JP3927301B2 - Adhesive structure and adhering method for cooling unit - Google Patents

Adhesive structure and adhering method for cooling unit Download PDF

Info

Publication number
JP3927301B2
JP3927301B2 JP31428497A JP31428497A JP3927301B2 JP 3927301 B2 JP3927301 B2 JP 3927301B2 JP 31428497 A JP31428497 A JP 31428497A JP 31428497 A JP31428497 A JP 31428497A JP 3927301 B2 JP3927301 B2 JP 3927301B2
Authority
JP
Japan
Prior art keywords
gap
evaporator
refrigeration casing
cooling unit
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31428497A
Other languages
Japanese (ja)
Other versions
JPH11132610A (en
Inventor
順一 樋田
正行 黒柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP31428497A priority Critical patent/JP3927301B2/en
Publication of JPH11132610A publication Critical patent/JPH11132610A/en
Application granted granted Critical
Publication of JP3927301B2 publication Critical patent/JP3927301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は冷却ユニットの接着構造および接着方法に関し、更に詳細には、オーガ式製氷機やアイスクリーム製造機等の冷却ユニットにおいて、ステンレス製の冷凍ケーシングと銅製の蒸発器との接着力の向上および熱交換率の向上を図った接着構造と、この接着構造を好適に実施するための接着方法に関するものである。
【0002】
【従来の技術】
例えばオーガ式製氷機では、円筒状の冷凍ケーシングの外周に、冷凍系に接続する蒸発器を巻回してなる冷却ユニットを有している。この冷却ユニットでは、前記蒸発器に冷媒を循環させて冷凍ケーシングを冷却し、該ケーシング中に供給した製氷水をその内壁面に氷結させ、得られた氷層をオーガで削り取りつつ上方に移送し、薄片状の氷を貯氷庫中に放出貯留するよう構成されている。すなわち図5に示すように、オーガ式製氷機の製氷部となる製氷筒10は、平滑な円筒状内壁面を形成する冷凍ケーシング12と、図示しない冷凍系に接続されて該ケーシング12の外周に螺旋状に巻回させた蒸発器14とから構成され、製氷運転時に冷媒を該蒸発器14に循環させることにより、冷凍ケーシング12を強制冷却するよう構成されている。また、冷凍ケーシング12の内部にはオーガ16が内挿され、その回転軸18が該ケーシング12の上下両端に配設した軸受20,20(上方のみ図示する)に回転自在に枢支されている。このオーガ16の外周には、冷凍ケーシング12の内径より僅かに小さい外径を有する削切刃22が螺旋状に形成されており、冷凍ケーシング12の内壁面に氷結する薄氷を、該削切刃22で削り取りつつ上方へ移送するように構成される。そして前記冷凍ケーシング12の上部には、前記上の軸受20を兼ねる押圧頭24が配設され、この押圧頭24の上方にはカッタ26が配設されている。なお、このように構成された製氷筒10の外周は、適宜の断熱材32により被覆されている。
【0003】
このように構成したオーガ式製氷機を製氷運転すると、冷凍ケーシング12は蒸発器14内を循環する冷媒と熱交換を行なって氷点下に冷却され、供給源34から該冷凍ケーシング12に供給される製氷水は、ケーシング内壁面から徐々に氷結を開始して層状の薄氷が形成される。そして、冷凍ケーシング12中に内挿した前記オーガ16が回転駆動されると、該オーガ16の削切刃22により薄氷が削り取られつつ上方に移送され、該冷凍ケーシング12の上部に配設した前記押圧頭24により圧縮されて連続的な圧縮氷が成形される。更に、この圧縮氷は前記カッタ26により切断されて、所定寸法の圧縮氷となって氷放出路28に押し出され、氷放出路28から貯氷庫30内へ放出されるようになっている。
【0004】
【発明が解決しようとする課題】
前述したオーガ式製氷機の製氷筒10に代表される冷却ユニットでは、冷凍ケーシング12の全体を均一に冷却するために、前述したように、該ケーシング12の外周全体を隙間なく前記蒸発器14で覆っている。しかしながらこの蒸発器14は、図6に示すように、断面形状が扁平な環状の管体を螺旋状に巻回して形成されたものであるため、上下に隣接して密着的に位置する夫々の巻回部40,40と冷凍ケーシング12との間に、断面が略三角形状をなす間隙42が画成されてしまう。すなわち、冷凍ケーシング12の外周面に螺旋状の間隙42が画成されると、蒸発器14に冷媒を循環させて冷凍ケーシング12を冷却しても、前記間隙42が画成される部分では有効な熱伝達が行なわれず、全体として熱交換率が低下する問題があった。
【0005】
そこで、均一的な熱交換率を得られる製氷筒10を製造するために、冷凍ケーシング12の外周に巻回する蒸発器14を半田44で接着固定する際に、前記間隙42を該半田44で充塞する方法が実施されている。しかしながら、半田44によって間隙42を充塞する作業は、煩雑で時間がかかって製造コストが嵩む欠点があるうえに、該半田44がケーシング12の外周面を流れ落ちてしまうので、間隙42全体を完全に充塞することは一般的に困難であり、図6に示すように、部分的に空間46が残存してしまうことが多かった。このような残存空間46には結露水が溜り易く、この結露水が次第に凍結,成長して蒸発器14の巻回部40を押し上げるようになり、蒸発器14が冷凍ケーシング12から分離してしまったり、該蒸発器14を変形乃至破損させてしまう重大な問題を内在していた。
【0006】
またこれとは別に、前記間隙42と略同一の断面形状(略三角形状)に形成された熱伝導率の良好な部材を、該間隙42が延在する冷凍ケーシング12の外周部位に沿って巻回させることにより、該間隙42が形成されないようにする方法も実施されている。しかしながら、前記部材を所要の断面形状に成形するための製造コストが嵩むと共に、該部材と蒸発器14とを隙間のない状態で前記冷凍ケーシング12に巻回させることは、極めて難しく熟練を要する作業となっていた。また、蒸発器14の各巻回部40,40と前記部材とが密着的に接触していても結露水の流入を完全に阻止することはできず、この結露水の凍結,成長による冷凍ケーシング12と蒸発器14の分離や、該蒸発器14の変形乃至破損を防止することは依然として不可能であった。なお、前記部材と蒸発器14との接触面を半田で接着させようとする場合には、むしろ密着的に接触していることが半田の流入を妨げる結果となってしまい、蒸発器14と該部材の好適な接着は困難である。
【0007】
【発明の目的】
この発明は、前述した欠点に鑑み、これを好適に解決するべく提案されたものであって、冷凍ケーシングと蒸発器との間に画成される間隙に長尺の線材を予め介在させ、半田をこの線材に伝わらせながら効率的に充塞させ得るようにすることで、該ケーシングと蒸発器の接着に係る作業性の向上を図ると共に、該ケーシングと蒸発器の接着力の向上および熱交換率の向上を図り得る冷却ユニットの接着構造および接着方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記課題を克服し、所期の目的を好適に達成するため、本発明に係る冷却ユニットの接着構造は、
円筒状の冷凍ケーシングの外周に、冷凍系に接続する蒸発器を螺旋状に密着的に巻回し、この蒸発器における上下に密着して隣接し合う巻回部と前記冷凍ケーシングとの間に画成される螺旋状の間隙を、熱伝導率の良好な適宜の材料で充塞させるようにした冷却ユニットにおいて、
前記間隙の断面積よりも適宜小さい断面積を有し、該間隙内に所要の隙間を形成した状態で前記冷凍ケーシングの外周に巻回された長尺の線材と、
前記線材を伝わらせながら前記隙間全体を充塞するよう流し込まれ、前記冷凍ケーシングと蒸発器とを密着状態で接着させる半田とから構成したことを特徴とする。
【0009】
同じく前記課題を克服し、所期の目的を好適に達成するため、本発明に係る冷却ユニットの接着方法は、
円筒状の冷凍ケーシングの外周に、冷凍系に接続する蒸発器を螺旋状に密着的に巻回し、この蒸発器における上下に密着して隣接し合う巻回部と前記冷凍ケーシングとの間に画成される螺旋状の間隙を、熱伝導率の良好な適宜の材料で充塞させるようにした冷却ユニットにおいて、
前記間隙の断面積よりも適宜小さい断面積を有する長尺の線材を、前記冷凍ケーシングの外周に螺旋状に巻回し、
前記蒸発器を冷凍ケーシングの外周に、該蒸発器の巻回部と冷凍ケーシングとの間に画成される間隙内に前記線材が所要の隙間を形成した状態で臨むよう螺旋状に巻回し、
前記間隙の上端開口部から流し込んだ溶融状態の半田を、前記線材を伝わらせながら注入して該半田を隙間全体に充塞させることにより、前記冷凍ケーシングと蒸発器とを密着状態で接着させることを特徴とする。
【0010】
【発明の実施の形態】
次に、本発明に係る冷却ユニットの接着構造および接着方法につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。なお本実施例においては、前記従来の技術に係るオーガ式製氷機の冷却ユニットを例示するものとし、その製氷機構部は図5に示すオーガ式製氷機と同一であるので、その構成の詳細な説明は省略する。
【0011】
【第1実施例】
図1は、本発明の第1実施例に係る冷却ユニットの接着構造を示す要部縦断面図であり、製氷筒10における冷凍ケーシング12の外周には、上下の巻回部40,40を接触させた状態で、蒸発器14が螺旋状に巻回されている。そして、これら巻回部40,40と冷凍ケーシング12との間に画成される螺旋状の間隙42(図2(a)参照)には、例えば熱伝導率が良好な銅またはアルミニウム製の線材50が、該間隙42に沿って延在している。この線材50は、前記間隙42の断面積よりも適宜小さい断面積を有する断面円形状とされており、該線材50と巻回部40,40および冷凍ケーシング12の間には適宜の隙間42Aが画成され(図2(b)参照)、この隙間42Aに半田44が充塞した状態となっている。すなわち、第1実施例の接着構造に係る製氷筒10では、蒸発器14における直線部38が該冷凍ケーシング12に直接的に接触していると共に、巻回部40,40の内向面40a,40aが前記半田44および線材50を介して冷凍ケーシング12に間接的に接触した状態で接着されている。なお半田44は、蒸発器14の直線部38と冷凍ケーシング12の外周面との間にも適宜流入しており、該直線部38とケーシング12とが直接的に接着される。
【0012】
次に第1実施例に係る冷却ユニットの接着方法につき説明する。前記長尺の線材50は、図2(a)に示す如く、前記蒸発器14を冷凍ケーシング12に巻回した際に螺旋状に画成される前記間隙42のピッチの間隔で、前もって該ケーシング12に巻回する。そして、この状態で巻回部40が線材50に整合するように、蒸発器14を冷凍ケーシング12の外周に巻回する(図2(b)参照)。またはこれとは別に、蒸発器14を冷凍ケーシング12に巻回させた後に、前記線材50を前記間隙42の上端開口部または下端開口部から押し込み、螺旋状に延在する該間隙42に沿って介在させるようにしてもよい。更には、蒸発器14と線材50の巻付け始端を位置決めした状態で、両者14,50を冷凍ケーシング12に同時に巻回することもできる。そしてこの場合には、作業工数を低減し得る。
【0013】
そして前述のように、間隙42の全長に亘って線材50を介在させた状態において、該間隙42の上端開口部から溶融した半田44を流し込む。これにより半田44は前記線材50を伝わりながら流下し、隙間42Aの下部から順次滞留して凝固するに至る。そして半田44は、図2(c)に示すように、最終的には前記隙間42A全体に隈無く充塞するようになり、冷凍ケーシング12と蒸発器14の巻回部40,40における内向面40a,40aとが半田44を介して全面的に接触するようになるから、該ケーシング12と蒸発器14の接着面積を最大とし得ると共に、これに伴ない接着力を好適に向上させることができる。
【0014】
前述のように構成された第1実施例に係る冷却ユニットの接着構造では、冷凍ケーシング12に接着した前記蒸発器14に冷媒を循環させると、該蒸発器14が冷却されるようになり、先ず直線部38と直接的に接触する冷凍ケーシング12の部位が冷却される。また、蒸発器14の巻回部40,40は、半田44を介して冷凍ケーシング12と密着的に接着されているので、該半田44が接触する冷凍ケーシング12の部位も冷却される。すなわち、蒸発器14と冷凍ケーシング12との接触面積も最大となることから熱交換率を最大限に向上させることができ、該冷凍ケーシング12は蒸発器14が巻回された部位全体が略均一的に冷却され、熱交換率を好適に向上させることが可能となる。
【0015】
【第2実施例】
図3は、本発明の第2実施例に係る冷却ユニットの接着構造を示す要部縦断面図であり、製氷筒10における冷凍ケーシング12の外周には、前記第1実施例と同様に、上下の巻回部40,40を接触させた状態で、蒸発器14が螺旋状に巻回されている。そして、上下の巻回部40,40と冷凍ケーシング12との間に画成される間隙42(図4(a)参照)には、熱伝導率が良好な銅またはアルミニウム製でかつ半田メッキ54を外表面に施した線材52が、該間隙42に沿って延在している。この線材52は、前記間隙42の断面積よりも適宜小さい断面積を有する断面円形状とされており、該線材52と巻回部40,40および冷凍ケーシング12で画成された残りの隙間42Aに(図4(b)参照)、半田44が充塞した状態となっている。すなわち、第2実施例に係る製氷筒10では、前記第1実施例と同様に、蒸発器14における直線部38が冷凍ケーシング12に直接的に接着していると共に、巻回部40,40の内向面40a,40aが、前記半田44および線材52を介して冷凍ケーシング12に間接的に接触した状態で接着されている。
【0016】
また、第2実施例に係る冷却ユニットの接着方法は、前記第1実施例と基本的に同一である。すなわち、図4(a)および図4(b)に示すように、蒸発器14を冷凍ケーシング12に巻回させた際に螺旋状に延在する該間隙42に線材52を介在させた状態において、間隙42の上端開口部から溶融した半田44を流し込む。これにより半田44は、半田メッキ54を施した線材52を伝わりながら流下し、隙間42Aの下部から順次滞留して凝固するに至る。そして半田44は、図4(c)に示すように、最終的には前記隙間42A全体に隈無く充塞するようになり、冷凍ケーシング12と蒸発器14の巻回部40,40における内向面40a,40aとが半田44を介して全面的に接触するようになり、該ケーシング12と蒸発器14の接着面積を最大とし得ると共に、これに伴ない接着力を好適に向上させることができる。しかも、線材52は半田メッキ54を施してあるので、溶融した半田44が該線材52を伝わってスムーズに流下し得ると共に、該線材52と蒸発器14および冷凍ケーシング12との接着力を更に高めることができる。
【0017】
なお、前記各実施例では、図5に示すオーガ式製氷機における冷却ユニットの接着構造および接着方法に関して説明したが、円筒状の冷凍ケーシングの外周に冷凍系に接続する蒸発器を螺旋状に密着的に巻回してなる冷却ユニットを構成するものであるならば、この他にアイスクリーム製造機や冷水機等における冷却ユニットにも好適に実施し得るものである。
【0018】
【発明の効果】
以上説明した如く、本発明に係る冷却ユニットの接着構造によれば、冷凍ケーシングと蒸発器との間に画成される螺旋状の間隙に半田を充塞するようにしたので、巻回部と冷凍ケーシングとが該半田で間接的に接着されるようになり、前記蒸発器と該冷凍ケーシングとの接着面積を最大とし得ると共に、これに伴ない接着力を好適に向上させることができる。また、蒸発器と冷凍ケーシングとの接触面積も最大となることから熱交換率を最大限に向上させることができ、該冷凍ケーシングは蒸発器が巻回された部位全体が略均一的に冷却され、ケーシング内壁面に薄氷を好適に形成し得る利点がある。
【0019】
また、本願の別の発明に係る冷却ユニットの接着方法によれば、冷凍ケーシングと蒸発器との間に画成される間隙に長尺の線材を予め介在させ、溶融した半田をこの線材に伝わらせながら流入するようにしたので、該半田を効率的に充塞させることができ、該ケーシングと蒸発器の接着に係る作業性の向上を図り得る利点がある。また、半田を前記間隙全体に充塞することが可能となり、蒸発器と冷凍ケーシングの接着力の向上および熱交換率の向上を図り得る。そして、半田メッキを施した長尺の線材を使用することより、溶融した半田をスムーズに流入させることができると共に、蒸発器と冷凍ケーシングをより強固に接着することが可能となる。
【図面の簡単な説明】
【図1】 本発明の第1実施例に係る冷却ユニットの接着構造を示す要部縦断面図である。
【図2】 第1実施例に係る冷却ユニットの接着方法を経時的に示す要部拡大断面図である。
【図3】 本発明の第2実施例に係る冷却ユニットの接着構造を示す要部縦断面図である。
【図4】 第2実施例に係る冷却ユニットの接着方法を経時的に示す要部拡大断面図である。
【図5】 本発明が実施されるオーガ式製氷機の概略構成を示す縦面側面図である。
【図6】 従来の冷却ユニットの要部縦断面図である。
【符号の説明】
12 冷凍ケーシング
14 蒸発器
40 巻回部
42 間隙
42A 隙間
44 半田
50,52 線材
54 半田メッキ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling unit bonding structure and a bonding method, and more particularly, in a cooling unit such as an auger type ice maker or ice cream manufacturing machine, an improvement in adhesion between a stainless steel refrigeration casing and a copper evaporator, and The present invention relates to an adhesive structure for improving the heat exchange rate and an adhesive method for suitably implementing this adhesive structure.
[0002]
[Prior art]
For example, an auger type ice making machine has a cooling unit formed by winding an evaporator connected to a refrigeration system on the outer periphery of a cylindrical refrigeration casing. In this cooling unit, the refrigerant is circulated in the evaporator to cool the refrigeration casing, the ice making water supplied into the casing is frozen on the inner wall surface, and the resulting ice layer is transferred upward while being scraped off by an auger. The flaky ice is discharged and stored in the ice storage. That is, as shown in FIG. 5, an ice making cylinder 10 serving as an ice making part of an auger type ice making machine is connected to a refrigeration casing 12 that forms a smooth cylindrical inner wall surface and a refrigeration system (not shown), and is connected to the outer periphery of the casing 12. The refrigeration casing 12 is forcibly cooled by circulating a refrigerant through the evaporator 14 during ice making operation. Further, an auger 16 is inserted into the inside of the refrigeration casing 12, and a rotation shaft 18 is rotatably supported by bearings 20 and 20 (only the upper part is shown) disposed at upper and lower ends of the casing 12. . A cutting blade 22 having an outer diameter slightly smaller than the inner diameter of the refrigeration casing 12 is spirally formed on the outer periphery of the auger 16, and thin ice that freezes on the inner wall surface of the refrigeration casing 12 is removed from the auger 16. It is configured to move upward while scraping at 22. A pressing head 24 also serving as the upper bearing 20 is disposed above the refrigeration casing 12, and a cutter 26 is disposed above the pressing head 24. In addition, the outer periphery of the ice making cylinder 10 thus configured is covered with an appropriate heat insulating material 32.
[0003]
When the ice making operation of the auger type ice making machine configured as described above is performed, the refrigeration casing 12 exchanges heat with the refrigerant circulating in the evaporator 14 to be cooled below the freezing point, and is supplied from the supply source 34 to the refrigeration casing 12. Water gradually begins to freeze from the inner wall surface of the casing to form layered thin ice. When the auger 16 inserted in the refrigeration casing 12 is rotationally driven, the thin ice is scraped off by the cutting blade 22 of the auger 16 and transferred upward, and the auger 16 disposed above the refrigeration casing 12 is disposed. It is compressed by the pressing head 24 to form continuous compressed ice. Further, the compressed ice is cut by the cutter 26 to be compressed ice having a predetermined size, pushed out to the ice discharge path 28, and discharged from the ice discharge path 28 into the ice storage 30.
[0004]
[Problems to be solved by the invention]
In the cooling unit typified by the ice making cylinder 10 of the auger type ice making machine described above, in order to uniformly cool the entire freezing casing 12, the entire outer periphery of the casing 12 is formed by the evaporator 14 without any gap as described above. Covering. However, as shown in FIG. 6, the evaporator 14 is formed by spirally winding an annular tube having a flat cross-sectional shape. A gap 42 having a substantially triangular cross section is defined between the winding parts 40 and 40 and the refrigeration casing 12. That is, when the spiral gap 42 is defined on the outer peripheral surface of the refrigeration casing 12, even if the refrigerant is circulated through the evaporator 14 to cool the refrigeration casing 12, the portion where the gap 42 is defined is effective. There is a problem that heat transfer is not performed and the heat exchange rate is lowered as a whole.
[0005]
Therefore, when the evaporator 14 wound around the outer periphery of the refrigeration casing 12 is bonded and fixed with the solder 44 in order to manufacture the ice making cylinder 10 capable of obtaining a uniform heat exchange rate, the gap 42 is formed with the solder 44. A method of filling is being implemented. However, the work of filling the gap 42 with the solder 44 has the disadvantages that it is complicated and time consuming and increases the manufacturing cost. In addition, the solder 44 flows down the outer peripheral surface of the casing 12, so that the entire gap 42 is completely removed. It is generally difficult to fill the space, and as shown in FIG. 6, the space 46 often remains partially. Condensed water tends to accumulate in the remaining space 46, and the condensed water gradually freezes and grows to push up the winding portion 40 of the evaporator 14, and the evaporator 14 is separated from the refrigeration casing 12. There is a serious problem that the evaporator 14 is deformed or damaged.
[0006]
Separately, a member having a good thermal conductivity formed in substantially the same cross-sectional shape (substantially triangular) as the gap 42 is wound along the outer peripheral portion of the refrigeration casing 12 where the gap 42 extends. A method of preventing the gap 42 from being formed by turning is also implemented. However, the manufacturing cost for forming the member into a required cross-sectional shape increases, and it is extremely difficult to wind the member and the evaporator 14 around the refrigeration casing 12 without a gap. It was. Moreover, even if each winding part 40 and 40 of the evaporator 14 and the said member are contact | adhered closely, inflow of condensed water cannot be prevented completely, and the freezing casing 12 by freezing and growth of this condensed water is not possible. It was still impossible to separate the evaporator 14 and the evaporator 14 from being deformed or damaged. When the contact surface between the member and the evaporator 14 is to be bonded with solder, the close contact is rather the result of hindering the inflow of solder, and the evaporator 14 and the evaporator 14 are in contact with each other. Suitable adhesion of the members is difficult.
[0007]
OBJECT OF THE INVENTION
The present invention has been proposed in view of the above-mentioned drawbacks, and has been proposed to solve this problem. A long wire is interposed in advance in a gap defined between the refrigeration casing and the evaporator, and soldering is performed. In this way, the workability related to the adhesion between the casing and the evaporator can be improved, the adhesion between the casing and the evaporator can be improved, and the heat exchange rate can be improved. It is an object of the present invention to provide an adhesion structure and an adhesion method for a cooling unit capable of improving the above.
[0008]
[Means for Solving the Problems]
In order to overcome the above-mentioned problems and achieve the desired purpose suitably, the bonding structure of the cooling unit according to the present invention includes:
An evaporator connected to the refrigeration system is tightly wound around the outer periphery of the cylindrical refrigeration casing in a spiral manner. In the cooling unit in which the spiral gap formed is filled with an appropriate material having good thermal conductivity,
A long wire wound around the outer periphery of the refrigeration casing in a state having a cross-sectional area appropriately smaller than the cross-sectional area of the gap, and forming a required gap in the gap;
The wire rod is poured to fill the entire gap while being transmitted, and is composed of solder that adheres the refrigeration casing and the evaporator in close contact with each other.
[0009]
Similarly, in order to overcome the above-mentioned problems and achieve the desired purpose suitably, the cooling unit bonding method according to the present invention includes:
An evaporator connected to the refrigeration system is tightly wound around the outer periphery of the cylindrical refrigeration casing in a spiral manner. In the cooling unit in which the spiral gap formed is filled with an appropriate material having good thermal conductivity,
A long wire having a cross-sectional area appropriately smaller than the cross-sectional area of the gap is spirally wound around the outer periphery of the refrigeration casing,
The evaporator is spirally wound around the outer periphery of the refrigeration casing so that the wire rod faces the gap formed between the winding portion of the evaporator and the refrigeration casing in a state where a necessary gap is formed,
The molten solder poured from the upper end opening of the gap is injected while being transmitted along the wire, and the solder is filled in the entire gap, thereby adhering the refrigeration casing and the evaporator in close contact with each other. Features.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, the bonding structure and bonding method of the cooling unit according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments. In this embodiment, the cooling unit of the auger type ice making machine according to the prior art is exemplified, and its ice making mechanism is the same as the auger type ice making machine shown in FIG. Description is omitted.
[0011]
[First embodiment]
FIG. 1 is a longitudinal sectional view showing a principal part of a cooling unit bonding structure according to a first embodiment of the present invention. In this state, the evaporator 14 is spirally wound. In the spiral gap 42 (see FIG. 2A) defined between the winding portions 40, 40 and the refrigeration casing 12, for example, a copper or aluminum wire having a good thermal conductivity. 50 extends along the gap 42. The wire 50 has a circular cross section having a cross-sectional area that is appropriately smaller than the cross-sectional area of the gap 42, and an appropriate gap 42 </ b> A is provided between the wire 50 and the winding portions 40 and 40 and the refrigeration casing 12. It is defined (refer to FIG. 2B), and the solder 44 is filled in the gap 42A. That is, in the ice making cylinder 10 according to the adhesive structure of the first embodiment, the linear portion 38 in the evaporator 14 is in direct contact with the refrigeration casing 12, and the inward surfaces 40a, 40a of the winding portions 40, 40 are provided. Is bonded to the refrigeration casing 12 through the solder 44 and the wire 50 in an indirect contact state. The solder 44 appropriately flows also between the straight portion 38 of the evaporator 14 and the outer peripheral surface of the refrigeration casing 12, and the straight portion 38 and the casing 12 are directly bonded.
[0012]
Next, a method for bonding the cooling unit according to the first embodiment will be described. As shown in FIG. 2A, the long wire 50 is formed in advance at a pitch interval of the gap 42 that is spirally defined when the evaporator 14 is wound around the refrigeration casing 12. Wind around 12. And the evaporator 14 is wound around the outer periphery of the freezing casing 12 so that the winding part 40 may align with the wire 50 in this state (refer FIG.2 (b)). Alternatively, after the evaporator 14 is wound around the refrigeration casing 12, the wire 50 is pushed in from the upper end opening or the lower end opening of the gap 42, and along the gap 42 extending spirally. You may make it interpose. Furthermore, both the 14, 14 can be wound around the refrigeration casing 12 in a state where the winding start ends of the evaporator 14 and the wire 50 are positioned. In this case, the number of work steps can be reduced.
[0013]
As described above, in the state where the wire 50 is interposed over the entire length of the gap 42, the molten solder 44 is poured from the upper end opening of the gap 42. As a result, the solder 44 flows down along the wire 50 and stays in sequence from the bottom of the gap 42A to solidify. Then, as shown in FIG. 2C, the solder 44 finally fills the entire gap 42A without any problem, and the inward surface 40a of the winding portions 40, 40 of the refrigeration casing 12 and the evaporator 14 is filled. , 40a come into full contact with each other through the solder 44, so that the bonding area between the casing 12 and the evaporator 14 can be maximized, and the bonding force associated therewith can be suitably improved.
[0014]
In the bonding structure of the cooling unit according to the first embodiment configured as described above, when the refrigerant is circulated through the evaporator 14 bonded to the refrigeration casing 12, the evaporator 14 is cooled. The portion of the refrigeration casing 12 that is in direct contact with the straight portion 38 is cooled. Moreover, since the winding parts 40 and 40 of the evaporator 14 are closely adhered to the refrigeration casing 12 via the solder 44, the portion of the refrigeration casing 12 with which the solder 44 contacts is also cooled. That is, since the contact area between the evaporator 14 and the refrigeration casing 12 is also maximized, the heat exchange rate can be maximized, and the refrigeration casing 12 is substantially uniform throughout the portion around which the evaporator 14 is wound. Therefore, the heat exchange rate can be suitably improved.
[0015]
[Second embodiment]
FIG. 3 is a longitudinal sectional view of the main part showing the bonding structure of the cooling unit according to the second embodiment of the present invention. The outer periphery of the refrigeration casing 12 in the ice making cylinder 10 The evaporator 14 is spirally wound in a state where the winding portions 40, 40 are in contact with each other. A gap 42 (see FIG. 4A) defined between the upper and lower winding portions 40 and 40 and the refrigeration casing 12 is made of copper or aluminum having a good thermal conductivity and solder plating 54. A wire rod 52 having an outer surface is applied along the gap 42. The wire 52 has a circular cross-section having a cross-sectional area that is appropriately smaller than the cross-sectional area of the gap 42, and the remaining gap 42 </ b> A defined by the wire 52, the winding portions 40 and 40, and the refrigeration casing 12. (See FIG. 4B), the solder 44 is filled. That is, in the ice making cylinder 10 according to the second embodiment, the linear portion 38 in the evaporator 14 is directly bonded to the refrigeration casing 12 and the winding portions 40, 40 are similar to the first embodiment. The inward surfaces 40 a and 40 a are bonded in a state where they are indirectly in contact with the refrigeration casing 12 through the solder 44 and the wire 52.
[0016]
The method for bonding the cooling unit according to the second embodiment is basically the same as that of the first embodiment. That is, as shown in FIGS. 4 (a) and 4 (b), when the evaporator 14 is wound around the refrigeration casing 12, the wire material 52 is interposed in the gap 42 that spirally extends. Then, molten solder 44 is poured from the upper end opening of the gap 42. As a result, the solder 44 flows down along the wire 52 to which the solder plating 54 is applied, and then stays from the lower portion of the gap 42A and solidifies. Then, as shown in FIG. 4C, the solder 44 finally fills the entire gap 42A without any problem, and the inward surface 40a in the winding portions 40, 40 of the refrigeration casing 12 and the evaporator 14 is filled. 40a can be brought into full contact with each other through the solder 44, and the bonding area between the casing 12 and the evaporator 14 can be maximized, and the bonding force associated therewith can be suitably improved. Moreover, since the wire 52 is plated with solder 54, the molten solder 44 can flow smoothly through the wire 52, and the adhesion between the wire 52 and the evaporator 14 and the refrigeration casing 12 is further enhanced. be able to.
[0017]
In each of the above embodiments, the cooling unit bonding structure and bonding method in the auger type ice making machine shown in FIG. 5 have been described. However, the evaporator connected to the refrigeration system is spirally attached to the outer periphery of the cylindrical refrigeration casing. In addition to this, if it constitutes a cooling unit that is wound around, it can be suitably applied to a cooling unit in an ice cream manufacturing machine, a cold water machine, or the like.
[0018]
【The invention's effect】
As explained above, according to the adhesion structure of the cooling unit according to the present invention, the spiral gap defined between the refrigeration casing and the evaporator is filled with solder. The casing is indirectly bonded with the solder, and the bonding area between the evaporator and the refrigeration casing can be maximized, and the accompanying adhesive force can be preferably improved. In addition, since the contact area between the evaporator and the refrigeration casing is also maximized, the heat exchange rate can be maximized, and the refrigeration casing is cooled substantially uniformly throughout the portion around which the evaporator is wound. There is an advantage that thin ice can be suitably formed on the inner wall surface of the casing.
[0019]
Further, according to the method for adhering a cooling unit according to another invention of the present application, a long wire is interposed in advance in a gap defined between the refrigeration casing and the evaporator, and the molten solder is transmitted to the wire. Therefore, there is an advantage that the solder can be efficiently filled and the workability related to the adhesion between the casing and the evaporator can be improved. Further, it becomes possible to fill the entire gap with the solder, so that the adhesive force between the evaporator and the refrigeration casing can be improved and the heat exchange rate can be improved. And by using the elongate wire rod which gave solder plating, while being able to flow in the molten solder smoothly, it becomes possible to adhere | attach an evaporator and a freezing casing more firmly.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an essential part showing an adhesive structure of a cooling unit according to a first embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of the main part showing the method of bonding the cooling unit according to the first embodiment over time.
FIG. 3 is a longitudinal sectional view of a main part showing an adhesion structure of a cooling unit according to a second embodiment of the present invention.
FIG. 4 is an enlarged cross-sectional view of a main part showing a method of bonding a cooling unit according to a second embodiment over time.
FIG. 5 is a vertical side view showing a schematic configuration of an auger type ice making machine in which the present invention is implemented.
FIG. 6 is a longitudinal sectional view of a main part of a conventional cooling unit.
[Explanation of symbols]
12 Refrigeration casing 14 Evaporator 40 Winding part 42 Gap 42A Gap 44 Solder 50, 52 Wire 54 Solder plating

Claims (4)

円筒状の冷凍ケーシング(12)の外周に、冷凍系に接続する蒸発器(14)を螺旋状に密着的に巻回し、この蒸発器(14)における上下に密着して隣接し合う巻回部(40,40)と前記冷凍ケーシング(12)との間に画成される螺旋状の間隙(42)を、熱伝導率の良好な適宜の材料で充塞させるようにした冷却ユニットにおいて、
前記間隙(42)の断面積よりも適宜小さい断面積を有し、該間隙(42)内に所要の隙間(42A)を形成した状態で前記冷凍ケーシング(12)の外周に巻回された長尺の線材(50,52)と、
前記線材(50,52)を伝わらせながら前記隙間(42A)全体を充塞するよう流し込まれ、前記冷凍ケーシング(12)と蒸発器(14)とを密着状態で接着させる半田(44)とから構成した
ことを特徴とする冷却ユニットの接着構造。
The evaporator (14) connected to the refrigeration system is tightly wound around the outer periphery of the cylindrical refrigeration casing (12) in a spiral manner, and the winding portions that are closely adjacent to each other in the evaporator (14) are adjacent to each other. In the cooling unit in which the spiral gap (42) defined between (40, 40) and the refrigeration casing (12) is filled with an appropriate material having good thermal conductivity,
The cross-sectional area that is appropriately smaller than the cross-sectional area of the gap (42), and a length wound around the outer periphery of the refrigeration casing (12) in a state where the required gap (42A) is formed in the gap (42). A wire rod (50, 52),
Consists of solder (44) that is poured to fill the entire gap (42A) while conducting the wire (50, 52) and adheres the refrigeration casing (12) and the evaporator (14) in close contact. A cooling unit adhesive structure characterized by that.
前記線材(52)の外表面には、半田メッキ(54)が施されている請求項1記載の冷却ユニットの接着構造。The adhesion structure of the cooling unit according to claim 1, wherein a solder plating (54) is applied to an outer surface of the wire (52). 前記線材(50,52)は、熱伝導率の良好な銅またはアルミニウム等を材質としている請求項1または2記載の冷却ユニットの接着構造。The cooling unit bonding structure according to claim 1 or 2, wherein the wire (50, 52) is made of copper or aluminum having a good thermal conductivity. 円筒状の冷凍ケーシング(12)の外周に、冷凍系に接続する蒸発器(14)を螺旋状に密着的に巻回し、この蒸発器(14)における上下に密着して隣接し合う巻回部(40,40)と前記冷凍ケーシング(12)との間に画成される螺旋状の間隙(42)を、熱伝導率の良好な適宜の材料で充塞させるようにした冷却ユニットにおいて、
前記間隙(42)の断面積よりも適宜小さい断面積を有する長尺の線材(50,52)を、前記冷凍ケーシング(12)の外周に螺旋状に巻回し、
前記蒸発器(14)を冷凍ケーシング(12)の外周に、該蒸発器(14)の巻回部(40,40)と冷凍ケーシング(12)との間に画成される間隙(42)内に前記線材(50,52)が所要の間隙(42A)を形成した状態で臨むよう螺旋状に巻回し、
前記間隙(42)の上端開口部から流し込んだ溶融状態の半田(44)を、前記線材(50,52)を伝わらせながら注入して該半田(44)を隙間(42A)全体に充塞させることにより、前記冷凍ケーシング(12)と蒸発器(14)とを密着状態で接着させる
ことを特徴とする冷却ユニットの接着方法。
The evaporator (14) connected to the refrigeration system is tightly wound around the outer periphery of the cylindrical refrigeration casing (12) in a spiral manner, and the winding portions that are closely adjacent to each other in the evaporator (14) are adjacent to each other. In the cooling unit in which the spiral gap (42) defined between (40, 40) and the refrigeration casing (12) is filled with an appropriate material having good thermal conductivity,
A long wire (50, 52) having a cross-sectional area appropriately smaller than the cross-sectional area of the gap (42), spirally wound around the outer periphery of the refrigeration casing (12),
The evaporator (14) is placed on the outer periphery of the refrigeration casing (12) and in the gap (42) defined between the winding portions (40, 40) of the evaporator (14) and the refrigeration casing (12). The wire (50, 52) is spirally wound so as to face in a state where the required gap (42A) is formed,
The molten solder (44) poured from the upper end opening of the gap (42) is injected while passing through the wire (50, 52) to fill the entire gap (42A) with the solder (44). The method for bonding a cooling unit, characterized in that the refrigeration casing (12) and the evaporator (14) are adhered in a close contact state.
JP31428497A 1997-10-29 1997-10-29 Adhesive structure and adhering method for cooling unit Expired - Fee Related JP3927301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31428497A JP3927301B2 (en) 1997-10-29 1997-10-29 Adhesive structure and adhering method for cooling unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31428497A JP3927301B2 (en) 1997-10-29 1997-10-29 Adhesive structure and adhering method for cooling unit

Publications (2)

Publication Number Publication Date
JPH11132610A JPH11132610A (en) 1999-05-21
JP3927301B2 true JP3927301B2 (en) 2007-06-06

Family

ID=18051520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31428497A Expired - Fee Related JP3927301B2 (en) 1997-10-29 1997-10-29 Adhesive structure and adhering method for cooling unit

Country Status (1)

Country Link
JP (1) JP3927301B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153508A (en) 1999-11-25 2001-06-08 Hoshizaki Electric Co Ltd Cooling unit
JP2002013847A (en) 2000-06-27 2002-01-18 Hoshizaki Electric Co Ltd Cooling unit, and method of manufacturing the cooling unit
JP2002130881A (en) * 2000-10-27 2002-05-09 Nakajou:Kk Method for fixing refrigerant pipe in auger type ice making machine
KR102046800B1 (en) * 2019-08-06 2019-11-21 주식회사 카이저제빙기 Ice-maker unit for auger type ice maker
KR102257413B1 (en) * 2020-09-14 2021-05-31 김윤수 Auger-type ice maker improved thermal conductivity efficiency and method for manufacturing the same

Also Published As

Publication number Publication date
JPH11132610A (en) 1999-05-21

Similar Documents

Publication Publication Date Title
US6877334B2 (en) Cooling unit and manufacturing method of the same
US6220038B1 (en) Ice maker
JP3927301B2 (en) Adhesive structure and adhering method for cooling unit
EP0851192B1 (en) Auger-type ice maker
KR102338074B1 (en) Assembly structure for miniaturization of auger type ice maker
US6619067B2 (en) Cooling unit
JP2003535296A (en) Evaporator plate assembly for ice making machine
US20070101752A1 (en) Ice-making device utilizing pulse electric devices to harvest ice
US20030159459A1 (en) Auger-type ice making apparatus with improved evaporator
JP2009058189A (en) Refrigerating casing and auger type ice maker using it
JPH058426Y2 (en)
JP3684301B2 (en) Auger type ice making machine and spacer mounting method in this auger type ice making machine
JPH0442685Y2 (en)
JP4684481B2 (en) Auger ice machine
JP3886188B2 (en) Auger ice machine
JP2007071422A (en) Ice making machine
JPWO2004046625A1 (en) Auger ice machine
KR100413269B1 (en) Auger type ice maker
JPH10288436A (en) Static type ice making apparatus in ice storage system
JP2004264000A (en) Auger type ice making machinery
KR100384812B1 (en) Mounting method and structure of refrigerant pipe for auger-type ice machine
JP2004332950A (en) Auger type ice making machine
JP3453443B2 (en) Auger ice machine
JP3568246B2 (en) Auger ice machine and its auger
JPS6129000Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees