JP3927261B2 - Manufacturing method of sialon bond SiC brick - Google Patents

Manufacturing method of sialon bond SiC brick Download PDF

Info

Publication number
JP3927261B2
JP3927261B2 JP18783396A JP18783396A JP3927261B2 JP 3927261 B2 JP3927261 B2 JP 3927261B2 JP 18783396 A JP18783396 A JP 18783396A JP 18783396 A JP18783396 A JP 18783396A JP 3927261 B2 JP3927261 B2 JP 3927261B2
Authority
JP
Japan
Prior art keywords
sialon
powder
less
relationship
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18783396A
Other languages
Japanese (ja)
Other versions
JPH1029866A (en
Inventor
信彦 加治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP18783396A priority Critical patent/JP3927261B2/en
Publication of JPH1029866A publication Critical patent/JPH1029866A/en
Application granted granted Critical
Publication of JP3927261B2 publication Critical patent/JP3927261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高炉、電気炉等の内張り用れんがとして使用するサイアロンボンドSiCれんがの製造方法に関する。
【0002】
【従来の技術】
高炉等の内張り用れんがに使用するSiCれんがには、最初、陶磁器焼成用棚板等で実績のある粘土ボンドSiCれんがが採用されたが、耐アルカリ性、耐スポーリング性、熱間強度が不十分であるため、その対策として、サイアロンボンドの採用が提案され、例えば、特開昭58−84909号で、サイアロンと炭化珪素及び/又はアルミナとで構成されるサイアロン質耐火物、特開平2−6371号で、炭化珪素にSi、Al、アルミナを混合、加圧成形後、窒素雰囲気中で焼結するサイアロン結合を有する炭化珪素質れんがの製造法が知られている。
【0003】
【発明が解決しようとする課題】
特開昭58−84909号は、製造条件についての記載はないが、一般にサイアロン粉末を添加して常圧焼結する方法は焼結助材を添加しても焼結温度を高くする必要がある。また、特開平2−6371号のように、炭化珪素、Si、Al、アルミナを使用して窒素気流中で焼成する反応焼結方法は、焼成に1600°C以上の高温を必要とすることはないが、高価な窒素ガスを焼成中に流す必要があるため、コストが高くなる。また、窒素ガスの吹き込みが必要なため、一般的なトンネルキルンによる焼成は不可能である。
【0004】
本発明は、高価な窒素ガスを特別に流すことなく焼成でき、また、一般的なトンネルキルンで焼成ができるとともに、耐COガス酸化性、耐アルカリ性等に優れた物性を有するサイアロンボンドSiCれんがの製造方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明は、Si、Al及びアルミナの混合物の成形体をサヤ内のカーボン粉末中に埋め込んで焼成することにより、サヤ内の空気中の酸素をカーボン粉末で消化し、残った窒素を有効に利用してサイアロンボンドを形成するものである。
【0006】
本発明のサイアロンボンドSiCれんがの製造方法は、SiC、Si、Al及び粒径74μm以下で平均粒径15μm以下のアルミナ粉末を低残炭収率のバインダーを使用し、サイアロン(Si6−zAl8−Z)のZ値が1.5〜3.3であるサイアロンボンドを形成するように混合して成形した後、カーボン粉末中で焼成する。
【0007】
Siの配合量は4〜9%(重量%。以下、%は重量%とする。)、カーボン粉末中での焼成は1300〜1600°Cが好ましい。また、カーボン粉末の灰分が6%以下が望ましい。
【0008】
【発明の実施の形態】
表lにサイアロン(Si6-ZAlZZ8-Z)のZ値とSi、Al、仮焼アルミナ及びSiCの配合割合を示す。
【0009】
【表1】

Figure 0003927261
なお、れんがの試作は、所定配合割合のSi、Al、仮焼アルミナ(粒度検討品以外は平均粒径が5μm品を使用)及び最大粒径3mmのSiC粉末を低残炭収率のバインダーを使用して混練し、オイルプレスを用いて230×l00×85mmの形状に成形し、100°Cのドライヤ一中で素地乾燥した後、SiCサヤ内のトップサイズ5mmの灰分が0.5%のカーボン粉末(特に指定のない時は灰分が0.5%品を使用)中に埋め込んで一般的なトンネルキルンを使用して焼成(特に指定のない時、サヤ内最高温度は1450°C)した。
【0010】
図1〜図4は、44μm以下のSi粉末=6%とし、74μm以下のAl粉末を添加してサイアロン(Si6-ZAlZZ8-Z)のZ値を変化させ、各Z値と各種の物性との関係を示すグラフで、比較例として同一条件の試験片を窒素雰囲気の単独窯を使用して窒化焼成した場合の物性についても示す。
【0011】
図1に示すように、見掛け気孔率は、サイアロンのZ値が1.5未満及び3.5を越えると、大きくなる。
【0012】
図2に示すように、アルカリテスト(20×20×80mmの試験片を1300°Cに5時間保持した後、室温に冷却するサイクルを5回繰り返す。)の結果、低下見掛け気孔率(アルカリテスト試験前後の見掛け気孔率の差)は、アルカリテスト後の見掛け気孔率が低くなれば、スポーリングが起こり易くなる。サイアロンのZ値が1.5未満及び3.5を越えると、大きくなり、耐アルカリ性が低下する。
【0013】
また、図3に示すように、1400°Cでの熱間曲げ強さは、サイアロンのZ値が1.5未満になると急激に小さくなる。
【0014】
さらに、図4に示すように、COガス酸化テスト(20×20×80mmの試験片をCOガス流量=10リットル/分の雰囲気中で1200°Cに100時間保持した後、室温に冷却するサイクルを5回繰り返す。)の結果、サイアロンのZ値が1.5未満及び3.5を越えると、線変化率が大きくなり、耐アルカリ性が低下する。
【0015】
したがって、サイアロンのZ値は、見掛け気孔率、低下見掛け気孔率、1400°Cでの曲げ強さ及び線変化率の結果から、1.5〜3.5が好ましい。
【0016】
図5及び図6は、Z値=3、44μm以下のSi粉末=6%、74μm以下のAl粉末を使用して仮焼アルミナの平均粒度と熱間強度及び耐アルカリ性について検討した結果を示すグラフで、図5に示すように、平均粒径が15μmを超えると熱間強度が低下するとともに、図6に示すように、アルカリテストの結果、低下見掛け気孔率も急激に上昇し耐アルカリ性が低下するので、平均粒度は15μm以下が好ましい。
【0017】
図7及び図8は、Z=3、44μm以下のSi粉末=6%、Al粉末、仮焼アルミナを使用してAl粉末の粒度を検討した結果を示すグラフで、Al粒度に関して、トップサイズ0.5mm〜10μmの範囲内であれば品質上は特に差がない。
【0018】
アルミナ粉末としては、仮焼アルミナ粉末が好ましく、その場合、仮焼アルミナ粉末の粒径が74μmを超えると反応性が乏しくなるので74μm以下が好ましい。
【0019】
なお、粒径が非常に細かく微粒子で反応性がよいならば、溶融アルミナ、焼結アルミナ粉を使用することもできる。
【0020】
図9〜図12は、Z値=3、74μm以下のAl粉末を使用して44 μm以下のSi粉末の添加量の影響について検討した結果を示すグラフで、Si添加量が9%を越えると、図9に示すように、残存Siが認められ、図10及び図12に示されるように、線変化率が急激に高くなり、耐COガス酸化性、耐アルカリ性の低下が認められる。また、添加量が4%より少ないと、図11に示すように、サイアロンボンドの形成量が少なくなって熱間強度が低下する。したがって、Siの添加量は4〜9%が好ましい。
【0021】
図13及び図14は、Z=3でSi粉末=6%、74μm以下のAl粉末、仮焼アルミナを使用してSi粉末の粒度を検討した結果を示すグラフで、トップサイズ0.2 mm〜10μmの範囲内であれば品質上は特に差がない。
【0022】
図15〜図18はZ=3で44μm以下のSi粉末=6%、74μm以下のAl粉末、仮焼アルミナを使用して焼成温度を検討した結果を示すグラフで、焼成温度=1570°Cの場合、SiCサヤは6回使用後に問題なかったが、焼成温度=1630°Cの場合、SiCサヤは1回の使用で外周側の酸化が激しく、また、多くの目地切れが認められ、後1回の使用が耐用限界であった。
【0023】
焼成温度が1300°C未満であると、図15に示すように、Al43の残存が認められ、図16に示すように、熱間強度の低下が認められ、また、図18に示すように、耐アルカリ性の低下も認められた。さらに、図17に示す消化試験(20×20×80mmの試験片をオートクレーブ圧力2kg/cm2で2時間保持する。)の結果、残存膨張が大きくなり、耐消化性が低下した。また、焼成温度が1600°Cを越えても特に品質上の効果は認められず、逆に、前述のようにサヤの耐用が大幅に低下するため、焼成温度の上昇以外でも製造コストがアップする。したがって、焼成温度は1300〜1600°Cが好ましい。
【0024】
図19及び図20は、Z=3で44μm以下のSi粉末=6%、74μm以下のAl粉末、仮焼アルミナを使用して埋め込み用カーボン粉末の灰分量を0.1〜15%の範囲で変化させて物性について検討した結果を示すグラフで、灰分が6%を越えると、熱間強度及び耐アルカリ性が低下する。したがって、カーボン粉末の灰分量は、できるだけ少なくし、最大でも6%を越えないようにする。
【0025】
【発明の効果】
本発明は、高価な窒素ガスを流すことなく焼成することできかつ一般的なトンネルキルンでの焼成が可能となるので、窒素ガスを使用しそのためトンネルキルンで焼成できない従来の製造法に比べ、コストの大幅な低減が可能となる。
【図面の簡単な説明】
【図1】 Z値と見掛け気孔率との関係を示すグラフ。
【図2】 Z値と耐アルカリ性との関係(アルカリテスト)を示すグラフ。
【図3】 Z値と1400°Cでの熱間曲げ強さとの関係を示すグラフ。
【図4】 Z値と耐COガス酸化性との関係を示すグラフ。
【図5】 仮焼アルミナの平均粒径と1400°Cでの熱間曲げ強さとの関係を示すグラフ。
【図6】 仮焼アルミナの平均粒径と耐COガス酸化性との関係を示すグラフ。
【図7】 Al粒度と1400°Cでの熱間曲げ強さとの関係を示すグラフ。
【図8】 Al粒度と耐アルカリ性との関係(アルカリテスト)を示すグラフ。
【図9】 Si添加量と残存Si量との関係を示すグラフである。
【図10】 Si添加量と耐アルカリ性との関係(アルカリテスト)を示すグラフ。
【図11】 Si添加量と1400°Cでの熱間曲げ強さとの関係を示すグラフ。
【図12】 Si添加量と耐COガス酸化性との関係を示すグラフ。
【図13】 Si粒度と1400°Cでの熱間曲げ強さとの関係を示すグラフ。
【図14】 Si粒度と耐アルカリ性との関係(アルカリテスト)を示すグラフ。
【図15】 焼成温度とAl43残存量との関係を示すグラフ。
【図16】 焼成温度と1400°Cでの熱間曲げ強さとの関係を示すグラフ。
【図17】 焼成温度と線膨張率との関係(消化試験)を示すグラフ。
【図18】 焼成温度と耐COガス酸化性との関係を示すグラフ。
【図19】 埋め込み用カーボン粉末の灰分量と1400°Cでの熱間曲げ強さとの関係を示すグラフ。
【図20】 埋め込み用カーボン粉末の灰分量と耐アルカリ性との関係(アルカリテスト)を示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a sialon bonded SiC brick used as a lining brick for a blast furnace, an electric furnace or the like.
[0002]
[Prior art]
The SiC brick used for lining bricks for blast furnaces, etc. was first used as a clay-bonded SiC brick with a proven track record in porcelain baking shelves, etc., but the alkali resistance, spalling resistance, and hot strength are insufficient. Therefore, the use of sialon bonds as a countermeasure is proposed. For example, in Japanese Patent Laid-Open No. 58-84909, a sialon refractory composed of sialon and silicon carbide and / or alumina is disclosed in Japanese Patent Laid-Open No. 2-6371. No. 2, a method for producing a silicon carbide brick having a sialon bond in which silicon carbide is mixed with Si, Al, and alumina, press-molded, and sintered in a nitrogen atmosphere is known.
[0003]
[Problems to be solved by the invention]
Japanese Patent Application Laid-Open No. 58-84909 does not describe manufacturing conditions, but generally a method of adding sialon powder and sintering at normal pressure requires a higher sintering temperature even if a sintering aid is added. . In addition, as disclosed in Japanese Patent Laid-Open No. 2-6371, a reactive sintering method in which silicon carbide, Si, Al, and alumina are used for firing in a nitrogen stream requires a high temperature of 1600 ° C or higher for firing. Although it is not necessary, since expensive nitrogen gas needs to flow during firing, the cost becomes high. Further, since it is necessary to blow nitrogen gas, firing with a general tunnel kiln is impossible.
[0004]
The present invention can be fired without specially flowing an expensive nitrogen gas, and can be fired with a general tunnel kiln, and also has sialon bond SiC bricks having excellent physical properties such as resistance to CO gas oxidation and alkali resistance. A manufacturing method is provided.
[0005]
[Means for Solving the Problems]
In the present invention, a molded body of a mixture of Si, Al, and alumina is embedded in a carbon powder in the sheath and fired, so that oxygen in the air in the sheath is digested with the carbon powder, and the remaining nitrogen is effectively utilized. Thus, a sialon bond is formed.
[0006]
The method for producing a sialon bonded SiC brick according to the present invention uses SiC , Si, Al and alumina powder having a particle size of 74 μm or less and an average particle size of 15 μm or less in a binder having a low residual carbon yield, and sialon (Si 6-z Al z O z N 8-Z ) is mixed and molded so as to form a sialon bond having a Z value of 1.5 to 3.3, and then fired in carbon powder.
[0007]
The blending amount of Si is preferably 4 to 9% (% by weight. Hereinafter,% is% by weight), and firing in carbon powder is preferably 1300 to 1600 ° C. The ash content of the carbon powder is desirably 6% or less.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Table l in sialon (Si 6-Z Al Z O Z N 8-Z) of Z values and Si, Al, the proportion of calcined alumina and SiC shown.
[0009]
[Table 1]
Figure 0003927261
In addition, the trial manufacture of the brick is made of Si, Al, calcined alumina (a product with an average particle size of 5 μm is used except for the product whose particle size is examined) and SiC powder having a maximum particle size of 3 mm with a binder with a low residual carbon yield. After kneading and forming into a shape of 230 × 100 × 85 mm using an oil press and drying the substrate in a dryer at 100 ° C., the ash content of the top size of 5 mm in the SiC sheath is 0.5%. It was embedded in carbon powder (if not specified, ash content was 0.5%) and fired using a general tunnel kiln (when not specified, maximum temperature in the sheath is 1450 ° C). .
[0010]
1 to 4 show that Si powder of 44 μm or less = 6%, Al powder of 74 μm or less is added, and the Z value of sialon (Si 6 -Z Al Z O Z N 8 -Z) is changed. It is a graph which shows the relationship between a value and various physical properties, and also shows the physical property at the time of carrying out the nitriding baking of the test piece of the same conditions using the independent kiln of nitrogen atmosphere as a comparative example.
[0011]
As shown in FIG. 1, the apparent porosity increases when the Z value of sialon is less than 1.5 and exceeds 3.5.
[0012]
As shown in FIG. 2, as a result of an alkali test (a cycle in which a test piece of 20 × 20 × 80 mm is held at 1300 ° C. for 5 hours and then cooled to room temperature is repeated five times), the apparent porosity decreased (alkaline test). Regarding the difference in apparent porosity before and after the test, if the apparent porosity after the alkali test is low, spalling is likely to occur. When the Z value of sialon is less than 1.5 and exceeds 3.5, the sialon becomes large and the alkali resistance decreases.
[0013]
Further, as shown in FIG. 3, the hot bending strength at 1400 ° C. decreases rapidly when the Z value of sialon becomes less than 1.5.
[0014]
Further, as shown in FIG. 4, a CO gas oxidation test (a cycle in which a test piece of 20 × 20 × 80 mm is held at 1200 ° C. for 100 hours in an atmosphere of CO gas flow rate = 10 liter / min and then cooled to room temperature. Is repeated 5 times.) As a result, if the Z value of sialon is less than 1.5 and exceeds 3.5, the linear change rate increases and the alkali resistance decreases.
[0015]
Therefore, the Z value of sialon is preferably 1.5 to 3.5 from the results of the apparent porosity, the reduced apparent porosity, the bending strength at 1400 ° C, and the linear change rate.
[0016]
FIG. 5 and FIG. 6 are graphs showing the results of examining the average particle size, hot strength and alkali resistance of calcined alumina using Z powder = 3, Si powder of 44 μm or less = 6%, Al powder of 74 μm or less. As shown in FIG. 5, when the average particle size exceeds 15 μm, the hot strength is lowered, and as shown in FIG. 6, as a result of the alkaline test, the apparent apparent porosity is drastically increased and the alkali resistance is lowered. Therefore, the average particle size is preferably 15 μm or less.
[0017]
FIGS. 7 and 8 are graphs showing the results of examining the particle size of Al powder using Z = 3, Si powder of 44 μm or less = 6%, Al powder, and calcined alumina. If it is in the range of 5 mm to 10 μm, there is no particular difference in quality.
[0018]
As the alumina powder, calcined alumina powder is preferable, and in that case, when the particle size of the calcined alumina powder exceeds 74 μm, the reactivity becomes poor, and therefore 74 μm or less is preferable.
[0019]
In addition, if the particle size is very fine, fine particles, and good reactivity, fused alumina or sintered alumina powder can be used.
[0020]
9 to 12 are graphs showing the results of studying the influence of the addition amount of Si powder having a Z value of 3, 74 μm or less and Si powder having a particle size of 44 μm or less. When the Si addition amount exceeds 9%, FIG. As shown in FIG. 9, residual Si is observed, and as shown in FIGS. 10 and 12, the linear change rate is rapidly increased, and a decrease in resistance to CO gas oxidation and alkali resistance is observed. On the other hand, when the addition amount is less than 4%, as shown in FIG. 11, the amount of sialon bonds formed decreases and the hot strength decreases. Therefore, the addition amount of Si is preferably 4 to 9%.
[0021]
FIGS. 13 and 14 are graphs showing the results of examining the particle size of Si powder using Z = 3, Si powder = 6%, Al powder of 74 μm or less, and calcined alumina, with a top size of 0.2 mm to If it is within the range of 10 μm, there is no particular difference in quality.
[0022]
FIGS. 15 to 18 are graphs showing the results of examining the firing temperature using Z = 3, Si powder of 44 μm or less = 6%, Al powder of 74 μm or less, and calcined alumina, and the firing temperature = 1570 ° C. In this case, there was no problem after 6 times of use of the SiC sheath, but when the firing temperature = 1630 ° C, the SiC sheath was severely oxidized on the outer peripheral side after one use, and many joint breaks were observed. Single use was the end of life.
[0023]
When the firing temperature is less than 1300 ° C., Al 4 C 3 remains as shown in FIG. 15, and a decrease in hot strength is observed as shown in FIG. 16, and as shown in FIG. Thus, a decrease in alkali resistance was also observed. Furthermore, as a result of the digestion test shown in FIG. 17 (a 20 × 20 × 80 mm test piece was held at an autoclave pressure of 2 kg / cm 2 for 2 hours), the residual swelling increased and the digestion resistance decreased. Further, even if the firing temperature exceeds 1600 ° C., no particular effect on quality is observed. Conversely, as described above, the durability of the sheath is greatly reduced, so that the manufacturing cost is increased even if the firing temperature is not increased. . Therefore, the firing temperature is preferably 1300 to 1600 ° C.
[0024]
19 and 20 show that Z = 3 and Si powder of 44 μm or less = 6%, Al powder of 74 μm or less, calcined alumina, and the ash content of carbon powder for embedding in the range of 0.1 to 15%. In the graph which shows the result of having examined about the physical property by changing, when ash content exceeds 6%, a hot strength and alkali resistance will fall. Therefore, the ash content of the carbon powder should be as small as possible and not exceed 6% at the maximum.
[0025]
【The invention's effect】
Since the present invention can be fired without flowing an expensive nitrogen gas and can be fired in a general tunnel kiln, the cost is lower than the conventional manufacturing method that uses nitrogen gas and cannot be fired in the tunnel kiln. Can be significantly reduced.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a Z value and an apparent porosity.
FIG. 2 is a graph showing the relationship between the Z value and alkali resistance (alkali test).
FIG. 3 is a graph showing the relationship between the Z value and the hot bending strength at 1400 ° C.
FIG. 4 is a graph showing the relationship between the Z value and the resistance to CO gas oxidation.
FIG. 5 is a graph showing the relationship between the average particle diameter of calcined alumina and the hot bending strength at 1400 ° C.
FIG. 6 is a graph showing the relationship between the average particle size of calcined alumina and the resistance to CO gas oxidation.
FIG. 7 is a graph showing the relationship between Al grain size and hot bending strength at 1400 ° C.
FIG. 8 is a graph showing the relationship between Al particle size and alkali resistance (alkali test).
FIG. 9 is a graph showing the relationship between Si addition amount and residual Si amount.
FIG. 10 is a graph showing the relationship (alkali test) between Si addition amount and alkali resistance.
FIG. 11 is a graph showing the relationship between the amount of Si added and the hot bending strength at 1400 ° C.
FIG. 12 is a graph showing the relationship between Si addition amount and CO gas oxidation resistance.
FIG. 13 is a graph showing the relationship between Si grain size and hot bending strength at 1400 ° C.
FIG. 14 is a graph showing the relationship (alkali test) between Si grain size and alkali resistance.
FIG. 15 is a graph showing the relationship between the firing temperature and the remaining amount of Al 4 C 3 .
FIG. 16 is a graph showing the relationship between the firing temperature and the hot bending strength at 1400 ° C.
FIG. 17 is a graph showing the relationship (digestion test) between the firing temperature and the linear expansion coefficient.
FIG. 18 is a graph showing the relationship between the firing temperature and the CO gas oxidation resistance.
FIG. 19 is a graph showing the relationship between the ash content of the carbon powder for embedding and the hot bending strength at 1400 ° C.
FIG. 20 is a graph showing the relationship (alkali test) between the amount of ash and alkali resistance of carbon powder for embedding.

Claims (3)

SiC、4〜9重量%であるSi、Al及び粒径74μm以下で平均粒径15μm以下のアルミナ粉末を低残炭収率のバインダーを使用し、サイアロン(Si6−zAl8−Z)のZ値が1.5〜3.3であるサイアロンボンドを形成するように混合して成形した後、カーボン粉末中で焼成することを特徴とするサイアロンボンドSiCれんがの製造方法。 SiC, 4 to 9 wt% Si, Al and the following alumina powder having an average particle size of 15μm using a low residual carbon yield binder below a particle size 74 .mu.m, Sa Iaron (Si 6-z Al z O z N A method for producing a sialon-bonded SiC brick, which is formed by mixing and forming so as to form a sialon bond having a Z value of 8-Z ) of 1.5 to 3.3, and then firing in carbon powder . カーボン粉末中で1300〜1600°Cで焼成することを特徴とする請求項1記載のサイアロンボンドSiCれんがの製造方法。 The method for producing a sialon-bonded SiC brick according to claim 1 , wherein the firing is performed in a carbon powder at 1300 to 1600 ° C. カーボン粉末の灰分が6重量%以下であることを特徴とする請求項1又は2記載のサイアロンボンドSiCれんがの製造方法。The sialon bond SiC brick manufacturing method according to claim 1 or 2 , wherein the ash content of the carbon powder is 6% by weight or less .
JP18783396A 1996-07-17 1996-07-17 Manufacturing method of sialon bond SiC brick Expired - Fee Related JP3927261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18783396A JP3927261B2 (en) 1996-07-17 1996-07-17 Manufacturing method of sialon bond SiC brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18783396A JP3927261B2 (en) 1996-07-17 1996-07-17 Manufacturing method of sialon bond SiC brick

Publications (2)

Publication Number Publication Date
JPH1029866A JPH1029866A (en) 1998-02-03
JP3927261B2 true JP3927261B2 (en) 2007-06-06

Family

ID=16213040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18783396A Expired - Fee Related JP3927261B2 (en) 1996-07-17 1996-07-17 Manufacturing method of sialon bond SiC brick

Country Status (1)

Country Link
JP (1) JP3927261B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4464568B2 (en) 2001-02-02 2010-05-19 日本碍子株式会社 Honeycomb structure and manufacturing method thereof
EP3006579B2 (en) 2014-12-11 2022-06-01 Aleris Aluminum Duffel BVBA Method of continuously heat-treating 7000-series aluminium alloy sheet material

Also Published As

Publication number Publication date
JPH1029866A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
CN100509699C (en) Sic refractory material comprising silicon nitride bonded thereto and method for production thereof
KR940011452B1 (en) Silicon carbide refractories having modified silicon nitride bond
EP0322174B1 (en) Process for making silicon nitride articles
JP3927261B2 (en) Manufacturing method of sialon bond SiC brick
JP4855874B2 (en) Non-oxidizing atmosphere kiln tools
JPS5913470B2 (en) Silica brick manufacturing method
JPH10500095A (en) Reaction bonded silicon carbide refractory products
JPH10502613A (en) SiC-molded member
JP2000191363A (en) Spalling resistant spinel brick
KR100308922B1 (en) Method of Manufacturing Silicon Nitride Bonded Silicon Carbide Composites by Silicon Nitriding Reaction
EP0309128A1 (en) Carbon-containing refractory and a manufacturing method therefore
JP3031192B2 (en) Sliding nozzle plate refractories
JPS6141861B2 (en)
JP3108362B2 (en) High-strength inorganic fiber molded body
JP3027215B2 (en) Silicon nitride bonded SiC refractories
JP3236992B2 (en) High density silica brick for coke oven
KR100355110B1 (en) method for fabricating of refractory brick alumina
KR100278013B1 (en) Manufacturing method of high strength silicon nitride bonded silicon carbide refractory material
JP2000327401A (en) Plate for slide gate
JPH11278940A (en) Alumina-silicon carbide refractory
JPH0632649A (en) Carbon-containing refractory
JP3368035B2 (en) Setter
JPS6221749B2 (en)
JPH0632648A (en) Carbon-containing refractory
JP3176203B2 (en) Method for producing silicon nitride based sintered body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees