JP3927517B2 - Inner unit for small-diameter curve propulsion work - Google Patents

Inner unit for small-diameter curve propulsion work Download PDF

Info

Publication number
JP3927517B2
JP3927517B2 JP2003147184A JP2003147184A JP3927517B2 JP 3927517 B2 JP3927517 B2 JP 3927517B2 JP 2003147184 A JP2003147184 A JP 2003147184A JP 2003147184 A JP2003147184 A JP 2003147184A JP 3927517 B2 JP3927517 B2 JP 3927517B2
Authority
JP
Japan
Prior art keywords
pipe
traveling
propulsion
inner unit
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003147184A
Other languages
Japanese (ja)
Other versions
JP2004076565A (en
Inventor
有 野沢
実 加藤
隆 野口
健一 折出
正憲 寺内
智 服部
哲 能勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2003147184A priority Critical patent/JP3927517B2/en
Publication of JP2004076565A publication Critical patent/JP2004076565A/en
Application granted granted Critical
Publication of JP3927517B2 publication Critical patent/JP3927517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Joints With Sleeves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地下曲線下水道造成工事の斬新な技術に係り、具体的には、地下における小口径長距離曲線推進工法において従来工法では、鉄製で高価な曲線誘導管を用いて後でヒューム管を入れるという2工程工事をしていたものをヒューム管と共に比較的安価なインナーユニットとを用いて1工程で穿孔可能とし、工期の短縮化を図り、材料費も安く、高価な曲線誘導管の在庫も不要となり、工事費を従来よりも大幅(40%)に低減できる画期的な小口径曲線推進工事用インナーユニットに関する。
【0002】
【従来の技術】
推進工法の中で推進管径が呼び径で150mm乃至700mmのものに適用される小口径推進工法のニーズが近年高まっている。また、推進管内作業が禁止されていることから必然的に自動化,ロボット化が進められている。一方で、長距離で曲線推進の需要が増大していることから長距離で曲線推進が可能で、かつ自動で掘進機の位置や掘進機の姿勢計測ができる工法が開発されてきている。例えば、従来のミクロ工法では通常サイズのジャイロを搭載したロボットを管内に走行させ、連続的、かつ高精度な位置計測が可能であり、長距離,曲線推進にも対応可能となっている。しかし、ミクロ工法では高価な鋼製の曲線誘導管とコンクリートの推進管を2段に用いる2工程方式であり、曲線誘導管の在庫も持たなければならず工事費も高く工期も長くなるという欠点があった。
【0003】
【発明が解決しようとする課題】
曲線推進の場合には多数本の連結管の連結部位に無理がかからないように継手構造を工夫する必要がある。また、推進中にローリング等が生じ易いがこの場合、円滑で、かつ安全なローリング対策が必要である。また、ローリング時においても復元性のよいことが必要であり、このためには重心位置が低いことが望ましい。また、位置を自動計測するため立抗からの距離計測が必要であるが、従来ではケーブルワイヤを用いるためワイヤの伸びの影響が加わり、正確な距離が計測できない問題点がありケーブルを用いることは難しい。また、測量ロボットの走行台車の車軸回転から位置を求めることは可能であるが、スリップ等があるため測定精度は低い。また、インナーユニットは推進管に常に一定の押圧力で接触する必要があるが、従来技術ではその辺の配慮がない。また、インナーユニットには送泥管や排泥管が装備されているが、この連結部からの洩れが生じないようにすることが必要である。また、インナーユニットを引き出す場合の引き抜き伝達部材は屈曲性を有することが必要であると共に、引き抜きがし易いことも要請される。また、従来ではロボットのジャイロサイズが大きいため走行空間が大きくなる欠点があった。また、狭小な推進管内に、位置、方向を自動計測する装置の走行路、掘進するための送・排泥管、ケーブル類、各種配管を簡潔に組み立てる必要があるとの要請があった。
【0004】
本発明は、以上の問題点の解決や要請に基づいて発明されたものであり、長距離推進や曲線推進に対応可能であり、測量ロボツトがローリングすることなく安定保持され、かつ位置測定が正確にでき、推進管や各管の連結部位に無理な力が作用せず、屈曲性を有し、かつ各管の継目からの洩れがなく、全体として小型にまとめられ、かつ引き抜きも容易にでき、大幅に工費を引き下げることがで、更にユニット化により作業性の大幅な向上ができる小口径曲線推進工事用インナーユニットを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、以上の目的を達成するために、請求項1の発明は、地下下水管造成のために穿孔された孔内に多数本屈曲可能に連結されている推進管を直線的及び/又は曲線的に地下埋設管として構築する小口径曲線推進工事に使用されるインナーユニットであって、該インナーユニットは前記の夫々の推進管内に収納され、内部に光ファイバーを用いた超小型ジャイロを具備する測量ロボット台車を移動可能に収納する断面正方形乃至矩形を含む異形の走行管と、この走行管の下面側に着離可能に接し上方に向かって凸に形成され両端側を下方に向けて弧状に屈曲して配置される弧状の支持板と、該支持板の左右端及び下方垂直板下端に取付けられ前記推進管の内部に接するガイドローラ体と、前記走行管の配設方向に沿って配置され前記支持板の下方側に移動可能に配置される送泥管及び排泥管と、前記走行管側に連結され走行管及びインナーユニットを推進管の内外に出入させるための引抜き伝達部材と、前記走行管の配設方向に沿って配置され各種ケーブル類,配管類を搭載収納する収納体を備えるものからなり、前記支持板上に搭載される前記走行管は弾性バンドを介して弾性支持されると共に連結される夫々の走行管の連結部位には走行管の角度ずれを吸収する連結具が設けられ、かつ押圧力作用時において走行管の軸方向への移動を拘束する拘束具が設けられるものである。これにより、長距離の曲線推進が容易にでき、測量ロボットもインナーユニット全体もローリングに対して安定支持され復元性もよく推進に伴って送泥,排泥も円滑に行われ、超小型にまとめられ、安価に実施することができる。
【0006】
また、請求項2の発明は、前記弾性バンドはゴムバンドからなり、前記走行管の上面に接触して配置されると共にその両下端を前記支持板側に固定した状態で配置されるものである。これにより、前記走行管は前記支持板に対し任意の方向に対し弾性支持され、推進管の屈曲配設の円滑化を図ることができる。
【0007】
また、請求項3の発明は、屈曲可能に連結される前記推進管の連結部位にはその目地開き防止と連結部のクッション性を保持するための連結具及びクッション材が介設され、前記連結具は、一方側の推進管に一端側を固定され、他端側を他方側の推進管にシール材を介して着離可能に係合する管体からなり、前記クッション材は推進管の連結部位の端部に介設される弾性部材からなるものである。これにより、推進管の連結部位は屈曲自在となり曲線推進に追従でき、かつこの部位からの洩れも生じない。
【0008】
また、請求項4の発明は、夫々の隣接する前記走行管を連結するための前記連結具は、前記走行管が角管からなる場合において一方側の走行管の上下側にその端部をはみ出して固定される雄側継手と、該雄側継手のはみ出し側に形成されている弧状に嵌り込む弧状凹面をはみ出し側に形成し他方側の走行管の端部に固定される雌側継手とからなり、前記拘束具は、前記雄側継手と雌側継手が相互に嵌り込んだ状態で一方側の走行管と他方側の走行管との間に架設される環状体からなり、この環状体の内周には前記雄側継手及び雌側継手の固定側の弧状面が間接して保持されるものである。以上により、走行管は円滑に連結され、また、屈曲自在に連結される。
【0010】
また、請求項の発明は、前記支持板の左右端に設けられるガイドローラ体の前記推進管の内面と接する位置が前記推進管の管中心より下方に位置づけられ、前記インナーユニットの重心位置を下方側の低位置に位置づけるものである。支持板の左右端が推進管の中心より下がった位置において接触するような構造のため、インナーユニットの重心位置を下方にとることができる。ローリング状における安定性及び復元性の向上が図れる。
【0011】
また、請求項の発明は、前記支持板を支持する前記ガイドローラ体は、その押圧力作用方向に伸縮自在に形成されるものである。ガイドローラ体が推進管に常に一定の押圧力で当接するためインナーユニットが推進管内で円滑に支持され、全体として円滑な堀孔作業が行われる。
【0012】
また、請求項の発明は、前記送泥管及び排泥管は、屈曲自在に取り付けられていると共に前記支持板側に固定されず上下左右方向に移動可能に配置され、かつストッパ板に支持され、該ストッパは、前記送泥管及び排泥管の脱落防止のためその端部と前記支持板側との間隔が常に前記送泥管及び排泥管の直径よりも小さく形成されるべく配置及び形成されるものである。送泥管や排泥管が移動自在に支持される構造からなるため送排泥管の接続が円滑に行われる。また、これ等の管はストッパにより脱落防止され、常時安定支持されている。
【0013】
また、請求項の発明は、前記送泥管及び排泥管の連結部位は、洩れ防止用の弾性シール体のパッキンケースにより連結されるものである。これにより、送泥管や排泥管の連結部位からの洩れが確実に防止される。
【0014】
また、請求項の発明は、前記送泥管及び排泥管の連結部位は接続短管を介して連結され、前記接続短管と夫々の送泥管及び排泥管とは弾性シール体のパッキンケースにより連結されるものである。これにより、送泥管や排泥管の連結部位からの洩れは完全に防止される。
【0015】
また、請求項10の発明は、前記測量ロボットは、前記走行管の内面の上下左右にガイドローラ体を介して支持されるものからなり、その光電スイッチ距離計測装置は、前記走行管の所定位置に形成されている開口部と対峙する位置において外部に位置情報を伝達すべく形成されるものである。測量ロボットは走行管内に安定支持されると共に、開口部の形成により正確な位置測定ができる。
【0016】
また、請求項11の発明は、前記測量ロボットが走行する走行管にはLED及び/又は測距・測角用のプリズムが配設されたものである。これにより、正確な位置測定ができる。
【0017】
また、請求項12の発明は、前記引き抜き伝達部材は、前記支持板に連結され、かつ屈曲自在に相互に連結されるものである。引き抜き伝達部材は屈曲自在であり、円滑で軽い引き抜きができる。
【0018】
【発明の実施の形態】
以下、本発明の小口径曲線推進工事用インナーユニットの実施の形態を図面を参照して詳述する。インナーユニットの収納されている推進管は、立抗内設置される本体側に連結され、多数本の推進管が互いに一直線に連結され、その推進管には接続管やポンプ筒や強制管を介して推進機が連結される。推進機は地中に小口径を掘削し、掘削された孔は推進管が挿入されて下水管が造成される。
【0019】
図1は推進管の横断面図であり中空円筒管状の推進管2の内部にはインナーユニット1が収納される。なお、インナーユニット1は1つの推進管2内に夫々収納されるものであり、推進管2内のインナーユニット1は連設する推進管2内のインナーユニット1と連結される(この連結構造は後に説明する)。
【0020】
インナーユニット1は、図1に示すように走行管3と、この下方に走行管3を支持すべく配置される弧状の支持板4と、支持板4の左右端や垂直下端に設けられるガイドローラ体5,6と、送泥管7及び排泥管8と、各種ケーブル類や配管類を搭載収納すべく走行管3の左右に配置される収納体9と、インナーユニット1を出入させるための引き抜き伝達部材46等とからなる。また、走行管3は図1, 図2に示すように、支持板4の左右に固定される支持部材11,11間に架設される弾性バンド12により支持板4上に弾性支持される。なお、図3の(a),(b),(c),(d)は走行管3の弾性バンド12による支持状態を示すものであり、走行管3が斜いても弾性バンド12により円滑に安定支持される。また、図4の(a),(c)は支持板4に対する走行管3の左右方向の係合状態や横ずれや傾斜時における係合状態を示すものであり、弾性バンド12により走行管3は支持板4上に安定支持される。
【0021】
図5は(a),(b)は隣接する推進管2,2の連結部位における連結構造を示すものである。推進管2,2は連結具13とクッション材14を介して連結される。連結具13は図示のように外面側に波型の凹部15を形成する薄肉管体からなり、その一端側は一方側の推進管2に水膨潤ゴム16を介して固定され、推進管2から張り出した端部の係止部17は他方側の推進管2の外面に固定されているシール材18に係着する。この状態で一方側の推進管2と他方側の推進管2とが連結される。また、クッション材14はゴム体からなり、両推進管2,2が連結された状態で目地の部分を閉止するものからなる。以上の構造の連結具13とクッション材14の介在により図5(a)のように推進管2,2間で傾斜が生じても両者は無理なく円滑に連結されると共に目地の部分からの洩れも発生しない。
【0022】
図6,図7は角管(例えば、正方型の中空管)からなる走行管3の連結部位の連結構造を示す。この連結構造は連結具19と拘束具20とからなる。連結具19は図9に示すように一方側の走行管3の端部に固定され走行管3の端面からはみ出して配設される雄側継手21と、他方側の走行管3の端部に固定されその端面からはみ出して配設される雌側継手22とからなる。
【0023】
雌側継手21は平板体からなり走行管3への固定側の端面に弧状面23を形成すると共にはみ出し側に弧状凸面24を形成するものからなる。一方、雌側継手22ははみ出し側に弧状凸面24に嵌り込む弧状凹面25を形成すると共に他方側の走行管3の固定側に形成される弧状面26を形成する平板からなる。図6,図7は雄側継手21と雌側継手22が互いに嵌合した状態を示す。拘束具20は雄側継手21と雌側継手22とが係着した状態でこれ等の内部に収納する環状部材からなり、その内周には雄側継手21と雌側継手22の弧状面が当接する。これにより、走行管3,3は連結される。なお、拘束具20はボルト27により他方側の走行管3に固定され、その拘束具20内には雄側継手21と雌側継手22とが合体した状態で収納される。
【0024】
図9は雄側継手21と雌側継手22とが合体する前の状態を示し、図10は合体した状態で走行管3,3間に角度ずれがあった場合を示す。この場合、雄側継手21と雌側継手22とは拘束具20により保持され、これにより、両走行管3,3は図10に示すように屈曲状態になっても連結される。従って、略軸線方向に押圧力が作用しても強固の連結状態が保持される。
【0025】
図8(a)は前記の雄側継手21と雌側継手22との走行管3,3への連結状態の一例を示すものである。この場合、雄側継手21ははり出し側が内つぼみのテーパ状態47に走行管3に固定され、雌側継手22ははり出し側が外開きのテーパ状態48で走行管3に固定される。図8(b)はこの状態の雄側継手21と雌側継手22を有する走行管3,3の連結形態を示すものであり、図8(c)は連結時における拘束具20の嵌り込み状態を示すものである。
【0026】
図1に示すように、支持板4は上方に凸に弧状に曲げられた板部材からなり、前記のようにその頂部に走行管3の下面に当接してこれを支持するものからなる。この支持板4の左右端及び垂直下端にはガイドローラ体5,5,6が設けられている。これ等のガイドローラ体5,5,6は推進管2の内面に適宜の押圧力で当接して配設され、支持板4を安定保持すべく機能する。なお、ガイドローラ体5,5は推進管2の中心よりも下がった位置において推進管2の内面に当接し、ガイドローラ6は推進管2の中心を通る垂直下端面に当接して配置される。
【0027】
図11(a)はインナーユニット1の重心位置が比較的高い位置にある場合のローリング時のローリングモーメントの値を示すためのものであり、この場合、角度θだけローリングした場合のローリングモーメントはL0×Wである。一方、発明のように重心位置が低い場合、即ち、図11(b)の位置に重心がある場合には角度θだけローリングするとローリングモーメントはL1×Wとなる。ここでL1>L0のため重心位置が低い場合は中心に戻ろうとするモーメントが大きくなり、ローリング時の復元が容易になる。即ち、本発明は以上の構造にガイドローラ体5,5を配置することにより、ローリングの復元力を向上し安定化を図ることができる。
【0028】
図12(a),(b)はガイドローラ体5,5,6の概要構造を説明するためのものである。支持板4には外筒28が固定される。この外筒28内には内筒29が摺動可能に支持され、内筒29の下端にはローラ30が枢支される。また、内筒29側と支持板4側との間にはスプリング31が介設される。以上の構造によりローラ30は支持板4側に弾性支持され、適圧の押圧力を推進管2側に負荷する。これにより、インナーユニット1がローリング運動しても安定支持されることになる。
【0029】
図1に示すように、支持板4のガイドローラ体6を支持する垂直部材32の左右には送泥管7と排泥管8が配設される。送泥管7と排泥管8は掘削時の土砂を流体輸送する時に用いられる配管である。これ等の送泥管7や排泥管8は図13に示すように引き抜き伝達部材46に保持されるストッパ板33により支持される。なお、図14(a),(b)に示すように送泥管7や排泥管8は上下方向に移動可能に形成される。これは、送泥管7、排泥管8の円滑な接続作業を行わせるためのものである。また、図13に示すように、ストッパ板33の端縁と支持板4のガイドローラ体5の外面との間の間隔Dは送泥管7や排泥管8の外径寸法より小さく形成されており、これにより送泥管7や排泥管8の脱落が防止される。
【0030】
図15に示すように、送泥管7や排泥管8は1本の管体から形成されておらず、接続用短管34を介設して連結されるものからなる。この接続用短管34と送泥管7や排泥管8とは図16に示すように送泥管7や排泥管8の端部に設けたパッキンケース35を介して連結される。このパッキンケース35は接続用短管34の送泥管7や排泥管8側との円滑連結に機能すると共にシール性の確保に寄与する。
【0031】
図17に示すように走行管3の内部には測量ロボット台車36が軸線方向に沿って移動自在に収納される。この測量ロボット台車36はその先端に配置する光電スイッチ距離計測装置37を走行管3に光を発して走行管3からの反射光を受光して走行管3を認識し、適当な位置に開口形成されている開口部38に合致した場合に反射光の強度が変化するため開口部38であることを認識することができる。これにより走行管3の1本分を検出する。また、図18(a),(b),(c),(d)に示すように測量ロボット台車36は上下左右をガイドローラ39,40,41,42により走行管3の内面に接し、軸線方向に移動自在に支持される。
【0032】
図19に示すように、走行管3の上端にはLED43とプリズム44が配置される。プリズム44の配置により発進立抗部から測距,測角が可能となりインナーユニットの位置決め精度が向上する。また、LEDを用いることにより発進立抗部からの測角が可能で距離情報(例えば、測量ロボット36を使用して算出する距離あるいは線形が直線の場合には寸法精度を有する走行管3の数より得られる距離)をあわせることによりインナーユニットの位置精度の向上が図れる。
【0033】
図1等に示すように、支持板4の垂直部材32の下方側の左右には引き抜き伝達部材46は図20に示すように角ズレ吸収用にピン接合45により屈曲自在に連結される。これにより、インナーユニット1が曲線状態にあっても円滑の引き抜きができる。
【0034】
以上の説明において走行管3を角管としたが、勿論これに限定するものではない。また、各連結部の連結構造やシール構造も前記のものに限定するものではない。
【0035】
本発明の小口径曲線推進工事用インナーユニットによれば、長距離及び曲線推進の掘削への対応が可能であり、位置検出精度がよく、ローリングに対する安定感があり、従来比直径が約1/3,断面比約1/10と画期的小型化高能率化され、かつその復元力も大きく、掘削時の送泥,排泥も円滑に行われ、引き抜きも容易にでき、超小型にまとめられ、高価な曲線誘導管を使用せず、また在庫も持たず、コンクリートの推進管とインナーユニットで間に合うので全体工事費は従来比約40%安となる莫大な効果を奏する。
【図面の簡単な説明】
【図1】 推進管内に収納されている本発明の小口径曲線推進工事用インナーユニットの全体構造を示す断面図。
【図2】 本発明の走行管の弾性支持状態を示す模式図。
【図3】 本発明の走行管の弾性バンドによる支持構造を示す模式図。
【図4】 本発明の支持板上に搭載される走行管の弾性支持状態を示す模式図。
【図5】 曲線的に結合する推進管の連結状態を示す部分外面用(a)及び拡大一部断面図(b)。
【図6】 走行管の連結部の構造を示す横断面図。
【図7】 図6のA−A線断面図。
【図8】 走行管のテーパ状の連結部の構造を示す模式図。
【図9】 走行管の連結構造を示す模式図。
【図10】 走行管の屈曲連結時の形態を示す模式図。
【図11】 従来技術に対する本発明の支持板のローラ支持点の有利性を説明するための模式図。
【図12】 支持板のガイドローラ体の概要構造を示す側面図(a)とその正面図(b)。
【図13】 送泥管又は排泥管の配設形態を示す模式図。
【図14】 送泥管又は排泥管の支持形態を示す側面図(a)と拡大正面図(b)。
【図15】 接続用短管を用いた送泥管及び排泥管の連結部の連結構造を示す平面図。
【図16】 接続用短管と送泥管又は排泥管の連結部シール状態を示す部分断面図。
【図17】 測量ロボットの走行管内における距離計測の模式図。
【図18】 測量ロボットのローラ支持構造を示す模式図。
【図19】 インナーユニットの位置検出用のLED及びプリズムの配置を示す模式図。
【図20】 引き抜き伝達部材の連結構造を示す模式図。
【符号の説明】
1 インナーユニット
2 推進管
3 走行管
4 支持板
5 ガイドローラ体
6 ガイドローラ体
7 送泥管
8 排泥管
9 収納体
11 支持部材
12 弾性バンド
13 連結具
14 クッション材
15 凹部
16 水膨潤ゴム
17 係止部
18 シール材
19 連結具
20 拘束具
21 雄側継手
22 雌側継手
23 弧状面
24 弧状凸面
25 弧状凹面
26 弧状面
27 ボルト
28 外筒
29 内筒
30 ローラ
31 スプリング
32 垂直部材
33 ストッパ板
34 接続用短管
35 パッキンケース
36 測量ロボット台車
37 光電スイッチ
38 開口部
39 ガイドローラ
40 ガイドローラ
41 ガイドローラ
42 ガイドローラ
43 LED
44 プリズム
45 ピン接合
46 引き抜き伝達部材
47 雄側継ぎ手はり出し側内つぼみテーパ状態
48 雌側継ぎ手はり出し側外開きテーパ状態
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel technique for construction of underground curved sewers. Specifically, in the conventional small-diameter long-distance curve propulsion method in the underground, a fume pipe is later formed using an iron and expensive curved guide pipe. It is possible to pierce what has been two-stage construction to put in a single process using a relatively inexpensive inner unit together with a fume pipe, shorten the work period, reduce the material cost, and inventory of expensive curve induction pipes The present invention relates to a revolutionary small-diameter curve propulsion inner unit that can significantly reduce the construction cost (40%) compared to the past.
[0002]
[Prior art]
In recent years, there is an increasing need for a small-diameter propulsion method applied to a propulsion pipe having a nominal diameter of 150 mm to 700 mm. Moreover, since work in the propulsion pipe is prohibited, automation and robotization are inevitably being promoted. On the other hand, since the demand for curve propulsion at a long distance is increasing, a method has been developed that enables curve propulsion at a long distance and can automatically measure the position of the excavator and the attitude of the excavator. For example, in the conventional micro construction method, a robot equipped with a gyro of a normal size can be run in a pipe, and position measurement can be performed continuously and with high accuracy. However, the micro construction method is a two-step system that uses expensive steel curve guide pipes and concrete propulsion pipes in two stages, and has the disadvantage that it must have a stock of curve guide pipes, resulting in high construction costs and a long construction period. was there.
[0003]
[Problems to be solved by the invention]
In the case of curve propulsion, it is necessary to devise a joint structure so as not to overload the connecting parts of a large number of connecting pipes. Further, rolling is likely to occur during propulsion, but in this case, smooth and safe rolling measures are necessary. In addition, it is necessary to have good resilience even during rolling. For this purpose, it is desirable that the position of the center of gravity is low. In addition, since it is necessary to measure the distance from the resist in order to automatically measure the position, the conventional method of using a cable wire has the effect of extending the wire, and there is a problem that an accurate distance cannot be measured. difficult. Further, although the position can be obtained from the axle rotation of the traveling carriage of the surveying robot, the measurement accuracy is low due to slip and the like. In addition, the inner unit needs to be always in contact with the propulsion pipe with a constant pressing force, but the related art does not take that into consideration. Moreover, although the inner unit is equipped with a mud pipe and a mud pipe, it is necessary to prevent leakage from the connecting portion. Further, it is required that the pulling transmission member for pulling out the inner unit be flexible and easy to pull out. In addition, the conventional robot has a drawback that the traveling space becomes large because the gyro size of the robot is large. In addition, there was a demand for a simple construction of a traveling path of an apparatus for automatically measuring the position and direction, a feed / sludge pipe for excavation, cables, and various pipes in a narrow propulsion pipe.
[0004]
The present invention has been invented based on the solution and request of the above-described problems, can be applied to long-distance propulsion and curve propulsion, and the surveying robot is stably maintained without rolling, and the position measurement is accurate. No excessive force is applied to the propulsion pipes and the connecting parts of each pipe, it is flexible, there is no leakage from the joints of each pipe, the whole is compact, and it can be pulled out easily. It is an object of the present invention to provide an inner unit for small-diameter curve propulsion work that can greatly reduce the work cost and can further improve workability by unitization.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is characterized in that a plurality of propulsion pipes are connected in a straight line and / or a plurality of bendable pipes in a hole drilled for underground sewer pipe construction. An inner unit used for a small-diameter curve propulsion work constructed as a curved underground pipe, and the inner unit is housed in each of the propulsion pipes and includes an ultra-compact gyro using an optical fiber inside. A deformed travel pipe including a square or rectangular cross-section for movably storing the surveying robot carriage, and an undulating contact with the lower surface side of the travel pipe so as to protrude upward and arcuate with both ends facing downward An arc-shaped support plate that is bent and disposed, a guide roller body that is attached to the left and right ends of the support plate and the lower end of the lower vertical plate and is in contact with the inside of the propulsion pipe, and is arranged along the direction in which the traveling pipe is disposed. Support A mud pipe and a mud pipe movably disposed on the lower side of the pipe, a pulling transmission member connected to the traveling pipe side for moving the traveling pipe and the inner unit in and out of the propelling pipe, and the traveling pipe The travel pipe mounted on the support plate is elastically supported and connected via an elastic band, and includes a storage body that is arranged along the installation direction and mounts and stores various cables and pipes. A connecting tool that absorbs the angular deviation of the traveling pipe is provided at the connecting portion of each traveling pipe, and a restraining tool that restrains the movement of the traveling pipe in the axial direction when a pressing force is applied. This facilitates long-distance curve propulsion, and both the surveying robot and the entire inner unit are stably supported against rolling, have excellent resilience, and smoothly feed and discharge mud with propulsion. And can be implemented inexpensively.
[0006]
According to a second aspect of the present invention, the elastic band is made of a rubber band, and is arranged in contact with the upper surface of the traveling pipe and is arranged in a state where both lower ends thereof are fixed to the support plate side. . As a result, the traveling pipe is elastically supported in an arbitrary direction with respect to the support plate, and the bending arrangement of the propulsion pipe can be facilitated.
[0007]
According to a third aspect of the present invention, there is provided a connecting tool and a cushioning material for preventing joint opening and holding the cushioning property of the connecting portion at the connecting portion of the propulsion pipe which is connected so as to be bent. The tool is composed of a tubular body having one end fixed to one propulsion tube and the other end detachably engaged with the other propulsion tube via a sealing material, and the cushion material is connected to the propulsion tube. It consists of an elastic member interposed at the end of the part. As a result, the connecting portion of the propulsion pipe can be bent freely, can follow the curve propulsion, and does not leak from this portion.
[0008]
According to a fourth aspect of the present invention, when the travel pipe is a square tube, the connection tool for connecting the adjacent travel pipes protrudes from the upper and lower sides of the one side travel pipe. And a female joint that is formed on the protruding side and is fixed to the end of the traveling tube on the other side. The restraining tool is formed of an annular body constructed between the traveling pipe on one side and the traveling pipe on the other side in a state where the male joint and the female joint are fitted to each other. An arcuate surface on the fixed side of the male joint and the female joint is indirectly held on the inner periphery. As described above, the traveling pipes are smoothly connected and connected flexibly.
[0010]
According to a fifth aspect of the present invention, the position of the guide roller body provided at the left and right ends of the support plate in contact with the inner surface of the propulsion tube is positioned below the tube center of the propulsion tube, and the center of gravity position of the inner unit is set. It is positioned at a lower position on the lower side. Since the left and right ends of the support plate are in contact with each other at a position lower than the center of the propulsion pipe, the center of gravity of the inner unit can be taken downward. The stability and restoration property in the rolling state can be improved.
[0011]
According to a sixth aspect of the present invention, the guide roller body that supports the support plate is formed so as to be extendable and contractable in the pressing force acting direction. Since the guide roller body is always in contact with the propulsion pipe with a constant pressing force, the inner unit is smoothly supported in the propulsion pipe, and a smooth drilling operation is performed as a whole.
[0012]
According to a seventh aspect of the present invention, the mud feeding pipe and the mud discharging pipe are attached to bend freely, are not fixed to the support plate side, are arranged to be movable in the vertical and horizontal directions, and are supported by the stopper plate. The stopper plate should be formed such that the distance between the end of the stopper plate and the support plate side is always smaller than the diameter of the mud tube and the drainage pipe in order to prevent the mud pipe and the drainage tube from dropping off. Arranged and formed. Since the mud pipe and the mud pipe are structured to be movably supported, the connection of the mud pipe and the mud pipe is smoothly performed. Further, these pipes are prevented from falling off by a stopper plate , and are always stably supported.
[0013]
According to an eighth aspect of the present invention, the connecting portion of the mud pipe and the mud pipe is connected by a packing case of an elastic seal body for preventing leakage. Thereby, the leak from the connection part of a mud pipe and a mud pipe is reliably prevented.
[0014]
Further, in the invention of claim 9 , the connecting portion of the mud feeding pipe and the mud discharging pipe is connected through a connecting short pipe, and the connecting short pipe and each of the mud feeding pipe and the mud discharging pipe are made of an elastic sealing body. It is connected by a packing case. Thereby, the leak from the connection part of a mud pipe or a mud pipe is completely prevented.
[0015]
According to a tenth aspect of the present invention, the surveying robot is supported by guide rollers on the top, bottom, left and right of the inner surface of the traveling tube, and the photoelectric switch distance measuring device is provided at a predetermined position of the traveling tube. It is formed so as to transmit the position information to the outside at a position facing the opening formed in the. The surveying robot is stably supported in the traveling tube and can accurately measure the position by forming an opening.
[0016]
According to an eleventh aspect of the present invention, an LED and / or a prism for distance measurement / angle measurement is disposed on a traveling tube on which the surveying robot travels. Thereby, an accurate position measurement can be performed.
[0017]
According to a twelfth aspect of the present invention, the drawing transmission member is connected to the support plate and is connected to each other so as to be freely bent. The drawing transmission member can be bent freely and can be pulled out smoothly and lightly.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an inner unit for small-diameter curve propulsion work of the present invention will be described in detail with reference to the drawings. The propulsion pipe in which the inner unit is housed is connected to the main body installed in the stand, and a number of propulsion pipes are connected to each other in a straight line, and the propulsion pipe is connected via a connecting pipe, a pump cylinder and a forced pipe. The propulsion unit is connected. The propulsion machine excavates a small diameter in the ground, and the excavated hole is inserted with a propulsion pipe to create a sewer pipe.
[0019]
FIG. 1 is a transverse sectional view of a propulsion tube, and an inner unit 1 is accommodated in a hollow cylindrical tubular propulsion tube 2. The inner unit 1 is housed in one propulsion pipe 2, and the inner unit 1 in the propulsion pipe 2 is connected to the inner unit 1 in the propulsion pipe 2 provided in a row (this connection structure is (I will explain later).
[0020]
As shown in FIG. 1, the inner unit 1 includes a travel pipe 3, an arc-shaped support plate 4 disposed to support the travel pipe 3 below, and guide rollers provided at the left and right ends and the vertical lower end of the support plate 4. Bodies 5 and 6, a mud pipe 7 and a mud pipe 8, a storage body 9 arranged on the left and right of the traveling pipe 3 for mounting and storing various cables and pipes, and an inner unit 1 in and out. The drawing transmission member 46 and the like. As shown in FIGS. 1 and 2, the traveling tube 3 is elastically supported on the support plate 4 by elastic bands 12 that are installed between support members 11 and 11 that are fixed to the left and right of the support plate 4. 3 (a), (b), (c), and (d) show the support state of the travel pipe 3 by the elastic band 12, and even if the travel pipe 3 is inclined, the elastic band 12 makes it smooth. Stable support. 4 (a) and 4 (c) show the engagement state of the traveling tube 3 with respect to the support plate 4 in the left-right direction and the engagement state at the time of lateral deviation or inclination. It is stably supported on the support plate 4.
[0021]
5 (a) and 5 (b) show the connection structure at the connection site between the adjacent propulsion pipes 2 and 2. FIG. The propulsion tubes 2 and 2 are connected to the connecting tool 13 and the cushion material 14. As shown in the figure, the connector 13 is formed of a thin tube body having a corrugated recess 15 formed on the outer surface side, one end of which is fixed to the propulsion pipe 2 on one side via a water swelling rubber 16, The overhanging end locking portion 17 is engaged with a seal member 18 fixed to the outer surface of the other propulsion pipe 2. In this state, the propulsion pipe 2 on one side and the propulsion pipe 2 on the other side are connected. The cushion member 14 is made of a rubber body and closes the joint portion in a state where the two propulsion pipes 2 and 2 are connected. Even if an inclination occurs between the propulsion pipes 2 and 2 as shown in FIG. 5A due to the interposition of the coupling tool 13 and the cushion material 14 having the above structure, both are smoothly connected without difficulty and leakage from the joint portion. Does not occur.
[0022]
6 and 7 show a connection structure of a connection portion of the traveling tube 3 formed of a square tube (for example, a square hollow tube). This connecting structure includes a connecting tool 19 and a restraining tool 20. As shown in FIG. 9, the connector 19 is fixed to the end of the traveling pipe 3 on one side, and is disposed at the end of the traveling pipe 3 on the other side. It consists of a female side joint 22 which is fixed and protrudes from its end face.
[0023]
The female side joint 21 is made of a flat plate and has an arcuate surface 23 formed on the end surface on the side fixed to the traveling tube 3 and an arcuate convex surface 24 formed on the protruding side. On the other hand, the female-side joint 22 is formed of a flat plate that forms an arc-shaped concave surface 25 that fits into the arc-shaped convex surface 24 on the protruding side and forms an arc-shaped surface 26 that is formed on the fixed side of the traveling tube 3 on the other side. 6 and 7 show a state where the male side joint 21 and the female side joint 22 are fitted to each other. The restraining tool 20 is formed of an annular member that is housed inside the male side joint 21 and the female side joint 22 in an engaged state, and the arcuate surfaces of the male side joint 21 and the female side joint 22 are formed on the inner periphery thereof. Abut. Thereby, the traveling pipes 3 and 3 are connected. The restraining tool 20 is fixed to the traveling tube 3 on the other side by a bolt 27, and the male joint 21 and the female joint 22 are stored in the restraining tool 20 in a combined state.
[0024]
FIG. 9 shows a state before the male side joint 21 and the female side joint 22 are combined, and FIG. 10 shows a case where there is an angle shift between the traveling pipes 3 and 3 in the combined state. In this case, the male side joint 21 and the female side joint 22 are held by the restraining tool 20, whereby both the traveling pipes 3, 3 are connected even if they are bent as shown in FIG. 10. Therefore, a strong connected state is maintained even when a pressing force is applied in the substantially axial direction.
[0025]
FIG. 8A shows an example of a state in which the male side joint 21 and the female side joint 22 are connected to the travel pipes 3 and 3. In this case, the male side joint 21 is fixed to the traveling pipe 3 in a taper state 47 whose protruding side is an inner bud, and the female side joint 22 is fixed to the traveling pipe 3 in a tapered state 48 whose outward side is opened outward. FIG. 8 (b) shows a connection form of the traveling pipes 3, 3 having the male side joint 21 and the female side joint 22 in this state, and FIG. 8 (c) shows a state in which the restraining tool 20 is fitted at the time of connection. Is shown.
[0026]
As shown in FIG. 1, the support plate 4 is composed of a plate member that is bent upward in an arcuate shape, and as described above, the top plate abuts against the lower surface of the traveling tube 3 to support it. Guide roller bodies 5, 5, and 6 are provided on the left and right ends and the vertical lower end of the support plate 4. These guide roller bodies 5, 5, 6 are disposed in contact with the inner surface of the propulsion pipe 2 with an appropriate pressing force, and function to stably hold the support plate 4. The guide roller bodies 5 and 5 are disposed in contact with the inner surface of the propulsion tube 2 at a position lower than the center of the propulsion tube 2, and the guide roller 6 is disposed in contact with a vertical lower end surface passing through the center of the propulsion tube 2. .
[0027]
FIG. 11A shows the value of the rolling moment during rolling when the center of gravity of the inner unit 1 is at a relatively high position. In this case, the rolling moment when rolling by the angle θ is L0. × W. On the other hand, when the position of the center of gravity is low as in the invention, that is, when the center of gravity is located at the position of FIG. 11B, rolling by the angle θ results in a rolling moment L1 × W. Here, since L1> L0, when the position of the center of gravity is low, the moment to return to the center increases, and the restoration at the time of rolling becomes easy. That is, in the present invention, by arranging the guide roller bodies 5 and 5 in the above structure, the restoring force of rolling can be improved and stabilized.
[0028]
12 (a) and 12 (b) are for explaining the general structure of the guide roller bodies 5, 5, and 6. FIG. An outer cylinder 28 is fixed to the support plate 4. An inner cylinder 29 is slidably supported in the outer cylinder 28, and a roller 30 is pivotally supported on the lower end of the inner cylinder 29. A spring 31 is interposed between the inner cylinder 29 side and the support plate 4 side. With the above structure, the roller 30 is elastically supported on the support plate 4 side, and an appropriate pressing force is applied to the propulsion pipe 2 side. As a result, the inner unit 1 is stably supported even when it is rolling.
[0029]
As shown in FIG. 1, a mud pipe 7 and a mud pipe 8 are disposed on the left and right sides of the vertical member 32 that supports the guide roller body 6 of the support plate 4. The mud feeding pipe 7 and the mud discharging pipe 8 are pipes used for fluid transport of earth and sand during excavation. These mud feed pipes 7 and the mud discharge pipes 8 are supported by a stopper plate 33 held by a drawing transmission member 46 as shown in FIG. As shown in FIGS. 14 (a) and 14 (b), the mud pipe 7 and the mud pipe 8 are formed to be movable in the vertical direction. This is for performing a smooth connection work of the mud pipe 7 and the mud pipe 8. Further, as shown in FIG. 13, the distance D between the edge of the stopper plate 33 and the outer surface of the guide roller body 5 of the support plate 4 is formed to be smaller than the outer diameter dimension of the mud pipe 7 and the mud pipe 8. This prevents the mud pipe 7 and the mud pipe 8 from falling off.
[0030]
As shown in FIG. 15, the mud feeding pipe 7 and the mud discharging pipe 8 are not formed from a single pipe, but are connected via a connecting short pipe 34. The short pipe for connection 34 and the mud pipe 7 and the drain mud pipe 8 are coupled via a packing case 35 provided at the end of the mud pipe 7 and the mud pipe 8 as shown in FIG. The packing case 35 functions to smoothly connect the short pipe 34 for connection with the mud pipe 7 and the exhaust pipe 8 and contributes to ensuring sealing performance.
[0031]
As shown in FIG. 17, a surveying robot carriage 36 is accommodated in the traveling tube 3 so as to be movable along the axial direction. The surveying robot carriage 36 has a photoelectric switch distance measuring device 37 disposed at the tip thereof emitting light to the traveling tube 3 to receive reflected light from the traveling tube 3 to recognize the traveling tube 3 and form an opening at an appropriate position. Since the intensity of the reflected light changes when it matches the opened opening 38, the opening 38 can be recognized. Thus, one traveling tube 3 is detected. Further, as shown in FIGS. 18A, 18B, 18C, and 18D, the surveying robot carriage 36 is in contact with the inner surface of the traveling tube 3 by guide rollers 39, 40, 41, 42 in the vertical and horizontal directions, and the axis line It is supported movably in the direction.
[0032]
As shown in FIG. 19, an LED 43 and a prism 44 are arranged at the upper end of the traveling tube 3. The arrangement of the prism 44 enables distance measurement and angle measurement from the start-up resisting portion, thereby improving the positioning accuracy of the inner unit. Further, by using the LED, it is possible to measure the angle from the start-up counter, and the distance information (for example, the number of travel pipes 3 having dimensional accuracy when the distance calculated using the surveying robot 36 or the linearity is a straight line). The positional accuracy of the inner unit can be improved by adjusting the distance obtained.
[0033]
As shown in FIG. 1 and the like, on the left and right sides of the lower side of the vertical member 32 of the support plate 4, the pulling transmission member 46 is flexibly connected by a pin joint 45 for absorbing the angular misalignment as shown in FIG. 20. Thereby, even if the inner unit 1 is in a curved state, it can be pulled out smoothly.
[0034]
In the above description, the traveling tube 3 is a square tube, but of course it is not limited to this. Moreover, the connection structure and the seal structure of each connection part are not limited to the above.
[0035]
According to the inner unit for small-diameter curve propulsion work of the present invention, it is possible to cope with long-distance and curved-protrusion excavation, has good position detection accuracy, has a sense of stability against rolling, and has a conventional specific diameter of about 1 / 3. A cross-sectional ratio of about 1/10 and a groundbreaking miniaturization and high efficiency, and a large restoring force, mud and drainage during excavation can be performed smoothly, pulling out can be done easily, and it can be combined into an ultra-compact size. In addition, it does not use an expensive curve guide pipe, and does not have a stock, and because it is in time for the concrete propulsion pipe and the inner unit, the total construction cost is about 40% lower than the conventional construction.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the overall structure of an inner unit for small-diameter curve propulsion work of the present invention housed in a propulsion pipe.
FIG. 2 is a schematic view showing an elastic support state of a traveling pipe of the present invention.
FIG. 3 is a schematic view showing a support structure of an elastic band of a traveling pipe according to the present invention.
FIG. 4 is a schematic view showing an elastic support state of a travel pipe mounted on the support plate of the present invention.
FIGS. 5A and 5B are a partial outer surface view (a) and an enlarged partial cross-sectional view (b) showing a connected state of propulsion pipes coupled in a curved manner.
FIG. 6 is a cross-sectional view showing the structure of the connecting portion of the travel pipe.
7 is a cross-sectional view taken along line AA in FIG.
FIG. 8 is a schematic diagram showing a structure of a tapered connecting portion of a traveling pipe.
FIG. 9 is a schematic diagram showing a connecting structure of travel pipes.
FIG. 10 is a schematic view showing a configuration when a traveling pipe is bent and connected.
FIG. 11 is a schematic diagram for explaining the advantage of the roller support point of the support plate of the present invention over the prior art.
FIG. 12A is a side view showing a schematic structure of a guide roller body of a support plate, and FIG.
FIG. 13 is a schematic diagram showing the arrangement of a mud pipe or a mud pipe.
FIG. 14 is a side view (a) and an enlarged front view (b) showing a support form of a mud pipe or a mud pipe.
FIG. 15 is a plan view showing a connecting structure of a connecting portion between a mud pipe and a mud pipe using a connecting short pipe.
FIG. 16 is a partial cross-sectional view showing a connecting portion seal state of a short pipe for connection and a mud pipe or a waste mud pipe.
FIG. 17 is a schematic diagram of distance measurement in a traveling pipe of a surveying robot.
FIG. 18 is a schematic diagram showing a roller support structure of a surveying robot.
FIG. 19 is a schematic diagram showing an arrangement of LEDs and prisms for detecting the position of the inner unit.
FIG. 20 is a schematic diagram showing a connection structure of a drawing transmission member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inner unit 2 Propulsion pipe 3 Traveling pipe 4 Support plate 5 Guide roller body 6 Guide roller body 7 Mud pipe 8 Waste mud pipe 9 Storage body 11 Support member 12 Elastic band 13 Connector 14 Cushion material 15 Recess 16 Water-swelling rubber 17 Locking portion 18 Sealing material 19 Connecting tool 20 Restraining tool 21 Male side joint 22 Female side joint 23 Arc-shaped surface 24 Arc-shaped convex surface 25 Arc-shaped concave surface 26 Arc-shaped surface 27 Bolt 28 Outer cylinder 29 Inner cylinder 30 Roller 31 Spring 32 Vertical member 33 Stopper plate 34 Short tube for connection 35 Packing case 36 Surveying robot carriage 37 Photoelectric switch 38 Opening 39 Guide roller 40 Guide roller 41 Guide roller 42 Guide roller 43 LED
44 Prism 45 Pin joint 46 Pull-out transmission member
47 Male side joint protruding side inner bud taper state
48 Female side joint protruding side outward taper

Claims (12)

地下下水管造成のために穿孔された孔内に多数本屈曲可能に連結されている推進管を直線的及び/又は曲線的に地下埋設管として構築する小口径曲線推進工事に使用されるインナーユニットであって、
該インナーユニットは前記の夫々の推進管内に収納され、内部に光ファイバーを用いた超小型ジャイロと光電スイッチ式距離計測装置を具備する測量ロボットを移動可能に収納する断面正方形乃至矩形を含む異形の走行管と、
この走行管の下面側に着離可能に接し上方に向かって凸に形成され両端側を下方に向けて弧状に屈曲して配置される弧状の支持板と、
該支持板の左右端及び下方垂直板下端に取付けられ前記推進管の内部に接するガイドローラ体と、
前記走行管の配設方向に沿って配置され前記支持板の下方側に移動可能に配置される送泥管及び排泥管と、
前記走行管側に連結され走行管及びインナーユニットを推進管の内外に出入させるための引き抜き伝達部材と、
前記走行管の配設方向に沿って配置され各種ケーブル類,配管類を搭載収納する収納体を備えるものからなり、
前記支持板上に搭載される前記走行管は弾性バンドを介して弾性支持されると共に連結される夫々の走行管の連結部位には走行管の角度ずれを吸収する連結具が設けられ、かつ押圧力作用時において走行管の軸方向への移動を拘束する拘束具が設けられることを特徴とする小口径曲線推進工事用インナーユニット。
Inner unit used for small-diameter curve propulsion work in which a large number of bendable pipes are connected in a hole drilled for underground sewer pipe construction as a underground buried pipe linearly and / or curvilinearly. Because
The inner unit is housed in each of the above-mentioned propulsion pipes, and has an irregular traveling shape including a square or a rectangular cross section for movably housing a surveying robot having an ultra-compact gyro using an optical fiber and a photoelectric switch distance measuring device. Tube,
An arc-shaped support plate that is formed so as to be detachably in contact with the lower surface side of the traveling pipe and is formed so as to protrude upward and bend in an arc shape with both end sides facing downward.
A guide roller body attached to the left and right ends of the support plate and the lower end of the lower vertical plate and in contact with the inside of the propulsion pipe;
A mud pipe and a mud pipe arranged along the direction of arrangement of the traveling pipe and movably arranged below the support plate;
A pull-out transmission member connected to the traveling tube side for allowing the traveling tube and the inner unit to enter and exit the propulsion tube;
It comprises a storage body that is arranged along the direction of arrangement of the traveling pipe and that houses various cables and piping.
The travel pipe mounted on the support plate is elastically supported via an elastic band and connected to each travel pipe connected thereto, and a connecting tool for absorbing an angular deviation of the travel pipe is provided, and a pusher is provided. An inner unit for small-diameter curve propulsion work characterized in that a restraining tool is provided for restraining movement of the traveling pipe in the axial direction during pressure action.
前記弾性バンドはゴムバンドからなり、前記走行管の上面に接触して配置されると共にその両下端を前記支持板側に固定した状態で配置されるものである請求項1に記載の小口径曲線推進工事用インナーユニット。  2. The small-diameter curve according to claim 1, wherein the elastic band is formed of a rubber band and is disposed in contact with the upper surface of the travel pipe and is fixed in a state where both lower ends thereof are fixed to the support plate side. Inner unit for propulsion work. 屈曲可能に連結される前記推進管の連結部位にはその目地開き防止と連結部のクッション性を保持するための連結具及びクッション材が介設され、
前記連結具は、一方側の推進管に一端側を固定され、他端側を他方側の推進管にシール材を介して着離可能に係合する管体からなり、
前記クッション材は推進管の連結部位の端部に介設される弾性部材からなるものである請求項1又は2に記載の小口径曲線推進工事用インナーユニット。
The connecting portion of the propulsion pipe connected so as to be able to be bent is provided with a connector and a cushion material for preventing the joint opening and maintaining the cushioning property of the connecting portion,
The connector consists of a tubular body that is fixed at one end to the propulsion pipe on one side and engages the other end side with the propulsion pipe on the other side in a separable manner via a sealant,
The inner unit for small-diameter curve propulsion work according to claim 1 or 2, wherein the cushion material is made of an elastic member interposed at an end portion of a connection portion of the propulsion pipe.
夫々の隣接する前記走行管を連結するための前記連結具は、前記走行管が角管からなる場合において一方側の走行管の上下側にその端部をはみ出して固定される雄側継手と、該雄側継手のはみ出し側に形成されている弧状に嵌り込む弧状凹面をはみ出し側に形成し他方側の走行管の端部に固定される雌側継手とからなり、
前記拘束具は、前記雄側継手と雌側継手が相互に嵌り込んだ状態で一方側の走行管と他方側の走行管との間に架設される環状体からなり、
この環状体の内周には前記雄側継手及び雌側継手の固定側の弧状面が当接して保持されるものである請求項1乃至3のいずれかに記載の小口径曲線推進工事用インナーユニット。
The connecting tool for connecting the adjacent traveling pipes is a male joint that protrudes and is fixed to the upper and lower sides of the traveling pipe on one side when the traveling pipe is a square tube, The male side joint comprises a female side joint that is formed on the protruding side and is fixed to the end of the traveling tube on the other side, and is formed into an arc-shaped concave surface that fits in an arc shape formed on the protruding side of the male side joint.
The restraint consists of an annular body constructed between the traveling pipe on one side and the traveling pipe on the other side in a state where the male side joint and female side joint are fitted to each other,
The inner diameter for the small-diameter curve propulsion work according to any one of claims 1 to 3, wherein an arcuate surface on a fixed side of the male joint and the female joint is held in contact with an inner periphery of the annular body. unit.
前記支持板の左右端に設けられるガイドローラ体の前記推進管の内面と接する位置が前記推進管の管中心より下方に位置づけられ、前記インナーユニットの重心位置を下方側の低位置に位置づけるものである請求項1乃至のいずれかに記載の小口径曲線推進工事用インナーユニット。The position of the guide roller body provided at the left and right ends of the support plate in contact with the inner surface of the propulsion tube is positioned below the tube center of the propulsion tube, and the center of gravity of the inner unit is positioned at a lower position on the lower side. The inner unit for small-diameter curve propulsion work according to any one of claims 1 to 4 . 前記支持板を支持する前記ガイドローラ体は、その押圧力作用方向に伸縮自在に形成されるものである請求項1乃至のいずれかに記載の小口径曲線推進工事用インナーユニット。The inner unit for small-diameter curve propulsion work according to any one of claims 1 to 5 , wherein the guide roller body that supports the support plate is formed to be extendable and contractible in the pressing force acting direction. 前記送泥管及び排泥管は、屈曲自在に取り付けられていると共に前記支持板側に固定されず上下左右方向に移動可能に配置され、かつストッパ板に支持され、
ストッパ板は、前記送泥管及び排泥管の脱落防止のためその端部と前記支持板側との間隔が常に前記送泥管及び排泥管の直径よりも小さく形成されるべく配置及び形成されるものである請求項1乃至のいずれかに記載の小口径曲線推進工事用インナーユニット。
The mud pipe and the mud pipe are attached to bend freely and are not fixed to the support plate side but arranged to be movable up and down, left and right, and supported by a stopper plate,
The stopper plate is disposed and disposed so that the interval between the end portion and the support plate side is always smaller than the diameter of the mud pipe and the drainage pipe in order to prevent the mud pipe and the drainage pipe from falling off. The inner unit for small-diameter curve propulsion work according to any one of claims 1 to 6 , which is formed.
前記送泥管及び排泥管の連結部位は、洩れ防止用の弾性シール体のパッキンケースにより連結されるものである請求項1乃至のいずれかに記載の小口径曲線推進工事用インナーユニット。The inner unit for small-diameter curve propulsion work according to any one of claims 1 to 7 , wherein the connecting portion of the mud pipe and the mud pipe is connected by a packing case of an elastic seal body for preventing leakage. 前記送泥管及び排泥管の連結部位は接続短管を介して連結され、前記接続短管と夫々の送泥管及び排泥管とは弾性シール体のパッキンケースにより連結されるものである請求項1,7,8のいずれかに記載の小口径曲線推進工事用インナーユニット。The connection part of the said mud feeding pipe and a waste mud pipe is connected via a connection short pipe, and the said connection short pipe and each mud feeding pipe and a waste mud pipe are connected by the packing case of an elastic seal body. The inner unit for small-diameter curve propulsion work according to any one of claims 1, 7 , and 8 . 前記測量ロボットは、前記走行管の内面の上下左右にガイドローラ体を介して支持されるものからなり、その光電スイッチ式距離計測装置は、前記走行管の所定位置に形成されている開口部と対峙する位置において外部に位置情報を伝達すべく形成されるものである請求項1乃至のいずれかに記載の小口径曲線推進工事用インナーユニット。The surveying robot is supported by guide rollers on the top, bottom, left and right of the inner surface of the traveling tube, and the photoelectric switch type distance measuring device includes an opening formed at a predetermined position of the traveling tube. The inner unit for small-diameter curve propulsion work according to any one of claims 1 to 9 , wherein the inner unit is formed to transmit position information to the outside at a facing position. 前記測量ロボットが走行する走行管にはLED及び/又は測距・測角用のプリズムが配設されたものである請求項1乃至10のいずれかに記載の小口径曲線推進工事用インナーユニット。The inner unit for small-diameter curve propulsion work according to any one of claims 1 to 10 , wherein an LED and / or a prism for distance measurement / angle measurement is disposed on a traveling tube on which the surveying robot travels. 前記引き抜き伝達部材は、前記支持板に連結され、かつ屈曲自在に相互に連結されるものである請求項1乃至11のいずれかに記載の小口径曲線推進工事用インナーユニット。The inner unit for small-diameter curve propulsion work according to any one of claims 1 to 11 , wherein the pulling transmission members are connected to the support plate and are connected to each other so as to be bent.
JP2003147184A 2002-05-27 2003-05-26 Inner unit for small-diameter curve propulsion work Expired - Fee Related JP3927517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003147184A JP3927517B2 (en) 2002-05-27 2003-05-26 Inner unit for small-diameter curve propulsion work

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002153047 2002-05-27
JP2003147184A JP3927517B2 (en) 2002-05-27 2003-05-26 Inner unit for small-diameter curve propulsion work

Publications (2)

Publication Number Publication Date
JP2004076565A JP2004076565A (en) 2004-03-11
JP3927517B2 true JP3927517B2 (en) 2007-06-13

Family

ID=32032136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147184A Expired - Fee Related JP3927517B2 (en) 2002-05-27 2003-05-26 Inner unit for small-diameter curve propulsion work

Country Status (1)

Country Link
JP (1) JP3927517B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401077B2 (en) * 2007-10-31 2014-01-29 真柄建設株式会社 Curve propulsion method
JP4718579B2 (en) * 2008-04-21 2011-07-06 川崎重工業株式会社 Synthetic resin pipe burying equipment
JP5463049B2 (en) * 2009-02-09 2014-04-09 真柄建設株式会社 Synthetic pipe bending equipment
JP4759651B2 (en) * 2010-10-22 2011-08-31 川崎重工業株式会社 Synthetic resin pipe burying equipment
CN108019564B (en) * 2017-12-02 2019-07-02 东北石油大学 Water-jet formula seabed ditching pipe laying robot

Also Published As

Publication number Publication date
JP2004076565A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JPS59177494A (en) Telescopic joint for riser
US7404872B2 (en) PVC seismic coupling and method of installation
JP3927517B2 (en) Inner unit for small-diameter curve propulsion work
EP1136741A3 (en) Flexible fluid-transport pipe joint apparatus
JP4318696B2 (en) Saya tube propulsion method
JP6005862B2 (en) One-touch three-stage fastening device for joint pipe for pressure pipe connection and pressure pipe construction method using the same
US9890598B2 (en) Anti-rotation wedge
CN116649188A (en) Mobile sprinkler
JP2009204047A (en) Expansion joint and its structure
JP3976195B2 (en) Small-diameter pipe propulsion method with one muddy water method
JP2006284248A (en) Position measurement method and instrument for displacement meter
CN215441837U (en) Multifunctional geotechnical engineering inclinometer tube
US11454066B1 (en) Open path horizontal pipe rammer for variable pipe diameter
JP4718579B2 (en) Synthetic resin pipe burying equipment
KR100696402B1 (en) Earthquake-resistant type piping connector
JP5474519B2 (en) Small-diameter muddy water type curve propulsion method
KR100657227B1 (en) Pressure damping device using bellows for transfer of liquid
JP2004052537A5 (en)
CN213271409U (en) High leakproofness reinforced concrete push pipe
JP4759651B2 (en) Synthetic resin pipe burying equipment
WO2012020447A1 (en) Device for laying synthetic resin pipe underground along a curve
KR102334539B1 (en) Earth retaining structure
JP4290052B2 (en) Seismic pipe fittings
KR101488646B1 (en) A External Displacement Sensing Unit
JP5463049B2 (en) Synthetic pipe bending equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070302

R150 Certificate of patent or registration of utility model

Ref document number: 3927517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees