25℃を標準とするが、これらの条件に関しては、必ずしもこの限りである必要はない。
【0024】
本発明によれば、例えば、標準的な湿度条件である相対湿度55%から快適とされる下限の相対湿度40%まで変化する際、調湿材料が水蒸気を放出する能力(乾燥抑制能力)と、快適とされる下限の相対湿度40%から乾燥が問題となる相対湿度25%まで変化する際に、調湿材料が水蒸気を放出する能力(過乾燥防止能力)とを評価できる評価指標が提供される。
【0025】
更に、上記乾燥抑制能力と過乾燥防止能力を組み合わせて、例えば、標準的な湿度条件である相対湿度55%から乾燥が問題となる相対湿度25%まで変化する際に、調湿材料が水蒸気を放出する能力(乾燥防止能力)を評価できる評価指標が提供される。
【0026】
本発明における上記湿度条件は、乾燥防止効果を評価する目的において適切な測定条件の一つとして規定したものであるが、これらに制限されるものではなく、本発明は、湿度調整条件として要求される任意の条件で測定することを妨げるものではない。
【0027】
本発明を利用する場合、実際の使用条件等を加味した性能表示方法が可能である。例えば、パネル形状の調湿材料は壁材等として利用される場合が一般的であるが、この場合には、材料の質量当たりである平衡含水量の差を指標とする性能評価方法よりも、施工面積当たりに換算した値を用いて性能表示をした方が施工条件を検討するにも便利である。本発明では、居住環境の乾燥防止目的で使用する調湿材料の性能を客観的に評価する方法として、平衡含水率の差を指標とする性能評価方法だけでなく、水蒸気吸着量の差を算出し、これを材料単位当たりに換算して求められる値を指標とする調湿材料の性能評価方法を用いることが可能となる。
【0028】
【実施例】
以下、実施例を示して本発明について具体的に説明するが、本発明は下記実施例に限定されるものでない。
実施例1
測定には、ジョージアカオリンを1050℃で24時間加熱処理し、カオリンをγ−アルミナと非晶質シリカの分相状態にした後、90℃の3N KOH溶液100ml中で試料100gを24時間処理し、非晶質シリカ相を選択的に溶脱させる操作を2回行って得たメソポア多孔質粉体をプレス成形し、900℃で焼成して作製したタイル(自律的調湿材料)を用いた。本材料の作製方法については、先行文献(例えば、日本セラミックス協会学術論文誌、108巻、pp.1024−1029(2000))に記載されている方法に従った。水蒸気吸着量は測定温度(25℃) にて真空脱気処理した試料を用い、吸着平衡測定装置(EAM−01,JTトーシ(株))で、相対湿度10〜95%の範囲で測定した。脱着等温線を図1に示す。脱着等温線の相対湿度55%及び40%における吸着量から乾燥抑制能力を、脱着等温線の相対湿度40%及び25%における吸着量から過乾燥防止能力を求めた。更に、これらの値から乾燥防止能力を求めた。それらの結果である、試験試料の乾燥抑制能力、過乾燥防止能力及び乾燥防止能力を表1に示す。
【0029】
実施例2
測定には、市販の試薬(関東化学製、水酸化アルミニウム(Al(OH)3 ))を電気炉にて500℃で4時間保持して熱処理した材料(乾燥防止材料)を用いた。水蒸気吸着量は測定温度(25℃) にて真空脱気処理した試料を用い、吸着平衡測定装置(EAM−01,JTトーシ(株))で、相対湿度10〜95%の範囲で測定した。脱着等温線を図2に示す。脱着等温線の相対湿度55%及び40%における吸着量から乾燥抑制能力を、脱着等温線の相対湿度40%及び25%における吸着量から過乾燥防止能力を求めた。更に、これらの値から乾燥防止能力を求めた。それらの結果である、試験試料の乾燥抑制能力、過乾燥防止能力及び乾燥防止能力を表1に示す。
【0030】
実施例3
中国産カオリン系鉱物(陜西省楡林地区産Coal-Kaolin)を用いた。原料を乳鉢で解砕した後、70mesh(φ212μm)のふるい下を1100℃で24時間保持し、仮焼した。仮焼後の試料を再び粉砕した後、試料3gに対し15mlの1N KOH溶液中で90℃、24時間処理し、アルカリ可溶成分を溶脱させた。溶解処理後、試料をろ過により回収し、最初は1N KOH溶液で、その後蒸留水で5回洗浄した。試料を110℃に設定した恒温槽で乾燥させた。乾燥後、再び乳鉢により解砕し、70meshのふるい下を試料(結露防止材料)とした。水蒸気吸着量は測定温度(25℃) にて真空脱気処理した試料を用い、吸着平衡測定装置(EAM−01,JTトーシ(株))で、相対湿度10〜95%の範囲で測定した。脱着等温線を図3に示す。脱着等温線の相対湿度55%及び40%における吸着量から乾燥抑制能力を、脱着等温線の相対湿度40%及び25%における吸着量から過乾燥防止能力を求めた。更に、これらの値から乾燥防止能力を求めた。それらの結果である、試験試料の乾燥抑制能力、過乾燥防止能力及び乾燥防止能力を表1に示す。
【0031】
【表1】

Figure 0003928047
【0032】
表1に示されるように、各試料の性能を乾燥抑制能力、過乾燥防止能力及び乾燥防止能力として数値化し、その指標値に基づいて調湿材料の調湿能力を客観的に評価することができる。これらの指標値を用いることにより、住環境の快適性に寄与する目的で使用する調湿材料の乾燥防止性能の判断が容易にできる。
【0033】
所定の湿度条件間での水蒸気吸着量の差を算出し、これを材料単位当たりに換算して求められる値の一例として、それぞれの材料の単位面積当たりに換算して指標値を求めた。それらの結果である、試験試料の単位面積当たりの乾燥抑制能力、過乾燥防止能力及び乾燥防止能力を表2に示す。実施例に示した材料の比表面積は、それぞれ、81.2m2 /g、201.2m2 /g、53.5m2 /gであり、表1に示した指標値を比表面積の値で除して求めることができる。
【0034】
【表2】
Figure 0003928047
【0035】
【発明の効果】
以上詳述したように、本発明は、居住環境の乾燥防止目的で使用する調湿材料の性能評価方法に係るものであり、本発明により、1)住環境の快適性に寄与する目的で使用する調湿材料が、人が快適と感じる下限とすべき湿度や乾燥が問題となる湿度まで乾燥することを抑制する性能の判断が容易にできる、2)そのため、住宅等の室内居住環境用調湿材の乾燥防止性能を客観的に評価するために有効な判断指標を提供できる、3)また、本発明により、施工業者及び施工主においても室内居住環境用調湿材料の選定に際し、乾燥防止性能、施工コストを客観的に評価し、期待される調湿効果を判断した上で調湿材料の選択が可能となる、という格別の効果が奏される。
【図面の簡単な説明】
【図1】25℃における自律的調湿材料の水蒸気脱着等温線を示す。
【図2】25℃における乾燥防止材料の水蒸気脱着等温線を示す。
【図3】25℃における結露防止材料の水蒸気脱着等温線を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for objectively evaluating the anti-drying performance of a humidity control material used for the purpose of contributing to the comfort of a living environment. The present invention relates to a method for evaluating the performance of a humidity control material, which is quantified as a dry control capability and a dry control capability, and allows the humidity control capability of the humidity control material to be objectively evaluated based on the index value.
[0002]
[Prior art]
In recent years, many sashes and heat insulating materials are used in buildings, and the airtightness of the room has been increased. For this reason, when heating is used in winter, humidifiers are used in combination with humidifiers because drying of the air accompanying a rise in temperature adversely affects the human body in highly airtight buildings. It is also a problem that excessive water vapor causes dew condensation due to the accompanying increase in relative humidity.
[0003]
In order to solve these problems, air-conditioning equipment is generally attached, but the operation of the air-conditioning equipment involves energy consumption, which is not preferable from the viewpoint of operating costs. For this reason, the development of humidity-control building materials that provide humidity control functions to the building materials themselves and can adjust the humidity in the room without the need for air-conditioning equipment or power to obtain dew-proof and mold-proof properties. Has been done.
[0004]
Even if attention is paid only to the ceramic humidity conditioning material, for example, an underfloor humidity conditioning material (Patent Document 1), a humidity conditioning material that can be used repeatedly and a manufacturing method thereof (Patent Document 2), a manufacturing method of the humidity conditioning material (Patent Document) 3), a porous material having an autonomous humidity control function (Patent Document 4), a production method of an alumina-based humidity control material (Patent Document 5), and a humidity control material exhibiting excellent water absorption behavior under high humidity conditions (Patent Document) 6) A porous material effective as an anti-condensation material, a manufacturing method thereof (Patent Document 7) and the like have been developed.
[0005]
On the other hand, humidity control also has an aspect of preventing drying, but a method of supplying water vapor by using a humidifier or the like is common. However, because of the replenishment of water, water must be supplied frequently in the case of the tank type, and the construction work is necessary in the case of the piping type. An air conditioner (Patent Document 8) that humidifies and dehumidifies air has also been proposed.
[0006]
Since Japan belongs to the monsoon climate zone and has relatively humid environmental conditions, conventional humidity control measures were mainly aimed at dehumidification and prevention of condensation.However, if the relative humidity decreases, the humidity control material uses water vapor. Some can be released and can also be used as an anti-drying material. However, since evaluation criteria for objectively judging the anti-drying performance have not been established, it has been difficult to compare the superiority and inferiority of products and to select a humidity control material suitable for construction conditions.
[0007]
From the viewpoint of building materials, the moisture testing method for high-humidity properties is being standardized by the Building Materials Testing Center, and the “Measurement Method for Equilibrium Moisture Content of Building Materials” (JIS draft) "In preparation") and "Hygroscopic building material moisture absorption and desorption performance test method (JIS A1470-1 and JIS A1470-2)" etc. have been published, but these are not necessarily sufficient standards as an index for judging drying prevention ability. It can not be said.
[0008]
As a result of earnestly researching the development of humidity control materials and the technology for evaluating the humidity control characteristics thereof, the present inventor has developed a performance evaluation method for underfloor humidity control materials and index values thereof (Patent Documents). 9) and a method for evaluating the performance of a humidity control material (Patent Document 10) have been developed, but these evaluation methods are not always suitable as an index for judging the anti-drying ability.
[0009]
Thus, whether in the art, in order to objectively evaluate the performance of the humidity control for use in preventing drying purposes habitat material lasts a humidity range that people can live comfortably can prevent drying Judgment criteria that can objectively evaluate the need were sought.
[0010]
[Patent Document 1]
JP 2002-1052 A [Patent Document 2]
JP 2000-189789 A [Patent Document 3]
JP 2000-189744 A [Patent Document 4]
JP-A-9-294931 [Patent Document 5]
JP 11-11939 A [Patent Document 6]
JP 2002-052337 A [Patent Document 7]
Japanese Patent Application No. 2002-198939 [Patent Document 8]
Japanese Patent No. 2998513 [Patent Document 9]
Japanese Patent Application No. 2002-198801 [Patent Document 10]
Japanese Patent Application No. 2002-352043
[Problems to be solved by the invention]
Under such circumstances, the present inventor conducted extensive research on the development of humidity control materials and the technology for evaluating the humidity control characteristics, and as a result, the water vapor in the relative humidity range where people can live comfortably from the water vapor desorption isotherm. The present inventors have found that the humidity control performance can be evaluated by setting the percentage of the adsorbed amount to the dead weight (absolute dry weight) of the humidity control material as the anti-drying capability, and the present invention has been completed.
The purpose of the present invention is to quantify the ability to maintain a humidity range that a person feels comfortable over a long period of time in order to objectively determine the performance of a humidity control material used for the purpose of preventing drying in a living environment, It is to provide as an evaluation index of humidity control ability.
[0012]
[Means for Solving the Problems]
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for objectively evaluating the performance of humidity control materials used for the purpose of preventing drying in the living environment, and 1) Contributing to the water vapor adsorption amount under standard humidity conditions and the comfort of the living environment. Calculate the difference from the amount of water vapor adsorbed at the lower humidity limit expected to be maintained by the humidity control material used for the purpose, and calculate this value per unit of material (drying suppression capacity), 2 ) The difference between the water vapor adsorption amount under the lower humidity condition that the humidity control material used for the purpose of contributing to the comfort of the living environment should be maintained and the water vapor adsorption amount under the humidity condition where drying is a problem And the value obtained by converting this per material unit (overdrying prevention capability) and 3) the amount of water vapor adsorption under standard humidity conditions and the amount of water vapor adsorption under humidity conditions where drying is a problem The difference between Using the value obtained by converting this per material unit (anti-drying ability) as an indicator, these indicators are displayed individually or in combination, and the anti-drying performance of the humidity control material is evaluated. To evaluate the performance of humidity control materials.
( 2 ) Water vapor adsorption amount at around 55% relative humidity, which is a standard humidity condition, and around 40% of the minimum humidity expected to be maintained by the humidity control material used for the purpose of contributing to comfort in the living environment The method for evaluating the performance of the humidity control material according to ( 1 ), wherein a difference from the water vapor adsorption amount in the water is calculated.
( 3 ) Water vapor adsorption at a lower limit of humidity of about 40%, which is expected to be maintained by the humidity control material used for the purpose of contributing to comfort in the living environment, and water vapor adsorption at a humidity of about 25% where drying is a problem The method for evaluating the performance of the humidity control material according to ( 1 ), wherein a difference from the amount is calculated.
(4) and water vapor adsorption amount at a relative humidity of 55% or so is a standard humidity conditions, drying to calculate the difference between the water vapor adsorption amount of humidity around 25% in question (1) of the humidity control material according Performance evaluation method.
( 5 ) Using the index value of the anti-drying performance of the humidity control material used for the purpose of contributing to the comfort of the living environment according to any one of (1) to ( 4 ), humidity control by the index value Humidity control material characterized by attaching the performance indication of the material to any position of the product.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail.
The basic idea of the performance evaluation method of the humidity control material according to the present invention is to reach the lower limit of the humidity that the person feels comfortable, or from the lower limit of the humidity that the person feels comfortable to the relative humidity at which drying becomes a problem. The equilibrium moisture content at the relative humidity required to determine the ability to be maintained over a long period of time can be obtained at multiple points, an evaluation index is calculated by combining the equilibrium moisture content, and adjustment is performed by using the index. It is characterized by evaluating the anti-drying performance of the wet material.
[0014]
Equilibrium moisture content refers to the equilibrium state of moisture absorption and desorption of materials in an atmosphere of a certain temperature and humidity state. The water vapor adsorption amount is the equilibrium water vapor adsorption amount when held for an infinite time under a constant temperature and humidity condition, but it does not preclude the use of the water vapor adsorption amount after a predetermined time for calculating the index value depending on the purpose. .
[0015]
The equilibrium moisture content is obtained by the following formula based on the dry mass of the sample, which is measured by measuring the mass of the sample that has reached an equilibrium state due to moisture absorption or moisture release, in a certain relative humidity and temperature atmosphere.
u = (m−m 0 ) / m 0 × 100
u: equilibrium mass moisture content (%), m: mass of sample at constant weight (kg), m 0 : dry mass of sample (kg)
[0016]
There are cases where the sample is first dried to absorb the humidity of the atmosphere (referred to as a moisture absorption process), and where the sample is first wetted to release water vapor (referred to as a moisture release process). Select the relative humidity between 0 and 100% at appropriate intervals, and connect the equilibrium moisture content values at each relative humidity to create the equilibrium moisture content curve of the moisture absorption process and the moisture release process called adsorption / desorption isotherm. .
[0017]
The adsorption / desorption isotherms do not necessarily match (this is said to have hysteresis), so to obtain the equilibrium moisture content of the moisture absorption process, after saturating the sample at a humidity lower than the desired relative humidity, Humidify to relative humidity. Needless to say, the reverse operation is required to determine the equilibrium moisture content of the moisture release process.
[0018]
To determine the ability to control dryness and maintain a comfortable humidity environment over a long period of time, find the equilibrium moisture content at the standard humidity and the lower limit that people should feel comfortable with. Therefore, the ability to suppress the decrease in humidity must be determined based on the difference. The difference in the equilibrium moisture content is the amount of water released from the material when the humidity changes from the standard humidity to the lower limit that humans should feel comfortable with. This is because a decrease in humidity can be suppressed.
[0019]
Here, since the average humidity is said to be around 60%, in the present invention, for example, the standard humidity is preferably 55%, and the lower limit at which a person feels comfortable is 40%. The temperature condition is 25 ° C. as a standard, but these conditions are not necessarily limited to this.
[0020]
To determine the ability to prevent overdrying and suppress the humidity environment where drying is a problem, determine the equilibrium moisture content at the humidity that should be the lower limit that people feel comfortable and the humidity where drying is a problem, The difference must be used to determine the ability to prevent humidity loss. The difference between the respective equilibrium moisture contents is the amount of moisture released from the material when the humidity changes from the lower limit that humans feel comfortable to the humidity at which drying becomes a problem. It is because it becomes water vapor | steam and can suppress a humidity fall.
[0021]
In the present invention, the ability to prevent overdrying is preferably, for example, an equilibrium moisture content of 40% relative humidity in the moisture release process-an equilibrium moisture content of 25% relative humidity in the moisture release process, and 25 as the temperature condition. Although the standard is ° C., these conditions are not necessarily limited.
[0022]
In the present invention, it is possible to determine the total drying prevention capability by combining the drying suppression capability and the overdrying prevention capability. Specifically, the equilibrium moisture content at standard humidity and humidity where drying is a problem And the ability to prevent humidity reduction can be determined based on the difference.
[0023]
In the present invention, the drying prevention capability is preferably, for example, an equilibrium moisture content of 55% relative humidity in the moisture release process-an equilibrium moisture content of 25% relative humidity in the moisture release process, and a temperature condition of 25 ° C. However, this is not necessarily the case for these conditions.
[0024]
According to the present invention, for example, when the humidity changes from 55% relative humidity, which is a standard humidity condition, to 40% relative humidity, which is a comfortable lower limit, the humidity conditioning material releases water vapor (drying suppression capability); Provides an evaluation index that can evaluate the ability of the moisture-conditioning material to release water vapor (over-drying prevention ability) when the relative humidity of 40%, which is the lower limit of comfort, changes from the relative humidity of 25% where drying is a problem. Is done.
[0025]
Further, when the drying control ability and the overdrying prevention ability are combined, for example, when the humidity changes from 55% relative humidity, which is a standard humidity condition, to 25% relative humidity where drying is a problem, An evaluation index that can evaluate the ability to release (anti-drying ability) is provided.
[0026]
The humidity condition in the present invention is specified as one of appropriate measurement conditions for the purpose of evaluating the drying prevention effect, but is not limited to these conditions, and the present invention is required as a humidity adjustment condition. It does not preclude measurement under arbitrary conditions.
[0027]
When the present invention is used, a performance display method that takes into consideration actual use conditions and the like is possible. For example, a panel-shaped humidity control material is generally used as a wall material or the like, but in this case, rather than a performance evaluation method that uses the difference in equilibrium water content per mass of the material as an index, It is more convenient to examine the construction conditions by displaying the performance using the value converted per construction area. In the present invention, as a method for objectively evaluating the performance of the humidity control material used for the purpose of preventing drying in the living environment, not only the performance evaluation method using the difference in equilibrium moisture content as an index, but also the difference in water vapor adsorption amount is calculated. In addition, it is possible to use a performance evaluation method for a humidity control material using a value obtained by converting this per material unit as an index.
[0028]
【Example】
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited to the following Example.
Example 1
For measurement, Georgia kaolin was heat-treated at 1050 ° C. for 24 hours, kaolin was separated into γ-alumina and amorphous silica, and 100 g of a sample was treated in 100 ml of 3N KOH solution at 90 ° C. for 24 hours. A tile (autonomous humidity control material) produced by press-molding a mesopore porous powder obtained by selectively leaching the amorphous silica phase twice and firing at 900 ° C. was used. About the preparation method of this material, the method described in the prior literature (For example, Japan Ceramic Society academic journal, volume 108, pp.1024-1030 (2000)) was followed. The amount of water vapor adsorption was measured in a range of relative humidity of 10 to 95% with an adsorption equilibrium measuring device (EAM-01, JT Toshi Co., Ltd.) using a sample that was vacuum degassed at the measurement temperature (25 ° C.). The desorption isotherm is shown in FIG. The ability to suppress drying was determined from the amount of adsorption at 55% and 40% relative humidity on the desorption isotherm, and the ability to prevent overdrying from the amount of adsorption at 40% and 25% relative humidity on the desorption isotherm. Furthermore, drying prevention ability was calculated | required from these values. Table 1 shows the results of the results of the drying suppression ability, overdrying prevention ability and drying prevention ability of the test samples.
[0029]
Example 2
For the measurement, a commercially available reagent (manufactured by Kanto Chemical Co., Ltd., aluminum hydroxide (Al (OH) 3 )) was used in an electric furnace held at 500 ° C. for 4 hours for heat treatment (drying prevention material). The amount of water vapor adsorption was measured in a range of relative humidity of 10 to 95% with an adsorption equilibrium measuring device (EAM-01, JT Toshi Co., Ltd.) using a sample that was vacuum degassed at the measurement temperature (25 ° C.). The desorption isotherm is shown in FIG. The ability to suppress drying was determined from the amount of adsorption at 55% and 40% relative humidity on the desorption isotherm, and the ability to prevent overdrying from the amount of adsorption at 40% and 25% relative humidity on the desorption isotherm. Furthermore, drying prevention ability was calculated | required from these values. Table 1 shows the results of the results of the drying suppression ability, overdrying prevention ability and drying prevention ability of the test samples.
[0030]
Example 3
Chinese kaolin mineral (Coal-Kaolin from Yulin District, Shaanxi Province) was used. The raw material was crushed in a mortar, and then kept under a sieve of 70 mesh (φ212 μm) at 1100 ° C. for 24 hours and calcined. After the calcined sample was pulverized again, 3 g of the sample was treated in 15 ml of a 1N KOH solution at 90 ° C. for 24 hours to leach out the alkali-soluble components. After the dissolution treatment, the sample was collected by filtration and washed 5 times with 1N KOH solution and then with distilled water. The sample was dried in a thermostatic bath set at 110 ° C. After drying, it was crushed again with a mortar, and the sample under the 70 mesh sieve was used as a sample (condensation prevention material). The amount of water vapor adsorption was measured in a range of relative humidity of 10 to 95% with an adsorption equilibrium measuring device (EAM-01, JT Toshi Co., Ltd.) using a sample that was vacuum degassed at the measurement temperature (25 ° C.). The desorption isotherm is shown in FIG. The ability to suppress drying was determined from the amount of adsorption at 55% and 40% relative humidity on the desorption isotherm, and the ability to prevent overdrying from the amount of adsorption at 40% and 25% relative humidity on the desorption isotherm. Furthermore, drying prevention ability was calculated | required from these values. Table 1 shows the results of the results of the drying suppression ability, overdrying prevention ability and drying prevention ability of the test samples.
[0031]
[Table 1]
Figure 0003928047
[0032]
As shown in Table 1, the performance of each sample is quantified as a drying suppression capability, an overdrying prevention capability and a drying prevention capability, and the humidity conditioning capability of the humidity conditioning material can be objectively evaluated based on the index value. it can. By using these index values, it is possible to easily determine the anti-drying performance of the humidity control material used for the purpose of contributing to the comfort of the living environment.
[0033]
As an example of a value obtained by calculating a difference in water vapor adsorption amount between predetermined humidity conditions and converting it per unit of material, an index value was obtained by converting per unit area of each material. Table 2 shows the results of the results of the drying suppression ability, overdrying prevention ability and drying prevention ability per unit area of the test sample. The specific surface area of the material shown in the embodiment are each a 81.2m 2 /g,201.2m 2 /g,53.5m 2 / g , by dividing the index values shown in Table 1 by the value of specific surface area Can be obtained.
[0034]
[Table 2]
Figure 0003928047
[0035]
【The invention's effect】
As described above in detail, the present invention relates to a performance evaluation method for a humidity control material used for the purpose of preventing drying in a living environment, and according to the present invention, 1) used for the purpose of contributing to the comfort of the living environment. The humidity control material to be used can easily judge the performance that suppresses drying to a humidity that should be the lower limit that people feel comfortable and the humidity at which drying becomes a problem. 2) Therefore, adjustment for indoor living environment such as a house It is possible to provide an effective judgment index for objectively evaluating the anti-drying performance of the wet material. 3) In addition, according to the present invention, the contractor and the contractor can also prevent the dryness when selecting the humidity control material for indoor living environment. A special effect is achieved that the performance and construction cost are objectively evaluated and the humidity control material can be selected after judging the expected humidity control effect.
[Brief description of the drawings]
FIG. 1 shows a water vapor desorption isotherm of an autonomous humidity control material at 25 ° C.
FIG. 2 shows a water vapor desorption isotherm of an anti-drying material at 25 ° C.
FIG. 3 shows a water vapor desorption isotherm of a dew condensation preventing material at 25 ° C.

Claims (5)

居住環境の乾燥防止目的で使用する調湿材料の性能を客観的に評価する方法であって、(1)標準的な湿度条件時における水蒸気吸着量と、居住環境の快適性に寄与する目的で使用する調湿材料が維持すべきと期待される下限の湿度条件時における水蒸気吸着量との差を算出し、これを材料単位当たりに換算して求められる値(乾燥抑制能力)、(2)居住環境の快適性に寄与する目的で使用する調湿材料が維持すべきと期待される下限の湿度条件時における水蒸気吸着量と、乾燥が問題となる湿度条件時における水蒸気吸着量との差を算出し、これを材料単位当たりに換算して求められる値(過乾燥防止能力)及び(3)標準的な湿度条件時における水蒸気吸着量と、乾燥が問題となる湿度条件時における水蒸気吸着量との差を算出し、これを材料単位当たりに換算して求められる値(乾燥防止能力)を指標として、これらの指標を単独あるいは複数を組み合わせて表示することにより、調湿材料の乾燥防止性能を評価することを特徴とする調湿材料の性能評価方法。It is a method to objectively evaluate the performance of humidity control materials used for the purpose of preventing drying in the living environment, and (1) For the purpose of contributing to the water vapor adsorption amount under standard humidity conditions and the comfort of the living environment. Calculate the difference from the amount of water vapor adsorbed under the lower humidity conditions expected to be maintained by the humidity control material to be used, and calculate this value per material unit (drying suppression capability), (2) The difference between the amount of water vapor adsorption under the lower humidity conditions expected to be maintained by the humidity control material used to contribute to the comfort of the living environment and the amount of water vapor adsorption under the humidity conditions where drying is a problem Calculated and converted to per material unit (over-drying prevention ability) and (3) water vapor adsorption amount under standard humidity conditions and water vapor adsorption amount under humidity conditions where drying is a problem The difference between Using the value obtained by converting this per material unit (anti-drying ability) as an indicator, these indicators are displayed individually or in combination, and the anti-drying performance of the humidity control material is evaluated. To evaluate the performance of humidity control materials. 標準的な湿度条件である相対湿度55%前後における水蒸気吸着量と、居住環境の快適性に寄与する目的で使用する調湿材料が維持すべきと期待される下限の湿度40%前後における水蒸気吸着量との差を算出する請求項記載の調湿材料の性能評価方法。Water vapor adsorption at a relative humidity of around 55%, which is a standard humidity condition, and water vapor adsorption at a humidity of around 40%, the lower limit expected to be maintained by the humidity control material used to contribute to comfort in the living environment evaluation method of claim 1, wherein the humidity control material for calculating a difference between the amount. 居住環境の快適性に寄与する目的で使用する調湿材料が維持すべきと期待される下限の湿度40%前後における水蒸気吸着量と、乾燥が問題となる湿度25%前後における水蒸気吸着量との差を算出する請求項記載の調湿材料の性能評価方法。The amount of water vapor adsorption at a humidity of around 40%, which is the lower limit expected to be maintained by the humidity control material used for the purpose of contributing to the comfort of the living environment, and the amount of water vapor adsorption at a humidity of about 25%, where drying is a problem evaluation method of claim 1, wherein the humidity control material for calculating the difference. 標準的な湿度条件である相対湿度55%前後における水蒸気吸着量と、乾燥が問題となる湿度25%前後における水蒸気吸着量との差を算出する請求項記載の調湿材料の性能評価方法。A water vapor adsorption amount at a relative humidity of 55% or so is a standard humidity conditions, the performance evaluation method according to claim 1, wherein the humidity control material drying to calculate the difference between the water vapor adsorption amount at become humidity of 25% or so problems. 請求項1からのいずれかに記載の、居住環境の快適性に寄与する目的で使用する調湿材料の乾燥防止性能の指標値を用いて、当該指標値による調湿材料の性能表示を製品の任意の位置に付したことを特徴とする調湿材料。Using the index value of the anti-drying performance of the humidity control material used for the purpose of contributing to the comfort of the living environment according to any one of claims 1 to 4 , the performance display of the humidity control material based on the index value is a product. A humidity control material characterized by being attached to any position.
JP2003041922A 2003-02-19 2003-02-19 Performance evaluation method and index value of humidity control materials used for the purpose of preventing dryness in living environment Expired - Lifetime JP3928047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041922A JP3928047B2 (en) 2003-02-19 2003-02-19 Performance evaluation method and index value of humidity control materials used for the purpose of preventing dryness in living environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041922A JP3928047B2 (en) 2003-02-19 2003-02-19 Performance evaluation method and index value of humidity control materials used for the purpose of preventing dryness in living environment

Publications (2)

Publication Number Publication Date
JP2004251735A JP2004251735A (en) 2004-09-09
JP3928047B2 true JP3928047B2 (en) 2007-06-13

Family

ID=33025333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041922A Expired - Lifetime JP3928047B2 (en) 2003-02-19 2003-02-19 Performance evaluation method and index value of humidity control materials used for the purpose of preventing dryness in living environment

Country Status (1)

Country Link
JP (1) JP3928047B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252932A (en) * 2010-12-13 2011-11-23 中国建筑材料科学研究总院 Performance testing equipment for humidifying function material and testing method
CN102252933A (en) * 2011-06-27 2011-11-23 大连工业大学 Method for measuring moisture absorption performance of wallpaper

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352005B (en) * 2015-11-23 2019-04-02 珠海格力电器股份有限公司 Air-humidification method, device and system based on electric heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252932A (en) * 2010-12-13 2011-11-23 中国建筑材料科学研究总院 Performance testing equipment for humidifying function material and testing method
CN102252932B (en) * 2010-12-13 2013-04-17 中国建筑材料科学研究总院 Performance testing equipment for humidifying function material and testing method
CN102252933A (en) * 2011-06-27 2011-11-23 大连工业大学 Method for measuring moisture absorption performance of wallpaper

Also Published As

Publication number Publication date
JP2004251735A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
Feng et al. Metal-organic framework MIL-100 (Fe) as a novel moisture buffer material for energy-efficient indoor humidity control
Qin et al. Precise humidity control materials for autonomous regulation of indoor moisture
Chai et al. Experimental investigation on a fresh air dehumidification system using heat pump with desiccant coated heat exchanger
Simonson et al. Heat and mass transfer between indoor air and a permeable and hygroscopic building envelope: Part I–field measurements
US7264649B1 (en) System for allergen reduction through indoor humidity control
Huang et al. Hygrothermal performance of natural bamboo fiber and bamboo charcoal as local construction infills in building envelope
Wu et al. Proposing ultimate moisture buffering value (UMBV) for characterization of composite porous mortars
Simonson et al. Heat and mass transfer between indoor air and a permeable and hygroscopic building envelope: part II–verification and numerical studies
Chen et al. Experimental investigation on condensation characteristics of a novel radiant terminal based on sepiolite composite humidity-conditioning coating
Arens et al. Indoor humidity and human health: part II--buildings and their systems
Chen et al. Energy saving potential of passive dehumidification system combined with energy recovery ventilation using renewable energy
JP3928047B2 (en) Performance evaluation method and index value of humidity control materials used for the purpose of preventing dryness in living environment
Lee et al. Housing design methodology for passive hygrothermal control and effect verification via field measurements
Liu et al. Bioinspired ant-nest-like hierarchical porous material using CaCl2 as additive for smart indoor humidity control
Ye et al. Experimental study on the heating and humidifying performance of fan coil units with humidification modules in severe cold regions
Jin et al. Quantitative evaluation of carbon materials for humidity buffering in a novel dehumidification shutter system powered by solar energy
Shang et al. Synthesis and analysis of new humidity-controlling composite materials
Raish Thermal comfort: Designing for people
Sahabuddin et al. Balancing comfort and indoor air quality in high-riser buildings for social housing in Kuala Lumpur: from regulations to construction
Srivastava et al. Study of Radiant Cooling System with Parallel Desiccant Based Dedicated Outdoor Air System with Solar Regeneration
Wang et al. Study on the hygroscopic performances of poplar wood fiber biomass brick
Růžička et al. The influence of building materials on relative humidity of internal microclimate
JP4088683B2 (en) Evaluation method of performance of humidity control materials
Gao et al. Experimental study of a LiCl-modified fibrous core material for energy wheels
Shekhar et al. Performance of Different Pad Materials in Advanced Desert Coolers—A Comparative Study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070202

R150 Certificate of patent or registration of utility model

Ref document number: 3928047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term