JP3925178B2 - Windbreaker - Google Patents

Windbreaker Download PDF

Info

Publication number
JP3925178B2
JP3925178B2 JP2001371528A JP2001371528A JP3925178B2 JP 3925178 B2 JP3925178 B2 JP 3925178B2 JP 2001371528 A JP2001371528 A JP 2001371528A JP 2001371528 A JP2001371528 A JP 2001371528A JP 3925178 B2 JP3925178 B2 JP 3925178B2
Authority
JP
Japan
Prior art keywords
fabric
windbreaker
moisture
fiber
lining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001371528A
Other languages
Japanese (ja)
Other versions
JP2003171814A (en
Inventor
勝 春田
宏恵 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001371528A priority Critical patent/JP3925178B2/en
Publication of JP2003171814A publication Critical patent/JP2003171814A/en
Application granted granted Critical
Publication of JP3925178B2 publication Critical patent/JP3925178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/06Thermally protective, e.g. insulating
    • A41D31/065Thermally protective, e.g. insulating using layered materials
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D2400/00Functions or special features of garments
    • A41D2400/10Heat retention or warming

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Woven Fabrics (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Outer Garments And Coats (AREA)
  • Details Of Garments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スポーツ用衣類に好適な、防風性と防水性を有し、かつ快適な保温性を持つウインドブレーカーに関するものである。
【0002】
【従来の技術】
従来、ウインドブレーカーにおいては、防風性と軽度な防水性の付与に主眼をおいたものが主体であり、ウインドブレーカーに保温性を付与したものとしては、布帛にアルミニウム粉末等を練り込んだ樹脂をコーティングして、身体からの輻射熱を反射させ断熱性を向上させたもの、あるいは、含気率を上げた素材を用い不動空気層を作ることにより断熱性を向上させたものが用いられている。
【0003】
しかしながら、上述の含気率を上げた素材を用いた場合はカサ高になり、着用時の運動性が阻害されるという課題があり、また、輻射熱を反射させる素材はアルミニウム等の金属の色がつき、色展開に制限があるという課題があった。
【0004】
これらの課題を解決するものとして吸放湿吸水発熱繊維を用いた衣料が、特公平7−59762号公報で提案されているが、該公報には単に吸放湿吸水発熱性繊維を使用した衣料や、それを中綿や裏地に使用した衣料の開示があるのみである。また、ここで用いられる吸放湿吸水発熱性繊維は、吸湿率が高いために、手や身体に触れたときに冷たく感じるとともに、吸放湿吸水発熱性繊維からなる衣料では、着用時に吸放湿吸水して発熱すると同時に、空気中に水蒸気を放散しているために気化熱を奪われる。吸放湿吸水発熱性繊維を用いた衣料において保温性に寄与するのは、吸放湿吸水発熱から気化熱を差し引いた熱量のみである。したがって、吸放湿吸水発熱が大きいものほど奪われる気化熱が大きいため、吸放湿吸水発熱をいくら大きくしても、保温性の向上効果は小さいという問題があった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、防風性と防水性を有するとともに、上記の実状に鑑み、水分吸着発熱による保温効果を最大限に生かし、かつ、手や身体に触れた時に冷たく感じることのないウインドブレーカーを提供することにある。
【0006】
【課題を解決するための手段】
本発明者等は、上記課題について鋭意研究した結果、水分吸着発熱性能を有する布帛層の上に、気化熱を制御する放湿放熱抑制性能を有する布帛層として通気度が5cm3/cm2・sec以下、かつ透湿度が3,000〜12,000g/m2・24hrの範囲にある高密度織物または合成樹脂膜積層品を表地として積層することにより、水分吸着発熱性能を効率良く発揮されるのと同時に、水分吸着発熱性能を有する裏地の接触冷感(qmax)を小さくすることにより肌面に接した場合に冷たく感じることがない衣料が得られることを見出し、本発明に到達した。 すなわち、上記目的を達成するために、本発明のウインドブレーカーは以下の構成を採用する。
(1)表地に下記式のカバーファクターが2,000以上である平組織織物または、カバーファクターが2500以上の綾組織織物に撥水加工を施してなる耐水圧が5kpa以上であり、通気度が5cm3/cm2・sec以下、かつ透湿度が3,000〜12,000g/m2・24hrの範囲にある放湿放熱抑制性能を有する高密度織物を使用し、裏地に水分吸着発熱性能を有する布帛を使用したウインドブレーカーであって、該裏地の発熱エネルギー指数が5以上あり、かつ裏地表面の接触温冷感(qmax)が0.1W/cm2以下であることを特徴とするウインドブレーカー。
【0007】
CF={(D1)1/2×M}+{(D2)1/2×N}
CF:カバーファクター
D1:タテ糸の密度(dtex)
M :タテ糸の密度(本/2.54cm)
D2:ヨコ糸の密度(dtex)
N :ヨコ糸の密度(本/2.54cm)
(2)布帛の片面に合成樹脂からなる防水皮膜層を積層した耐水圧が5kpa以上あり、通気度が5cm3/cm2・sec以下、かつ透湿度が3,000〜12,000g/m2・24hrの範囲にある放湿放熱抑制性能を有する合成樹脂膜積層布帛を表地として使用し、裏地に水分吸着発熱性能を有する布帛を使用したウインドブレーカーであって、該裏地の発熱エネルギー指数が5以上あり、かつ裏地表面の接触温冷感(qmax)が0.1W/cm2以下であることを特徴とするウインドブレーカー。
(3)さらに中地として、発熱エネルギー指数が5以上の布帛を表地と裏地の間に挿入してなることを特徴とする前記(1)または(2)記載のウインドブレーカー。
(4)水分吸着発熱性能を有する布帛が、繊維表面に吸湿性ポリマーおよび/または吸湿性微粒子を固着させてなることおよび/または合成繊維に親水基を有する単量体をグラフト共重合または架橋反応してなる改質繊維を5〜50重量%含有させてなることを特徴とする前記(1)〜(3)のいずれかに記載のウインドブレーカー。
(5)吸湿性ポリマーが、ビニルスルホン酸、下記一般式[I]で表されるビニルモノマー、下記一般式[II]で表されるビニルモノマー、および下記一般式[III]で表されるビニルモノマーの1種もしくは、2種以上を主成分とするポリマーであることを特徴とする前記(4)記載のウインドブレーカー。
【0008】
【化5】

Figure 0003925178
(式中、X=HまたはCH3、n=9〜23の整数)
【0009】
【化6】
Figure 0003925178
(式中、X=HまたはCH3、m+n=は10〜30の整数)
【0010】
【化7】
Figure 0003925178
(式中、R=HまたはCH3、R1=Cl、Br、I、OCH3、OC25またはSCH3、m=0〜9の整数、l=10〜30の整数)
(6)吸湿性微粒子がシリカ微粒子であることを特徴とする前記(5)記載のウインドブレーカー。
(7)改質繊維が、下記一般式[IV]に記載の群より選ばれた親水基を1つ以上含む単量体を合成繊維にグラフト共重合または架橋反応してなる改質繊維であることを特徴とする前記(4)〜(6)のいずれかに記載のウインドブレーカー。
【0011】
【化8】
Figure 0003925178
(式中、R=アルキル基、M=アルカリ金属または−NH4、X=ハロゲン原子、n=1〜10)
(8)水分吸着発熱性能を有する布帛が、蓄熱剤を含有することを特徴とする前記(1)〜(7)のいずれかに記載のウインドブレーカー。
【0012】
【発明の実施の形態】
本発明のウインドブレーカーは、耐水圧が5kpa以上であり、通気度が5cc/cm2・sec以下、かつ透湿度が3,000〜12,000g/m2・24hrの範囲にある放湿放熱抑制性能を有する高密度織物または合成樹脂膜積層布帛を表地として使用し、裏地に水分吸着発熱性能を有する布帛を使用したウインドブレーカーであって、その水分吸着発熱性能を有する裏地の発熱エネルギー指数が5以上あり、かつ裏地表面の接触温冷感(qmax)が0.1W/cm2以下であることを特徴とするウインドブレーカーである。
【0013】
本発明の放湿放熱抑制性能を有する表地および水分吸着性能を有する中地や裏地に有用な布帛としては、使用目的等に応じて適宜な布帛を用いることができるが、例を挙げると、ポリエステル繊維やポリアミド繊維、アクリル繊維の如き合成繊維、アセテート繊維の如き半合成繊維、綿や麻や羊毛の如き天然繊維を、単独でまたは2種以上を混合、交編織した織物や編物、不織布等が特に限定なく用いられる。
【0014】
本発明における放湿放熱抑制性能とは、気化熱を制御することを目的とする性能である。一方、水分吸着発熱性能を有する中地や裏地の布帛においては、身体から不感蒸泄等により放出された水分を吸着して発熱するが、同時に布帛から系外に水分を蒸発し、気化熱を奪うため実際に着用した場合の発熱効果は小さくなる。この気化熱を制御して、小さくすることによりはじめて、着用時に実感できる発熱効果が得られる。
【0015】
しかしながら、気化熱を制御してそれを小さくしすぎると、放湿性が小さくなり、着用時の蒸れ感が大きくなり不快なものとなる。気化熱を防ぐと同時に、着用時の蒸れ感をなくすためには、放湿放熱抑制性能を有する表地の透湿度が、JIS L−1099(A−1法)の測定法で3,000〜12,000g/m2・24hrの範囲にあることが必要である。透湿度がこの範囲より低いと蒸れ感が大きくなり、また、この範囲より大きいと気化熱が大きくなり水分子吸着発熱性能が小さくなり発熱性能が実感できないものとなる。透湿度は、好ましくは4,000〜11,000g/m2・24hrの範囲であり、より好ましくは6,000〜11,000g/m2・24hrの範囲である。
【0016】
透湿度を上述の範囲に制御する方法としては、カバーファクターが2000以上の平織物または、2500以上の綾組織織物の高密度織物の場合は、例えば、密度を高くしたり、太繊度糸を用いる等により生地厚を厚くすることにより、また、熱カレンダー処理による目つぶし加工により透湿度は低くなる。また、防水皮膜層積層品の場合は、親水性ポリウレタン、疎水性ポリウレタン、ポリテトラフロロエチレン、ポリエステル、ナイロン樹脂等の防水皮膜の皮膜素材や微多孔質皮膜、無孔質皮膜、微多孔質皮膜と無孔質皮膜の積層皮膜等の皮膜構造や、膜厚および、コーティング、ラミネート等の布帛との接着方法を選び、組み合わせることにより制御できるが、これらの方法に限定するものではない。
【0017】
さらに表地の通気度を、JIS L−1096(フラジール形法)の測定法で5cm3/cm2・sec以下にすることが必要である。通気度がこれより大きいと外気が衣服内に入り、保温性を低下させる。また、裏地や中地の水分吸着発熱性能により暖められた空気が衣服外へ流出する。
【0018】
通気度を上述の範囲に制御する方法としては、高密度織物の場合は、例えば、密度を高くしたり、熱カレンダー処理することにより通気度を低下させることができる。また、防水皮膜積層品の場合は、微多孔質皮膜の孔径および膜厚により制御できる。通気性をゼロにしたい場合は、無孔質皮膜を用いることにより実現できるが、これらの方法に限定するものではない。
【0019】
さらに本発明で用いられる表地は、JIS規格L−1092による測定法で測定される耐水圧が、5kpa以上であることが必要である。耐水圧は、高ければ高い程、防水性の信頼性が高くなるため高い程好ましが、高くするためには、膜厚を厚くする必用があり、製造コストが高くなったり、風合いが硬くなるためウインドブレーカー用の表地としては300kpa以下とすることが好ましい。
【0020】
また、本発明で用いられる水分吸着発熱性能を有する裏地や中地の布帛層を構成する繊維は、好ましくは吸湿性を有する繊維であり、例えば、繊維便覧−原料編−(発行:丸善(株))の245ページに記載のように、吸湿性を有する繊維は、水分を吸着して発熱することが古くから知られている。本発明で用いられる水分吸着発熱性能を有する布帛層は、これらの吸湿性を有する繊維からなる布帛を使用しても良いが、望ましくは、合成繊維に吸湿ポリマー等を分散して練り込むことにより、吸湿性を向上させた繊維、例えば、ナイロンにポリビニルピロリドン等の吸湿ポリマーを錬り込み紡糸して得られた吸湿性向上ナイロン糸等や、後加工等により吸湿性のあるポリマーおよび/または吸湿性のある微粒子を繊維表面に固着させることにより、吸湿性を増加させ水分吸着発熱性能を向上した布帛が実用上好ましく用いられる。
【0021】
さらに望ましくは、合成繊維に吸湿ポリマー等を分散して練り込むことにより、吸湿性を向上させた繊維に、後加工等により吸湿性のあるポリマーおよび/または吸湿性のある微粒子を繊維表面に固着させることにより水分子吸着発熱性能をさらに増加させた布帛を使用することが好ましい。
【0022】
吸湿性を増加させると、手または身体に触れたときに冷たく感じ、保温衣料には適さなくなる。本発明は、この現象を防ぐために、水分吸着発熱性能を有する裏地の肌と接する面(裏地の表面)の接触温冷感(qmax)を0.1W/cm2以下にする必要がある。
【0023】
接触温冷感(qmax)が0.1W/cm2以下の布帛は、裏地の表面側に凹凸を付け、接触面積を小さくした布帛構造にすることにより得られる。例えば、布帛を起毛加工する方法や多重重組織で接触面積を小さくする方法で得ることができる。また、接触面のみに吸湿性の低い繊維を用いた2重組織織編物等の多重組織織編物でも得られるが、本発明はこれらに限定されず、いかなる方法でも接触温冷感(qmax)を0.1W/cm2以下にすれば良い。
【0024】
接触温冷感(qmax)は好ましくは0.08W/cm2以下であり、より好ましくは0.05W/cm2以下である。接触温冷感(qmax)は、小さければ、小さい程、温感が高くなるため好ましいが、水分吸着発熱性能を有しながら小さくするためには複雑な布帛構造にする必用があり、製造コストが高くなる等の問題が生ずることより0.02W/cm2を下限とすることが好ましい。
【0025】
この接触温冷感(qmax)は、素材表面の接触面積が小さい(凹凸がある)ほど、また吸湿率が小さい程接触温冷感(qmax)は小さくなる。例えば、ポリエチレンテレフタレート繊維100%使いの起毛トリコットの起毛面は0.04W/cm2であり、起毛されていない面は0.10W/cm2である。また、同じポリエチレンテレフタレート繊維100%使いの起毛トリコットを後加工で吸湿率3%にすると、起毛面の接触温冷感(qmax)は変化せず0.04W/cm2であるのに対し、起毛のない面は0.12W/cm2となる。
【0026】
本発明の発熱エネルギー指数とは、ポリエステル繊維100%素材と比較した水分吸着発熱エネルギーであり、ポリエステル繊維100%素材を1とした場合の比較値である。具体的な測定法は実施例で詳細に示すが、アルコール温度計に3gの試料を巻き付け、30℃、30%RHの環境で調温、調湿させた後、30℃、90%RHの環境へ移動させた場合の吸湿時の温度上昇を経時的に観察し、横軸に時間、縦軸に温度としたグラフに30℃から上昇し再び30℃に復元するまでプロットし、その面積を測定するものである。
【0027】
本発明で用いられる水分吸着発熱性能を有する布帛は、上述の発熱エネルギー指数が5以上必要である。発熱エネルギー指数が5未満では発熱効果が実感できない。発熱エネルギー指数は好ましくは8以上であり、さらに好ましくは10以上である。
【0028】
発熱エネルギー指数を5以上にするためには、例えば、ナイロンにポリビニルピロリドンを5重量%練り込むことにより発熱エネルギー指数が13程度の糸が得られる。また、実施例に示したとおりポリエステル100%素材にアクリルアミドメチルプロパンスルホン酸とPEG#1000ジメタクリレートの共重合物を3重量%程度付着させることにより発熱エネルギー指数が15程度の布帛が得られる。さらには、吸湿性微粒子をバインダーで布帛に固着しても得られるし、合成繊維に親水基を有する単量体をグラフト共重合や架橋反応させた改質繊維でも得られる。本発明は、これらの手法にとらわれるものではなく、いかなる方法でも発熱エネルギー指数を5以上にすれば良い。
【0029】
発熱エネルギー指数は、高い程好ましいが、発熱エネルギー指数を高くするためには、繊維に練り込む添加物を多くしたり、繊維表面に固着する樹脂量等を多くしたり、また、改質する単量体を多くする必用があり、製造コストが高くなったり、繊維の強度が低下することがあるため、50以下とすることが好ましい。
【0030】
本発明のウンイドブレーカーの表地に用いる通気度が5cc/cm2・sec以下、かつ透湿度が3,000〜12,000g/m2・24hrの範囲にある放湿放熱抑制性能を有する布帛として、次式のカバーファクターが2,000以上である平組織織物またはカバーファクターが2500以上の綾組織織物に撥水加工を施し、耐水圧を5kpa以上とした高密度織物が挙げられる。
【0031】
CF={(D1)1/2×M}+{(D2)1/2×N}
CF:カバーファクター
D1:タテ糸の密度(dtex)
M :タテ糸の密度(本/2.54cm)
D2:ヨコ糸の密度(dtex)
N :ヨコ糸の密度(本/2.54cm)
上記の平組織織物または綾組織織物を構成するタテ糸およびヨコ糸に使用する繊維糸条は、好適には合成繊維よりなる長繊維でかつ繊度が30〜100dtexであり、単繊維繊度が0.2〜1.5dtexの細単糸繊度糸を用いることにより、高密度でも風合いが柔らかく、かつ通気度および透湿度を容易に目標範囲に制御できる点で望ましい。
【0032】
カバーファクターが上述の範囲より小さくなると、通気度や透湿度が大きくなり放湿放熱抑制効果が得られなくなる。
【0033】
カバーファクターの上限は、平組織の場合2700を超えると製織性が低下したり、風合いが硬くなるので2700以下とすることが好ましい。また、綾組織の場合は、2/1綾、3/1綾、4/1綾、変則綾組織等があり、組織により異なるため上限はいちがいに述べられないが、可職性限界より10%以下程度とすることが好ましい。
【0034】
カバーファクターを上述の範囲にするだけでは、5kpa以上の耐水圧は得られない。撥水加工を施すことにより、はじめて耐水圧性能が得られる。この撥水加工は、通常用いられているフッ素系撥水剤やシリコーン系の撥水剤をパディング−ドライ−キュアリングする方法等で繊維表面に固着すればよい。また、例えば、特開平9−195169号公報等に記載されている様な洗濯耐久性に優れた撥水処理を施すことが好ましいが、これらの方法に限定されるものではない。
【0035】
本発明においては、また、表地に通気度が5cc/cm2・sec以下、かつ透湿度が3,000〜12,000g/m2・24hrの範囲にした布帛の片面に合成樹脂からなる防水皮膜層を積層した耐水圧が5kpa以上の合成樹脂膜積層布帛を使用することにより、放湿放熱抑制性能が得られる。具体的には、布帛の片面にポリウレタンの湿式凝固法による微多孔膜や親水性ポリウレタンの無孔膜の単独膜や組合せ膜、またはポリテトラフルオロエチレン微多孔膜を積層した透湿防水加工品を挙げることができる。
【0036】
これらの合成樹脂膜を積層する場合においては、通気度は比較的容易に制御できる。例えば、ポリウレタン微多孔膜の場合、特開平7−3655に記載がある様にポリウレタン樹脂中に、膨潤性層状ケイ酸塩の層間に第4級アンモニウムイオンを導入せしめた粘土有機複合体を分散させ湿式凝固することにより、湿式凝固で得られる微多孔膜の壁面に、さらに小さな孔が多数得られることにより透湿度が向上する。また、粘度有機複合体の変わりに無機微粒子を分散させることでも同様の効果が得られる。これらの分散量を変化させることにとり、目標の透湿度が得られる。さらにまた、親水性ポリウレタン無孔膜の場合、膜厚を薄くしたり、親水性樹脂中のポリオール成分をポリエチレングリコールやポリプロピレングリコールとして添加量を増やすことにより、親水性が増加し透湿性が向上するが、これらに限定されるものではない。
【0037】
また、通気度については、前述した方法で制御できる。
【0038】
本発明では、上述の如き表地に水分吸着発熱性能を有し、かつ裏地表面の接触温冷感(qmax)が0.1W/cm2以下である裏地を接着剤で接着積層した布帛を用いてウインドブレーカーを縫製してもよいし、上記特性を有する表地と裏地を用い重ねて積層して縫製してもよい。
【0039】
また、表地と裏地の間に発熱エネルギー指数が5以上の布帛を挿入することにより、裏地と中地の水分吸着発熱性能が積算されより高い水分吸着発熱効果が得られる。
【0040】
また、布帛に水分吸着発熱性能を付与する方法としては、好適には、ビニルスルホン酸、上述した一般式[I]、[II]、[III]で表される化合物の1種もしくは2種以上を含有する溶液に重合開始剤を混合した処理液を、パディング法、スプレー法、キスロールコーター、スリットコーターなどの処理方法で付与後、乾熱処理、湿熱処理、マイクロ波処理、紫外線処理等によりポリマー化して、繊維表面に固着する方法がある。ビニルスルホン酸はPHが低く、そのまま用いると綿やナイロンは脆化するため、予め中和したビニルスルホン酸ナトリウムを用いる。また、ビニルスルホン酸亜鉛を用いると消臭性能も付与することができる。ビニルスルホン酸としては、例えば、アクリルアミドメチルプロパンスルホン酸が水分子吸着発熱性能の点で好ましい。
【0041】
重合開始剤としては、通常のラジカル開始剤を使用でき、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素などの無機系重合開始剤や、2,2’−アゾビス(2−アミディノプロパン)ジハイドロクロライド、2,2’−アゾビス(N、N−ジメチレンイソブチラミディン)ジハイドロクロライド、2−(カルバモイラゾ)イソブチロニトリルなどの有機系重合開始剤が挙げられる。また、過酸化ベンゾイル、アゾビスイソブチロニトリルなどの水不溶性重合開始剤をアニオン、ノニオン等の界面活性剤で乳化させて用いてもよい。コスト、取り扱いに容易さの点からは、過硫酸アンモニウムが好ましく用いられる。さらに、重合効率を高めるために、重合開始剤としての過酸化物と還元性物質を併用する、いわゆるレドックス開始剤を用いてもよい。この過酸化物としては、例えば、過硫酸アンモニウムや過硫酸カリウム、還元性物質としては、例えば、スルホキシル酸ナトリウムとホルマリンとの反応物やハイドロサルファイトなどが挙げられる。 処理液を繊維材料に付与する方法としては、通常用いられる手段が適用可能である。例えば、真空脱水機で処理するなどして付与量を調整することも好ましく行われる。
【0042】
また、ポリエステル、ナイロンあるいはアクリル系などの合成繊維に対しては、製糸や製紡の段階での付与も可能である。例えば、ポリエステルフィラメントの場合、溶融紡糸法でPOY(半延伸糸)を紡糸する際、上記化合物の1種もしくは2種以上と炭素数が25〜33の高級炭化水素と、炭素数が3〜6の多価アルコールと炭素数が14〜18の脂肪酸とのエステル、炭素数が12〜17の脂肪酸とアミノアルコールとの反応により得られる脂肪族アミド、および水溶性シリコーン化合物から成る群から選ばれる少なくとも一種の化合物とポリオキシエチレン系界面活性剤の混合組成物を紡糸油剤とともに付与し、後の延伸工程において乾熱処理されることによって上記化合物が繊維に強固に付着し、耐洗濯性のある水分吸着発熱性能を付与することができる。
【0043】
また、アクリル系繊維の場合は、湿式紡糸法で紡糸、延伸、水洗した後、上述の一般式[I]、[II]、[III]で表される化合物の1種もしくは2種以上を含む処理液を、好適には0.05〜5.0重量%付着させ、乾燥緻密化処理、スチーム処理、乾燥工程を経て、繊維に強固に付着しポリエステルと同様に、耐洗濯性のある水分吸着発熱性能を付与することができる。
【0044】
また、布帛に水分吸着発熱性能を有する布帛は、吸湿性微粒子として吸湿率の高いシリカ微粒子を用い、これをバインダーで繊維表面に固着することでも得られる。シリカ微粒子の固着量を制御することにより、目的とする水分吸着性能が得られる。
【0045】
さらに、合成繊維に親水基を有する単量体をグラフト共重合や架橋反応させて合成繊維を改質させることによっても水分吸着発熱性能を付与することができる。例えば、特開昭56−24426号公報、特開昭56−135527号公報あるいは特開昭60−17142号公報に開示されているように、合成繊維にアクリル酸やメタクリル酸等の酸性ビニルモノマーを繊維を構成する主鎖にグラフト共重合させた後、アクリル酸やメタクリル酸中のカルボキシル基をアルカリ金属で置換し、吸湿性を付与させてもよい。また、特開平5−132858号公報に開示されているように、アクリル繊維をヒドラジン処理して側鎖にヒドラジンとの反応により生成した窒素を含有する架橋構造と、ニトリル基の加水分解により生成した塩型カルボシル基を重合させ、吸湿性を付与させてもよい。
【0046】
これらに開示されている様に、合成繊維に親水基を有する単量体をグラフト共重合や架橋反応により付与させることにより、吸湿性が得られ、しいては水分吸着発熱性能を付与できる。
【0047】
本発明においては、上記の方法にとらわれず、いかなる方法でもポリエステル繊維やポリアミド繊維、アクリル繊維の如き合成繊維に、親水基を1つ以上含む単量体をグラフト共重合や架橋反応により付与させ水分吸着発熱性能を付与した繊維を用いることができる。
【0048】
本発明のウインドブレーカーは、このような水分吸着発熱性能を有する布帛に、蓄熱剤を含有させることにより、より一層保温性を向上させることができる。本発明で用いられる蓄熱剤としては、好適には、液相から固相に相変換するときに吸熱し、液相から固相に相変換するときに放熱する、いわゆる潜熱を利用したものとして、パラフィンワックスやポリエチレングリコールをマイクロカプセルに封入したものや、アルミナ、ジルコニア、マグネシア等の無機化合物からなる遠赤外線放射セラミックなどを挙げることができる。中でも、相変換時の潜熱を利用したものは、マイクロカプセルへの封入剤を選ぶこと、また添加物により相変換温度が制御できることから、衣服内温度を一定に制御できる点で好ましく用いられる。
【0049】
運動等による、発汗時には水分吸着発熱性能が大きくなる、すなわち運動により身体が暖かくなっているときに、発熱作用が大きくなることを蓄熱剤が吸熱することにより抑制し、逆に環境温度が低下し、衣服内温度が低下してきたときに蓄熱剤が放熱するため、衣服内温度を一定に制御する快適なウインドブレーカーが得られる。この様な効果を保持させるために、相変換温度(凝固温度)は、5〜35℃とすることが好ましく、さらに好ましくは、10〜25℃である。
【0050】
蓄熱剤を布帛に固着する方法としては、上記のマイクロカプセルや無機化合物を単体および/または混合物を、上述のビニルスルホン酸を主体とするポリマーを繊維表面に固着する際に、ビニルスルホン酸溶液に混合する方法や、別のバインダーで固着する方法が挙げられるが、本発明では特に限定されない。
【0051】
また、蓄熱剤を放湿放熱抑制性能を有する布帛に付与することでも、上記の効果が得られるが、好ましくは、水分吸着発熱性能を有する布帛に、蓄熱剤を含有させた方が、より高い保温効果が得られる。
【0052】
本発明のウインドブレーカー用途では、防水性が要求されることもあり、耐水圧が5kpa以上の性能を付与しておくことが必用である。また耐水圧を付与することにより必然的に通気度が5cc/cm2・sec以下の防風性が付与できる。
【0053】
本発明のウインドブレーカーは、フィッシング、登山衣などのアウトドアスポーツウエア、スキーウエア、アスレチックウエア、ゴルフウエアなどのスポーツウエア、カジュアルウエア、雨衣などのほか、屋外作業衣などにも用いることができる。
【0054】
【実施例】
以下、本発明を実施例で詳細に説明するが、本発明はこれらに限定されるものではない。
(測定方法)
(1)通気度
通気度の測定は、JIS L−1096(フラジール形法)による。
【0055】
(2)透湿度
透湿度の測定は、JIS規格L−1099(A−1)による。
【0056】
(3)耐水圧
耐水圧の測定は、JIS規格L−1092による。
【0057】
(4)発熱エネルギー指数
幅約3.5cmの試料3gを、アルコール温度計あるいは熱電対の測定部に巻き、摂氏30℃×湿度30%RHの環境下に12時間以上放置後の温度を測定する。次に、摂氏30℃×湿度90%RHの環境まで湿度を約3%/分の速度で変化させ、この間1分ごとに4時間後まで温度を測定する。測定後、上昇温度を積分したものを発熱エネルギー量として求め、次の式によって現す。
発熱エネルギー指数=試料の発熱エネルギー量/ポリエステルタフタ(JIS染色堅牢度試験用添付布)の発熱エネルギー量
(5)接触温冷感(qmax)
カトーテック(株)製のサーモラボ2型測定器を用い、室温20℃、湿度65%RHの部屋で、BT−Boxを30℃に調節し、十分調湿したサンプルの上にBT−Box(圧力10g/cm2)を乗せ、10℃の温度差での単位面積当たりの熱流束を測定する。
【0058】
(6)発熱効果(保温性向上効果)
縫製品を室温5℃、湿度65%RHの部屋で長袖ポロシャツ及び薄手のセーターの上に着用し、10分間安静にした後、エルゴメーターで75Wの運動を15分実施した後、縫製品を脱ぎ、裏返し、裏側面の温度を熱赤外線画像で測定するとともに着用感覚を確認した。
【0059】
[実施例1]
56dtex、144フィラメントの仮ヨリ加工ポリエステル長繊維をタテ糸およびヨコ糸に用い、タテ密度188本/2.54cm、ヨコ密度118本/2.54cmで平組織にて製織した。次いで、リラックス精練、プレセット、染色した後、撥水剤アサヒガードAG710(明成化学(株)製商品名)を3重量%に含有した水分散液に、上記ナイロンタフタを浸漬し、絞り率40%にピックアップし、ヒートセッターにて130℃で30秒の乾燥熱処理を施し後、さらに170℃で1分キュアリング処理を施し、タテ密度206本/2.54cm、ヨコ密度120本/2.54で仕上げた表地を得た。得られた表地のカバーファクターは2,438であり、耐水圧は11kpaであった。さらに、83dtex−24Fのポリエステルマルチフィラメントを使用したサテントリコットのカット起毛品を、下記組成の処方1の処理液に浸漬後、ピックアップ率80%に設定したマングルで絞り、乾燥機で120℃、2分乾燥させた。
(処方1)
・AMPS(アクリルアミドメチルプロパンスルホン酸) 20g/l
・PEG#1000ジメタクリレート(商品名P303 共栄社)40g/l
・過硫酸アンモニウム 2g/l
乾燥後直ちに、105℃の加熱スチーマーで5分間処理し、湯水洗、乾燥した。次いで、乾燥機で170℃、1分でセットして発熱エネルギー指数15の裏地を得た。上記の表地と裏地を使用して、ウインドブレーカーを縫製し評価した。結果を表1に示す。
【0060】
[実施例2]
実施例1で得られた表地と裏地を使用して、中地に次の方法で得た仲入れ綿を挿入してウインドブレーカーを縫製し評価した。結果を表1に示す。
[仲入れ綿]
繊維構造物として、単繊維繊度7.2dtex、繊維長64mmである、ポリエチレンテレフタレート繊維100%からなる目付80g/m2の不織ウエッブに、下記組成の処方2の処理液をスプレーで付着率100重量%になるように吹き付けた後、120℃で2分間予備乾燥した。その後、180℃で1分間熱処理し、繊維表面にシリカ粒子を固着させた発熱エネルギー指数22の中入れ綿を得た。
(処方2)
・シリカ粒子(サイリシア550(富士シリシア化学(株)製) 60g/l
・バインダー(シリコーン系樹脂−KT7014(固形分40%)(高松油脂 (株)製商品名) 25g/l
(ここで使用したシリカ粒子は、平均粒子径が2.7μm、平均比表面積が500m2/gのものである。)
[実施例3]
77dtex、24フィラメントのナイロン長繊維を、タテ糸およびヨコ糸に用い常法で平織組織にて製織、染色したナイロンタフタを撥水剤アサヒガードAG710(明成化学(株)製商品名)を3重量%に含有した水分散液に、浸漬し、絞り率40%にピックアップし、ヒートセッターにて130℃で30秒の乾燥熱処理を施し後、さらに170℃で1分キュアリング処理を施し、タテ密度110本/2.54cm、ヨコ密度80本/2.54cmのナイロンタフタを得た。次いで、下記処方3に示す組成のポリウレタン溶液をナイフオーバーロールコーターにて200g/m2の割合で塗工し、DMF(ジメチルホルムアミド)を10重量%含有した水溶液を凝固浴とする浴槽中に30℃にて3分間浸漬してポリウレタン塗布液を湿式凝固させ、次いで80℃の温湯にて10分間湯洗し、140℃にて熱風乾燥し、耐水圧63kpaのポリウレタン微多孔質膜加工品を得た。
Figure 0003925178
該ポリウレタン微多孔質膜加工布帛を表地とし、実施例1の発熱エネルギー指数15のサテントリコットのカット起毛品を裏地としてウインドブレーカーを縫製し評価した。結果を表1に示す。
【0061】
[実施例4]
4.4デシテックス、長さ52mmのポリエステル原綿を、アクリル酸5%(対被処理物重量%)、メタクリル酸15%(対被処理物重量%)、過硫酸アンモニウム1%(対被処理物重量%)、スルホキシル酸ナトリウムとホルマリンとの反応物3%(対被処理物重量%)からなる、浴比1:20の水溶液中に浸漬し、徐々に80℃まで昇温して、その温度で60分間処理し、グラフト重合した。このもののカルボキシル基の導入量は1.42×10-4グラム当量/グラムファイバーであった。この繊維原綿を炭酸ナトリウム30%(対被処理物重量%)からなる浴比1:20の水溶液中に浸漬し、80℃まで加熱昇温し、その温度で30分間処理した。この繊維原綿のアルカリ金属置換率は95%であった。
【0062】
このようして得られた繊維原綿を、上記の処方2の処理液からシリカ微粒子を除いた組成の処理液をスプレーで付着率100重量%になるように吹き付けた後、120℃で2分間予備乾燥した。その後、180℃で1分間熱処理し、発熱エネルギー指数28の中入れ綿を得た。実施例2の中入れ綿を上記中入れ綿に変更したこと以外は実施例2と同様にしてウインドブレーカーを縫製し評価した。結果を表1に示す。
【0063】
[実施例5]
アクリロリトリル90%およびアクリル酸メチル10%からなるアクリロリトリル系重合体10部を48%ロダンソーダ水溶液90部に溶解した紡糸原液を、定法で紡糸、延伸(全延伸倍率:10倍)した後、乾球/湿球=120℃/60℃の雰囲気下で乾燥(工程収縮率:14%)して、単繊維繊度1.65dtexのアクリル繊維を得た。該繊維をヒドラジン6.4重量%水溶液に浸し102℃で6時間処理し、ついで苛性ソーダ5.0重量%水溶液にて90℃で32時間処理した後脱液し乾燥した。得られた改質アクリル繊維を繊維長64mmにカットし、これを単繊維繊度7.2dtexのポリエチエンテレフタレート繊維とで改質アクリル繊維が15重量%になる目付80g/m2の不織ウエッブにした。ついで、上述の処方2からシリカ粒子を除いたバインダーのみをスプレーで付着率が100重量%になるように吹き付けた後、120℃で2分間予備乾燥した。その後、180℃で1分間熱処理し、発熱エネルギー指数25の中入れ綿を得た。実施例1で得られた表地と裏地を使用して、上記で得られた中入れ綿を中地として挿入してウインドブレーカーを縫製し評価した。結果を表1に示す。
【0064】
[実施例6]
実施例2において、中入れ綿作製時の処方2を、凝固温度が25℃、潜熱量が35cal/gのパラフィンワックスをエチレン・コビニール・アセテートを壁膜とする平均粒径50μmのマイクロカプセルに封入した相変換蓄熱材を混合した下記組成の処方5に変えたこと以外は、実施例1と同様にしてブルゾンを縫製して評価した。結果を表1に示す。
【0065】
なお、本実施例5で得られた仲入れ綿の発熱エネルギー指数は、相変換マイクロカプセルを用いない実施例2の中入れ綿と同様の22であった。これは、発熱エネルギー指数は、30℃に12時間以上放置した後、測定するため、すでに相変換され蓄熱された状態にあるためである。
Figure 0003925178
[比較例1]
実施例1で得られた表地と、実施例1において処方1の処理を施さないサテントリコットのカット起毛品を裏地としてウインドブレーカーを縫製し評価した。結果を表1に示す。
【0066】
[比較例2]
実施例2で得られた表地を使用し、また同じく実施例2の処方2の組成からシリカ微粒子を除いた処理液を使用した他は実施例2と同様に処理した中入れ綿を使用し、裏地にはタテ糸83dtex、ヨコ糸116dtexのキュプラ使いタフタ(接触温冷感0.15W/cm2 )を使用してウインドブレーカーを縫製し評価した。結果を表1に示す。
【0067】
[比較例3]
実施例3で得られた表地と、比較例2と同様のキュプラ使いタフタを裏地としてウインドブレーカーを縫製し評価した。結果を表1に示す。
【0068】
[比較例4]
56dtex、144フィラメントの仮ヨリ加工ポリエステル長繊維をタテ糸およびヨコ糸に用い、タテ密度152本/2.54cm、ヨコ密度83本/2.54cmで平組織にて製織した。次いで、リラックス精練、プレセット、染色した後、撥水剤アサヒガードAG710(明成化学(株)製)を3重量%に含有した水分散液に、上記ナイロンタフタを浸漬し、絞り率40%にピックアップし、ヒートセッターにて130℃で30秒の乾燥熱処理を施し後、さらに170℃で1分キュアリング処理を施し、タテ密度170本/2.54cm、ヨコ密度85本/2.54で仕上げた表地を得た。カバーファクターは1908であり、耐水圧は1kpaであった。上記の表地と、比較例1同様に実施例1において処方1の処理を施さないサテントリコットのカット起毛品を裏地としてウインドブレーカーを縫製し評価した。結果を表1に示す。
【0069】
【表1】
Figure 0003925178
【0070】
【発明の効果】
本発明によれば、放湿放熱制御性能を有する布帛を表地として使用し、裏地に水分吸着発熱性能を有する布帛を使用することにより、また裏地表面の接触面の接触温冷感を低下させたことにより、水分吸着性能を発揮する保温効果の高いウインドブレーカーが得られる。
【0071】
すなわち、水分吸着発熱性能を有する布帛は、身体から発生する水分を吸着し発熱するのと同時に衣服外へ水分を放出する気化熱を奪われるため、実質の発熱量は低くなる。本発明の、水分吸着発熱布帛を裏地に使用して、放湿放熱抑制性能を有し、かつ防風性に優れた布帛を表地に使用することにより、気化熱を制御するため実質の発熱量が大きくなる。さらに接触冷感を低く抑えているため、保温性の高いウインドブレーカーが得られるのである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a windbreaker suitable for sports clothing, having windproof and waterproof properties, and having a comfortable heat retaining property.
[0002]
[Prior art]
Conventionally, windbreakers have mainly focused on imparting windproof and mild waterproofness, and the ones that have been given heat insulation to windbreakers are made of a resin kneaded with aluminum powder or the like. A coating is used to improve heat insulation by reflecting radiant heat from the body, or one that improves heat insulation by forming a non-moving air layer using a material having an increased air content.
[0003]
However, when using the above-mentioned material with an increased air content, there is a problem that the material becomes bulky and the motility when worn is obstructed, and the material that reflects radiant heat has a color of metal such as aluminum In addition, there is a problem that there is a limit in color development.
[0004]
In order to solve these problems, a garment using moisture absorbing / releasing moisture-absorbing exothermic fibers has been proposed in Japanese Patent Publication No. 7-59762. There is only disclosure of clothing that uses it for batting and lining. In addition, the moisture-absorbing and moisture-absorbing exothermic fiber used here has a high moisture absorption rate, so it feels cold when touching the hand or body, and in clothing made of moisture-absorbing and absorbing water-absorbing exothermic fibers, At the same time it absorbs moisture and generates heat, it dissipates the heat of vaporization due to the diffusion of water vapor into the air. Only the amount of heat obtained by subtracting the heat of vaporization from the moisture absorption / release moisture absorption heat generation contributes to the heat retention in the clothing using the moisture absorption / release moisture absorption exothermic fiber. Therefore, since the heat of vaporization that is absorbed as the moisture absorption / release water absorption becomes larger, the heat of vaporization is larger, so that the heat retention improvement effect is small no matter how much the moisture absorption / release water absorption heat generation is increased.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to provide a windbreaker that has windproof and waterproof properties, takes into account the above-mentioned actual conditions, makes the most of the heat retention effect due to moisture adsorption heat generation, and does not feel cold when touching the hand or body. It is to provide.
[0006]
[Means for Solving the Problems]
As a result of diligent research on the above problems, the inventors of the present invention have a breathability of 5 cm as a fabric layer having a moisture release and heat-suppressing performance for controlling the heat of vaporization on the fabric layer having a moisture adsorption heat generation performance. Three / Cm 2 -Sec or less and moisture permeability is 3,000 to 12,000 g / m 2 ・ By laminating a high-density woven fabric or synthetic resin film laminate in the range of 24 hr as a surface material, the moisture adsorption heat generation performance can be efficiently exhibited, and at the same time, the contact cold feeling (qmax of the moisture adsorption heat generation performance) It has been found that by reducing), a clothing that does not feel cold when touching the skin surface can be obtained, and the present invention has been achieved. That is, in order to achieve the above object, the windbreaker of the present invention adopts the following configuration.
(1) The water resistance is 5 kpa or more and the air permeability is obtained by applying a water repellent treatment to a plain fabric having a cover factor of 2,000 or more or a twill fabric having a cover factor of 2500 or more. 5cm Three / Cm 2 -Sec or less and moisture permeability is 3,000 to 12,000 g / m 2 -A windbreaker using a high-density fabric having a moisture release and heat dissipation suppressing performance in a range of 24 hours, and using a fabric having moisture adsorption heat generation performance on the lining, the exothermal energy index of the lining has 5 or more, and Feeling of thermal contact (qmax) on the lining surface is 0.1 W / cm 2 A windbreaker characterized by:
[0007]
CF = {(D1) 1/2 × M} + {(D2) 1/2 × N}
CF: Cover factor
D1: Warp yarn density (dtex)
M: density of warp yarn (main / 2.54 cm)
D2: Thread density (dtex)
N: Density of the weft (book / 2.54cm)
(2) Water resistance is 5 kpa or more with a waterproof film layer made of synthetic resin laminated on one side of the fabric, and air permeability is 5 cm. Three / Cm 2 -Sec or less and moisture permeability is 3,000 to 12,000 g / m 2 A windbreaker using a synthetic resin film laminated fabric having a moisture release and heat radiation suppressing performance in a range of 24 hours as a surface and a fabric having a moisture adsorption heat generation performance on the lining, and the exothermal energy index of the lining is 5 The contact thermal sensation (qmax) on the lining surface is 0.1 W / cm 2 A windbreaker characterized by:
(3) The windbreaker as described in (1) or (2) above, wherein a fabric having an exothermic energy index of 5 or more is inserted as an intermediate between the outer material and the lining material.
(4) A fabric having moisture adsorption heat generation performance is obtained by fixing a hygroscopic polymer and / or hygroscopic fine particles to the fiber surface and / or graft copolymerizing or crosslinking reaction with a monomer having a hydrophilic group on the synthetic fiber. The windbreaker according to any one of (1) to (3), wherein the modified fiber is contained in an amount of 5 to 50% by weight.
(5) The hygroscopic polymer is vinyl sulfonic acid, a vinyl monomer represented by the following general formula [I], a vinyl monomer represented by the following general formula [II], and a vinyl represented by the following general formula [III] The windbreaker as described in (4) above, which is a polymer mainly composed of one or more monomers.
[0008]
[Chemical formula 5]
Figure 0003925178
(Where X = H or CH3, n = integer of 9 to 23)
[0009]
[Chemical 6]
Figure 0003925178
(Wherein, X = H or CH3, m + n = is an integer of 10-30)
[0010]
[Chemical 7]
Figure 0003925178
(Where R = H or CH3, R 1 = Cl, Br, I, OCH Three , OC 2 H Five Or SCH Three M = integer of 0-9, l = integer of 10-30)
(6) The windbreaker as described in (5) above, wherein the hygroscopic fine particles are silica fine particles.
(7) The modified fiber is a modified fiber obtained by graft copolymerization or crosslinking reaction with a synthetic fiber containing a monomer containing one or more hydrophilic groups selected from the group described in the following general formula [IV] The windbreaker according to any one of the above (4) to (6).
[0011]
[Chemical 8]
Figure 0003925178
(In the formula, R = alkyl group, M = alkali metal or —NH 4, X = halogen atom, n = 1 to 10)
(8) The windbreaker according to any one of (1) to (7), wherein the fabric having moisture adsorption heat generation performance contains a heat storage agent.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The windbreaker of the present invention has a water pressure resistance of 5 kpa or more and an air permeability of 5 cc / cm. 2 -Sec or less and moisture permeability is 3,000 to 12,000 g / m 2 A windbreaker using a high-density woven fabric or synthetic resin film laminated fabric having a moisture release and heat-suppressing performance in the range of 24 hours as a surface and using a fabric having a moisture adsorption heat generation performance on the lining, and its moisture adsorption heat generation The heat generating energy index of the lining having performance is 5 or more, and the contact thermal sensation (qmax) of the lining surface is 0.1 W / cm 2 It is a windbreaker characterized by the following.
[0013]
As a fabric useful for the outer material having moisture release and heat dissipation suppressing performance and the middle and lining having moisture adsorption performance of the present invention, an appropriate fabric can be used according to the purpose of use. Textiles, polyamide fibers, synthetic fibers such as acrylic fibers, semi-synthetic fibers such as acetate fibers, natural fibers such as cotton, hemp and wool, woven fabrics, knitted fabrics, non-woven fabrics, etc. There is no particular limitation.
[0014]
The moisture release heat dissipation suppression performance in the present invention is performance aimed at controlling the heat of vaporization. On the other hand, in the cloth of the middle and the lining having moisture adsorption heat generation performance, the moisture released from the body due to insensitive excretion etc. is adsorbed to generate heat, but at the same time, the moisture is evaporated from the fabric to the outside of the system to generate heat of vaporization. Since it takes away, the heat generation effect when actually worn becomes small. Only when the heat of vaporization is controlled and reduced, a heat generation effect that can be realized when worn is obtained.
[0015]
However, if the heat of vaporization is controlled to make it too small, the moisture-releasing property becomes small, and the feeling of stuffiness at the time of wearing becomes large and becomes uncomfortable. In order to prevent the heat of vaporization and at the same time eliminate the feeling of stuffiness when worn, the moisture permeability of the outer surface having moisture release and heat radiation suppressing performance is 3,000 to 12 according to the measurement method of JIS L-1099 (A-1 method). , 000g / m 2 -It must be in the range of 24 hours. If the moisture permeability is lower than this range, the feeling of stuffiness increases, and if it exceeds this range, the heat of vaporization increases, the water molecule adsorption heat generation performance decreases, and the heat generation performance cannot be realized. The moisture permeability is preferably 4,000 to 11,000 g / m. 2 -It is the range of 24 hr, More preferably, it is 6,000-11,000 g / m. 2 -The range is 24 hours.
[0016]
As a method for controlling the moisture permeability within the above range, for example, in the case of a plain fabric having a cover factor of 2000 or more or a high-density fabric having a twill texture of 2500 or more, the density is increased or a thick yarn is used. The water vapor transmission rate is lowered by increasing the thickness of the dough by, for example, or by crushing by thermal calendering. In the case of waterproof film layered products, waterproof film materials such as hydrophilic polyurethane, hydrophobic polyurethane, polytetrafluoroethylene, polyester, nylon resin, microporous film, nonporous film, and microporous film Can be controlled by selecting and combining a film structure such as a laminated film of a non-porous film, a film thickness, and a method of adhesion to a fabric such as coating or lamination, but is not limited to these methods.
[0017]
Furthermore, the air permeability of the outer material is 5 cm by the measuring method of JIS L-1096 (Fragile method). Three / Cm 2 ・ It is necessary to make it below sec. If the air permeability is higher than this, outside air will enter the clothes and reduce heat retention. In addition, the air warmed by the moisture absorption heat generation performance of the lining and the inside outflows out of the clothes.
[0018]
As a method for controlling the air permeability within the above-mentioned range, in the case of a high-density fabric, for example, the air permeability can be lowered by increasing the density or by performing a thermal calendar treatment. In the case of a waterproof film laminate, it can be controlled by the pore diameter and film thickness of the microporous film. When it is desired to reduce the air permeability to zero, it can be realized by using a non-porous film, but it is not limited to these methods.
[0019]
Further, the surface material used in the present invention is required to have a water pressure resistance of 5 kpa or more measured by a measuring method according to JIS standard L-1092. The higher the water pressure resistance, the higher the waterproof reliability, so the higher the water pressure resistance, the better. However, in order to increase the water pressure, it is necessary to increase the film thickness, and the manufacturing cost increases and the texture becomes harder. Therefore, it is preferable that the surface of the windbreaker is 300 kpa or less.
[0020]
In addition, the fibers constituting the lining or middle fabric layer having moisture adsorption heat generation performance used in the present invention are preferably hygroscopic fibers, for example, Fiber Handbook-Raw Materials-(issued by Maruzen Co., Ltd.) )), As described on page 245, hygroscopic fibers have long been known to absorb moisture and generate heat. The fabric layer having moisture adsorption heat generation performance used in the present invention may use a fabric made of these hygroscopic fibers, but preferably by dispersing and kneading a hygroscopic polymer or the like into the synthetic fiber. , Hygroscopically improved fibers such as nylon yarn obtained by kneading and spinning a hygroscopic polymer such as polyvinylpyrrolidone into nylon, and polymers having hygroscopic properties and / or hygroscopicity by post-processing, etc. A fabric that has increased hygroscopicity and improved moisture adsorption heat generation performance by fixing the fine particles having the property to the fiber surface is preferably used practically.
[0021]
More desirably, a hygroscopic polymer or the like is dispersed in a synthetic fiber and kneaded to fix the hygroscopic polymer and / or hygroscopic fine particles to the fiber surface by post-processing or the like. It is preferable to use a fabric that further increases the water molecule adsorption heat generation performance.
[0022]
Increasing hygroscopicity feels cold when touching the hand or body, making it unsuitable for warm clothing. In the present invention, in order to prevent this phenomenon, the contact thermal sensation (qmax) of the surface in contact with the skin of the lining having the moisture adsorption heat generation performance (the surface of the lining) is 0.1 W / cm. 2 Must be:
[0023]
Contact thermal sensation (qmax) is 0.1 W / cm 2 The following fabrics can be obtained by providing a fabric structure with irregularities on the surface side of the lining to reduce the contact area. For example, it can be obtained by a method of raising a fabric or a method of reducing the contact area with a multi-heavy tissue. Further, although it can be obtained by a multi-tissue woven knitted fabric such as a double-tissue woven knitted fabric using fibers with low hygroscopicity only on the contact surface, the present invention is not limited to these, and the contact thermal sensation (qmax) can be improved by any method. 0.1 W / cm 2 The following should be done.
[0024]
Contact thermal sensation (qmax) is preferably 0.08 W / cm 2 Or less, more preferably 0.05 W / cm 2 It is as follows. The smaller the contact thermal sensation (qmax), the better the thermal sensation as the thermal sensation is higher. However, in order to make it smaller while having moisture adsorption heat generation performance, it is necessary to have a complicated fabric structure, and the production cost is lower. 0.02 W / cm due to problems such as high 2 Is preferably the lower limit.
[0025]
As for the contact thermal sensation (qmax), the smaller the contact area on the material surface (there is unevenness) and the smaller the moisture absorption, the smaller the thermal sensation (qmax). For example, the raised surface of a raised tricot using 100% polyethylene terephthalate fiber is 0.04 W / cm 2 The surface that is not brushed is 0.10 W / cm 2 It is. In addition, when a raised tricot using the same 100% polyethylene terephthalate fiber is post-processed to a moisture absorption rate of 3%, the contact thermal sensation (qmax) of the raised surface does not change and is 0.04 W / cm. 2 On the other hand, the surface without raising is 0.12 W / cm 2 It becomes.
[0026]
The exothermic energy index of the present invention is moisture adsorption exothermic energy compared with 100% polyester fiber material, and is a comparative value when the 100% polyester fiber material is 1. The specific measurement method will be described in detail in the Examples. A 3 g sample is wound around an alcohol thermometer, and after adjusting the temperature and humidity in an environment of 30 ° C. and 30% RH, the environment of 30 ° C. and 90% RH is obtained. The temperature rise at the time of moisture absorption when moving to is observed over time, plotted on a graph with time on the horizontal axis and temperature on the vertical axis until it rises from 30 ° C and restores again to 30 ° C, and the area is measured To do.
[0027]
The fabric having moisture adsorption heat generation performance used in the present invention needs to have a heat generation energy index of 5 or more. If the exothermic energy index is less than 5, the exothermic effect cannot be realized. The exothermic energy index is preferably 8 or more, more preferably 10 or more.
[0028]
In order to increase the exothermic energy index to 5 or more, for example, a yarn having an exothermic energy index of about 13 can be obtained by kneading 5% by weight of polyvinylpyrrolidone in nylon. Further, as shown in the examples, a fabric having an exothermic energy index of about 15 can be obtained by attaching about 3% by weight of a copolymer of acrylamidomethylpropanesulfonic acid and PEG # 1000 dimethacrylate to a 100% polyester material. Further, it can be obtained by adhering hygroscopic fine particles to a fabric with a binder, or a modified fiber obtained by graft copolymerization or crosslinking reaction of a monomer having a hydrophilic group with a synthetic fiber. The present invention is not limited to these methods, and the exothermic energy index may be 5 or more by any method.
[0029]
The higher the exothermic energy index, the better. However, in order to increase the exothermic energy index, the amount of additives kneaded into the fiber, the amount of resin adhering to the fiber surface, and the like can be increased. It is necessary to increase the quantity, and the production cost is increased, and the strength of the fiber may be decreased.
[0030]
The air permeability used for the outer surface of the windbreaker of the present invention is 5 cc / cm 2 -Sec or less and moisture permeability is 3,000 to 12,000 g / m 2 -As a fabric having a moisture release and heat dissipation suppressing performance in the range of 24 hours, a water-repellent finish is applied to a plain fabric having a cover factor of 2,000 or more or a twill fabric having a cover factor of 2500 or more, and water pressure resistance A high-density woven fabric with 5 kpa or more.
[0031]
CF = {(D1) 1/2 × M} + {(D2) 1/2 × N}
CF: Cover factor
D1: Warp yarn density (dtex)
M: density of warp yarn (main / 2.54 cm)
D2: Thread density (dtex)
N: Density of the weft (book / 2.54cm)
The fiber yarn used for the warp yarn and the weft yarn constituting the above-mentioned plain texture fabric or twill texture fabric is preferably a long fiber made of synthetic fiber and has a fineness of 30 to 100 dtex and a single fiber fineness of 0. The use of a fine single yarn fine yarn of 2 to 1.5 dtex is desirable in that the texture is soft even at high density, and the air permeability and moisture permeability can be easily controlled within the target range.
[0032]
When the cover factor is smaller than the above range, the air permeability and moisture permeability increase and the moisture release and heat dissipation suppression effect cannot be obtained.
[0033]
In the case of a plain structure, the upper limit of the cover factor is preferably 2700 or less because the weaving property is lowered or the texture becomes hard when it exceeds 2700. In addition, in the case of the twill structure, there are 2/1 twill, 3/1 twill, 4/1 twill, irregular twill structure, etc., and the upper limit is not stated because it differs depending on the structure, but 10% or less from the limit of workability It is preferable to set the degree.
[0034]
A water pressure of 5 kpa or more cannot be obtained only by setting the cover factor within the above range. The water pressure-resistant performance can be obtained for the first time by applying the water repellent treatment. This water-repellent finish may be fixed to the fiber surface by a padding-dry-curing method or the like using a commonly used fluorine-based water repellent or silicone-based water repellent. Further, for example, it is preferable to perform a water-repellent treatment excellent in washing durability as described in JP-A-9-195169, but it is not limited to these methods.
[0035]
In the present invention, the outer surface has an air permeability of 5 cc / cm. 2 -Sec or less and moisture permeability is 3,000 to 12,000 g / m 2 -By using a synthetic resin film laminated fabric having a water pressure resistance of 5 kpa or more obtained by laminating a waterproof coating layer made of a synthetic resin on one side of the fabric in a range of 24 hours, moisture release and heat radiation suppressing performance can be obtained. Specifically, a moisture-permeable and waterproof processed product in which a single membrane or a combination membrane of a polyurethane porous microporous membrane or a hydrophilic polyurethane nonporous membrane or a polytetrafluoroethylene microporous membrane is laminated on one side of a fabric. Can be mentioned.
[0036]
In the case of laminating these synthetic resin films, the air permeability can be controlled relatively easily. For example, in the case of a polyurethane microporous film, as described in JP-A-7-3655, a clay organic complex in which quaternary ammonium ions are introduced between polyurethane resin layers is dispersed in a polyurethane resin. By wet coagulation, moisture permeability is improved by obtaining many smaller pores on the wall surface of the microporous membrane obtained by wet coagulation. The same effect can be obtained by dispersing inorganic fine particles instead of the viscosity organic composite. By changing these dispersion amounts, the target moisture permeability can be obtained. Furthermore, in the case of a hydrophilic polyurethane nonporous film, the hydrophilicity is increased and the moisture permeability is improved by reducing the film thickness or increasing the amount of the polyol component in the hydrophilic resin as polyethylene glycol or polypropylene glycol. However, it is not limited to these.
[0037]
The air permeability can be controlled by the method described above.
[0038]
In the present invention, the outer surface as described above has moisture adsorption heat generation performance, and the contact thermal sensation (qmax) of the lining surface is 0.1 W / cm. 2 A windbreaker may be sewn using a fabric in which the following lining is bonded and laminated with an adhesive, or may be laminated and sewn using a surface and lining having the above characteristics.
[0039]
Further, by inserting a fabric having a heat generation energy index of 5 or more between the outer material and the lining material, the moisture adsorption heat generation performance of the lining material and the middle material is integrated, and a higher moisture adsorption heat generation effect can be obtained.
[0040]
In addition, as a method for imparting moisture adsorption heat generation performance to the fabric, preferably, vinyl sulfonic acid, one or more of the compounds represented by the above general formulas [I], [II], and [III] are used. After applying a treatment liquid in which a polymerization initiator is mixed with a solution containing a liquid by a padding method, a spray method, a kiss roll coater, a slit coater or the like, the polymer is obtained by dry heat treatment, wet heat treatment, microwave treatment, ultraviolet treatment, etc. And there is a method of fixing to the fiber surface. Vinyl sulfonic acid has a low pH, and cotton or nylon becomes brittle when used as it is, so sodium vinyl sulfonate that has been neutralized in advance is used. Moreover, when vinyl vinyl sulfonate is used, deodorizing performance can also be provided. As the vinyl sulfonic acid, for example, acrylamidomethylpropane sulfonic acid is preferable in terms of water molecule adsorption heat generation performance.
[0041]
As the polymerization initiator, a normal radical initiator can be used. For example, inorganic polymerization initiators such as ammonium persulfate, potassium persulfate, and hydrogen peroxide, and 2,2′-azobis (2-amidinopropane) di Examples thereof include organic polymerization initiators such as hydrochloride, 2,2′-azobis (N, N-dimethyleneisobutyramide) dihydrochloride, 2- (carbamoylazo) isobutyronitrile. Further, a water-insoluble polymerization initiator such as benzoyl peroxide or azobisisobutyronitrile may be used after being emulsified with a surfactant such as anion or nonion. From the viewpoint of cost and ease of handling, ammonium persulfate is preferably used. Furthermore, in order to increase the polymerization efficiency, a so-called redox initiator using a peroxide as a polymerization initiator and a reducing substance may be used. Examples of the peroxide include ammonium persulfate and potassium persulfate, and examples of the reducing substance include a reaction product of sodium sulfoxylate and formalin, hydrosulfite, and the like. As a method for applying the treatment liquid to the fiber material, commonly used means can be applied. For example, it is also preferable to adjust the application amount by processing with a vacuum dehydrator.
[0042]
In addition, it can be applied to a synthetic fiber such as polyester, nylon or acrylic at the stage of spinning or spinning. For example, in the case of a polyester filament, when POY (semi-drawn yarn) is spun by melt spinning, one or more of the above compounds, a higher hydrocarbon having 25 to 33 carbon atoms, and 3 to 6 carbon atoms are used. At least selected from the group consisting of an ester of a polyhydric alcohol and a fatty acid having 14 to 18 carbon atoms, an aliphatic amide obtained by the reaction of a fatty acid having 12 to 17 carbon atoms and an amino alcohol, and a water-soluble silicone compound A mixed composition of a kind of compound and a polyoxyethylene surfactant is applied together with a spinning oil, and the above compound adheres firmly to the fiber by a dry heat treatment in a subsequent stretching process, and has moisture resistance with washing resistance. Heat generation performance can be imparted.
[0043]
In the case of an acrylic fiber, it contains one or more of the compounds represented by the above general formulas [I], [II], and [III] after spinning, drawing and washing with a wet spinning method. The treatment liquid is preferably attached in an amount of 0.05 to 5.0% by weight, and after drying and densification treatment, steam treatment, and drying process, it adheres firmly to the fiber and, like polyester, absorbs moisture with washing resistance. Heat generation performance can be imparted.
[0044]
Further, a fabric having moisture adsorption heat generation performance on the fabric can also be obtained by using silica fine particles having a high moisture absorption rate as the hygroscopic fine particles and fixing them to the fiber surface with a binder. By controlling the amount of silica fine particles fixed, the desired moisture adsorption performance can be obtained.
[0045]
Furthermore, moisture adsorption heat generation performance can be imparted also by modifying the synthetic fiber by graft copolymerization or crosslinking reaction of a monomer having a hydrophilic group to the synthetic fiber. For example, as disclosed in JP-A-56-24426, JP-A-56-135527, or JP-A-60-17142, an acidic vinyl monomer such as acrylic acid or methacrylic acid is added to a synthetic fiber. After graft copolymerization on the main chain constituting the fiber, the carboxyl group in acrylic acid or methacrylic acid may be substituted with an alkali metal to impart hygroscopicity. Moreover, as disclosed in JP-A-5-132858, the acrylic fiber was treated with hydrazine and the side chain was produced by hydrolysis of the nitrile group with a nitrogen-containing crosslinked structure formed by reaction with hydrazine. A salt-type carbosyl group may be polymerized to impart hygroscopicity.
[0046]
As disclosed in these documents, hygroscopicity can be obtained by adding a monomer having a hydrophilic group to a synthetic fiber by graft copolymerization or a cross-linking reaction.
[0047]
In the present invention, regardless of the method described above, any method can be used to impart a monomer containing one or more hydrophilic groups to a synthetic fiber such as polyester fiber, polyamide fiber, or acrylic fiber by graft copolymerization or a crosslinking reaction. A fiber provided with adsorption heat generation performance can be used.
[0048]
The windbreaker of the present invention can further improve the heat retaining property by adding a heat storage agent to the fabric having such moisture adsorption heat generation performance. As the heat storage agent used in the present invention, preferably, it absorbs heat when phase conversion from the liquid phase to the solid phase and dissipates heat when phase conversion from the liquid phase to the solid phase. Examples include those in which paraffin wax or polyethylene glycol is encapsulated in microcapsules, and far-infrared radiation ceramics made of inorganic compounds such as alumina, zirconia, and magnesia. Among these, those utilizing the latent heat at the time of phase conversion are preferably used in that the temperature inside the clothes can be controlled to be constant since the encapsulant in the microcapsules is selected and the phase conversion temperature can be controlled by the additive.
[0049]
When sweating due to exercise, etc., moisture adsorption heat generation performance increases, that is, when the body is warm due to exercise, the heat generation effect is suppressed by the heat storage agent absorbing heat, and conversely the environmental temperature decreases. Since the heat storage agent dissipates heat when the temperature in the garment is lowered, a comfortable windbreaker that controls the temperature in the garment to be constant can be obtained. In order to maintain such effects, the phase conversion temperature (solidification temperature) is preferably 5 to 35 ° C, more preferably 10 to 25 ° C.
[0050]
As a method for fixing the heat storage agent to the fabric, the above-mentioned microcapsules and inorganic compounds are used alone and / or a mixture, and the above-mentioned polymer mainly composed of vinyl sulfonic acid is fixed to the fiber surface with a vinyl sulfonic acid solution. Although the method of mixing and the method of adhering with another binder are mentioned, it is not specifically limited in this invention.
[0051]
Moreover, the above effect can also be obtained by applying a heat storage agent to a fabric having a moisture release and heat dissipation suppression performance, but preferably, the fabric having a moisture adsorption heat generation performance is higher if the heat storage agent is contained. A heat retention effect is obtained.
[0052]
In the windbreaker application of the present invention, waterproofness may be required, and it is necessary to provide a water pressure resistance of 5 kpa or more. Moreover, the air permeability is inevitably 5 cc / cm by applying water pressure resistance. 2 ・ We can give wind resistance of less than sec.
[0053]
The windbreaker of the present invention can be used for outdoor sports wear such as fishing and mountaineering clothes, sports wear such as ski wear, athletic wear, and golf wear, casual wear, rain clothes, and outdoor work clothes.
[0054]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
(Measuring method)
(1) Air permeability
The measurement of air permeability is based on JIS L-1096 (Fragile method).
[0055]
(2) Moisture permeability
The measurement of moisture permeability is in accordance with JIS standard L-1099 (A-1).
[0056]
(3) Water pressure resistance
The measurement of water pressure resistance is based on JIS standard L-1092.
[0057]
(4) Exothermic energy index
3 g of a sample having a width of about 3.5 cm is wound around an alcohol thermometer or a thermocouple measuring section, and the temperature after being left for 12 hours or more in an environment of 30 ° C. × 30% humidity is measured. Next, the humidity is changed at a rate of about 3% / min to an environment of 30 ° C. × 90% humidity, and the temperature is measured every minute for 4 hours. After the measurement, the sum of the rising temperature is obtained as the amount of heat generation energy and expressed by the following equation.
Exothermic energy index = Exothermic energy amount of the sample / Exothermic energy amount of polyester taffeta (attached cloth for JIS dyeing fastness test)
(5) Contact thermal sensation (qmax)
Using a thermolab type 2 measuring instrument manufactured by Kato Tech Co., Ltd., in a room with a room temperature of 20 ° C. and a humidity of 65% RH, the BT-Box was adjusted to 30 ° C., and the BT-Box (pressure) 10 g / cm 2 ) And the heat flux per unit area at a temperature difference of 10 ° C. is measured.
[0058]
(6) Heat generation effect (heat retention improvement effect)
Wear a sewn product on a long-sleeved polo shirt and a thin sweater in a room with a room temperature of 5 ° C and a humidity of 65% RH, and rest for 10 minutes. In addition, the temperature of the reverse side surface was measured with a thermal infrared image and the wearing sensation was confirmed.
[0059]
[Example 1]
56 dtex, 144 filaments of temporary twisted polyester long fibers were used as warp and weft yarns, and woven in a plain structure at a warp density of 188 yarns / 2.54 cm and a warp density of 118 yarns / 2.54 cm. Next, after relaxing scouring, pre-setting, and dyeing, the nylon taffeta was immersed in an aqueous dispersion containing 3% by weight of the water repellent Asahi Guard AG710 (trade name, manufactured by Meisei Chemical Co., Ltd.), and the drawing ratio was 40 %, And after a heat treatment for 30 seconds at 130 ° C. with a heat setter, further curing at 170 ° C. for 1 minute, vertical density 206 / 2.54 cm, horizontal density 120 / 2.54 Finished with a surface finish. The cover factor of the obtained outer material was 2,438, and the water pressure resistance was 11 kpa. Further, a satin tricot cut raised article using a polyester multifilament of 83 dtex-24F was immersed in a treatment liquid of the following composition 1 and then squeezed with a mangle set at a pickup rate of 80%, and dried at 120 ° C., 2 ° C. Dried for minutes.
(Prescription 1)
・ AMPS (acrylamidomethylpropanesulfonic acid) 20 g / l
・ PEG # 1000 dimethacrylate (trade name P303 Kyoeisha) 40 g / l
・ Ammonium persulfate 2g / l
Immediately after drying, it was treated with a heating steamer at 105 ° C. for 5 minutes, washed with hot water and dried. Subsequently, a lining having an exothermic energy index of 15 was obtained by setting in a dryer at 170 ° C. for 1 minute. A windbreaker was sewed and evaluated using the above outer and lining materials. The results are shown in Table 1.
[0060]
[Example 2]
Using the outer material and the lining obtained in Example 1, the insert cotton obtained by the following method was inserted into the middle, and the windbreaker was sewn and evaluated. The results are shown in Table 1.
[Intermediate cotton]
The fiber structure has a single fiber fineness of 7.2 dtex and a fiber length of 64 mm, and a basis weight of 100% polyethylene terephthalate fiber is 80 g / m. 2 The non-woven web was sprayed with a treatment liquid of Formula 2 having the following composition by spraying so that the adhesion rate was 100% by weight, and then pre-dried at 120 ° C. for 2 minutes. Thereafter, heat treatment was performed at 180 ° C. for 1 minute to obtain a middle-filled cotton having an exothermic energy index of 22 having silica particles fixed on the fiber surface.
(Prescription 2)
Silica particles (Silicia 550 (manufactured by Fuji Silysia Chemical)) 60 g / l
Binder (silicone resin-KT7014 (solid content 40%) (trade name, manufactured by Takamatsu Yushi Co., Ltd.)) 25 g / l
(The silica particles used here have an average particle diameter of 2.7 μm and an average specific surface area of 500 m. 2 / G. )
[Example 3]
Nylon taffeta made of 77 dtex, 24 filament long nylon fibers for warp and weft yarns in a plain weave and dyed in a conventional manner, 3 weight of water repellent Asahi Guard AG710 (trade name, Meisei Chemical Co., Ltd.) In a water dispersion containing 1%, picked up to 40% squeezing ratio, subjected to a heat treatment for 30 seconds at 130 ° C with a heat setter, and then cured at 170 ° C for 1 minute to obtain a vertical density. A nylon taffeta having 110 pieces / 2.54 cm and a horizontal density of 80 pieces / 2.54 cm was obtained. Next, a polyurethane solution having the composition shown in the following prescription 3 was 200 g / m with a knife over roll coater. 2 The polyurethane coating solution was wet-coagulated by dipping in an aqueous bath containing 10% by weight of DMF (dimethylformamide) in a coagulation bath for 3 minutes at 30 ° C., and then heated to 80 ° C. hot water. And washed with hot water for 10 minutes and dried with hot air at 140 ° C. to obtain a processed polyurethane microporous membrane having a water pressure resistance of 63 kpa.
Figure 0003925178
A windbreaker was sewed and evaluated using the polyurethane microporous membrane processed fabric as a surface and a satin tricot cut raised product of Example 1 having an exothermic energy index of 15 as a lining. The results are shown in Table 1.
[0061]
[Example 4]
4.4 decitex, 52 mm long polyester raw cotton, acrylic acid 5% (weight to be treated), methacrylic acid 15% (weight to be treated), ammonium persulfate 1% (weight to be treated) ), Immersed in an aqueous solution having a bath ratio of 1:20 consisting of 3% of a reaction product of sodium sulfoxylate and formalin (vs. weight% of the material to be treated), gradually heated to 80 ° C. Treated for minutes and graft polymerized. The amount of carboxyl groups introduced was 1.42 × 10 -Four Gram equivalent / gram fiber. This fiber raw cotton was immersed in an aqueous solution with a bath ratio of 1:20 consisting of 30% sodium carbonate (vs. weight to be treated), heated to 80 ° C., and treated at that temperature for 30 minutes. This fiber raw cotton had an alkali metal substitution rate of 95%.
[0062]
The fiber raw cotton thus obtained was sprayed with a treatment liquid having a composition in which silica fine particles were removed from the treatment liquid of the above-mentioned formulation 2 so that the adhesion rate would be 100% by weight, and then preliminarily maintained at 120 ° C. for 2 minutes. Dried. Thereafter, heat treatment was carried out at 180 ° C. for 1 minute to obtain a cotton having a heat generation energy index of 28. A windbreaker was sewed and evaluated in the same manner as in Example 2 except that the filling cotton in Example 2 was changed to the above-mentioned filling cotton. The results are shown in Table 1.
[0063]
[Example 5]
After spinning and stretching (total stretching ratio: 10 times) a spinning stock solution prepared by dissolving 10 parts of an acrylolitoryl polymer composed of 90% acrylolylyl and 10% methyl acrylate in 90 parts of a 48% rhodium soda aqueous solution. Drying was performed in an atmosphere of dry bulb / wet bulb = 120 ° C./60° C. (step shrinkage: 14%) to obtain an acrylic fiber having a single fiber fineness of 1.65 dtex. The fiber was immersed in a 6.4% by weight aqueous solution of hydrazine and treated at 102 ° C. for 6 hours, then treated with a 5.0% by weight aqueous solution of caustic soda at 90 ° C. for 32 hours, and then drained and dried. The obtained modified acrylic fiber was cut into a fiber length of 64 mm, and this was combined with a polyethylene terephthalate fiber having a single fiber fineness of 7.2 dtex to give a modified acrylic fiber having a basis weight of 80 g / m. 2 The non-woven web. Subsequently, only the binder excluding the silica particles from the above-mentioned formulation 2 was sprayed so that the adhesion rate was 100% by weight, and then pre-dried at 120 ° C. for 2 minutes. Thereafter, heat treatment was performed at 180 ° C. for 1 minute to obtain a middle-cotton cotton having an exothermic energy index of 25. Using the surface and lining obtained in Example 1, the insert cotton obtained above was inserted as a center, and a windbreaker was sewn and evaluated. The results are shown in Table 1.
[0064]
[Example 6]
In Example 2, the prescription 2 at the time of producing the filling cotton was encapsulated in microcapsules having an average particle size of 50 μm using a paraffin wax having a coagulation temperature of 25 ° C. and a latent heat of 35 cal / g as a wall film of ethylene / covinyl acetate. The blouson was sewn and evaluated in the same manner as in Example 1 except that the prescription 5 having the following composition mixed with the phase change heat storage material was changed. The results are shown in Table 1.
[0065]
In addition, the exothermic energy index | exponent of the interlining cotton obtained in this Example 5 was 22 similar to the interlining cotton of Example 2 which does not use a phase change microcapsule. This is because the exothermic energy index is measured after being left at 30 ° C. for 12 hours or longer, and thus has already undergone phase conversion and heat storage.
Figure 0003925178
[Comparative Example 1]
A windbreaker was sewed and evaluated with the outer fabric obtained in Example 1 and the satin tricot cut raised product not subjected to the treatment of Formula 1 in Example 1 as the lining. The results are shown in Table 1.
[0066]
[Comparative Example 2]
Using the dressing obtained in Example 2 and using the filling cotton treated in the same manner as in Example 2 except that the treatment liquid in which the silica fine particles were removed from the composition of the formulation 2 of Example 2 was used, On the lining is a taffeta using a cupra of warp yarn 83dtex and weft yarn 116dtex (contact thermal feeling 0.15W / cm 2 ) Was used to sew and evaluate a windbreaker. The results are shown in Table 1.
[0067]
[Comparative Example 3]
A windbreaker was sewn and evaluated with the outer surface obtained in Example 3 and the same cupra-use taffeta as in Comparative Example 2 as the lining. The results are shown in Table 1.
[0068]
[Comparative Example 4]
56 dtex, 144 filaments of temporary twisted polyester long fibers were used for warp and weft yarns, and woven in a plain structure at a warp density of 152 / 2.54 cm and a warp density of 83 / 2.54 cm. Next, after relaxing scouring, pre-setting, and dyeing, the nylon taffeta was immersed in an aqueous dispersion containing 3% by weight of the water repellent Asahi Guard AG710 (manufactured by Meisei Chemical Co., Ltd.) to obtain a drawing ratio of 40%. Pick up and heat treatment at 130 ° C for 30 seconds and heat treatment at 170 ° C for 1 minute and finish at 170 ° / 2.54cm and horizontal density of 85 / 2.54 Got the outer material. The cover factor was 1908 and the water pressure resistance was 1 kpa. A windbreaker was sewed and evaluated using the above-mentioned surface material and a satin tricot cut raised product that was not subjected to the treatment of Formulation 1 in Example 1 in the same manner as in Comparative Example 1. The results are shown in Table 1.
[0069]
[Table 1]
Figure 0003925178
[0070]
【The invention's effect】
According to the present invention, the use of a cloth having moisture release and heat dissipation control performance as a surface material, and the use of a cloth having moisture adsorption heat generation performance for the lining material also reduces the contact thermal sensation of the contact surface of the lining surface. As a result, a windbreaker with high heat retention effect that exhibits moisture adsorption performance can be obtained.
[0071]
That is, the fabric having moisture adsorption heat generation performance absorbs moisture generated from the body and generates heat, and at the same time, the heat of vaporization that releases moisture to the outside of the clothes is taken away. By using the moisture-absorbing heat-generating fabric of the present invention for the lining, and using a fabric having moisture-releasing and heat-suppressing performance and excellent windproof properties on the outer surface, the amount of heat generated can be substantially reduced in order to control the heat of vaporization. growing. Furthermore, since the feeling of contact cooling is kept low, a windbreaker with high heat retention can be obtained.

Claims (8)

表地に下記式のカバーファクターが2,000以上である平組織織物またはカバーファクターが2500以上の綾組織織物に撥水加工を施してなる耐水圧が5kpa以上であり、通気度が5cm3/cm2・sec以下、かつ透湿度が3,000〜12,000g/m2・24hrの範囲にある放湿放熱抑制性能を有する高密度織物を使用し、裏地に水分吸着発熱性能を有する布帛を使用したウインドブレーカーであって、該裏地の発熱エネルギー指数が5以上あり、かつ裏地表面の接触温冷感(qmax)が0.1W/cm2以下であることを特徴とするウインドブレーカー。
CF={(D1)1/2×M}+{(D2)1/2×N}
CF:カバーファクター
D1:タテ糸の密度(dtex)
M :タテ糸の密度(本/2.54cm)
D2:ヨコ糸の密度(dtex)
N :ヨコ糸の密度(本/2.54cm)
Water resistance is 5 kpa or more and water permeability is 5 cm 3 / cm formed by applying a water repellent treatment to a plain fabric having a cover factor of 2,000 or more or a twill fabric having a cover factor of 2500 or more. Use high-density fabric with moisture-release heat dissipation suppression performance that is 2 · sec or less and moisture permeability in the range of 3,000 to 12,000 g / m 2 · 24 hr, and fabric with moisture adsorption heat generation performance on the lining A windbreaker characterized in that the thermal energy index of the backing is 5 or more and the contact thermal sensation (qmax) of the backing surface is 0.1 W / cm 2 or less.
CF = {(D1) 1/2 × M} + {(D2) 1/2 × N}
CF: Cover factor D1: Warp yarn density (dtex)
M: density of warp yarn (main / 2.54 cm)
D2: Thread density (dtex)
N: Density of the weft (book / 2.54cm)
布帛の片面に合成樹脂からなる防水皮膜層を積層した耐水圧が5kpa以上あり、通気度が5cm3/cm2・sec以下、かつ透湿度が3,000〜12,000g/m2・24hrの範囲にある放湿放熱抑制性能を有する合成樹脂膜積層布帛を表地として使用し、裏地に水分吸着発熱性能を有する布帛を使用したウインドブレーカーであって、該裏地の発熱エネルギー指数が5以上あり、かつ裏地表面の接触温冷感(qmax)が0.1W/cm2以下であることを特徴とするウインドブレーカー。Water resistance is 5 kpa or more with a waterproof film layer made of synthetic resin laminated on one side of the fabric, air permeability is 5 cm 3 / cm 2 · sec or less, and moisture permeability is 3,000 to 12,000 g / m 2 · 24 hr. A windbreaker using a synthetic resin film laminated fabric having moisture release heat radiation suppressing performance in the range as a surface and using a fabric having moisture adsorption heat generation performance on the lining, and the exothermal energy index of the lining has 5 or more, And the windbreaker characterized by the contact thermal-cool feeling (qmax) of the lining surface being 0.1 W / cm < 2 > or less. さらに中地として、発熱エネルギー指数が5以上の布帛を表地と裏地の間に挿入してなることを特徴とする請求項1または2記載のウインドブレーカー。The windbreaker according to claim 1 or 2, wherein a cloth having a heat energy index of 5 or more is inserted between the outer material and the lining material as a center. 水分吸着発熱性能を有する布帛が、繊維表面に吸湿性ポリマーおよび/または吸湿性微粒子を固着させてなることおよび/または合成繊維に親水基を有する単量体をグラフト共重合または架橋反応してなる改質繊維を5〜50重量%含有させてなることを特徴とする請求項1〜3のいずれかに記載のウインドブレーカー。A fabric having moisture adsorption heat generation performance is formed by adhering a hygroscopic polymer and / or hygroscopic fine particles to the fiber surface and / or by graft copolymerization or crosslinking reaction of a monomer having a hydrophilic group on the synthetic fiber. The windbreaker according to any one of claims 1 to 3, wherein the modified fiber is contained in an amount of 5 to 50% by weight. 吸湿性ポリマーが、ビニルスルホン酸、下記一般式[I]で表されるビニルモノマー、下記一般式[II]で表されるビニルモノマー、および下記一般式[III]で表されるビニルモノマーの1種もしくは2種以上を主成分とするポリマーであることを特徴とする請求項4記載のウインドブレーカー。
Figure 0003925178
(式中、X=HまたはCH3、n=9〜23の整数)
Figure 0003925178
(式中、X=HまたはCH3、m+n=は10〜30の整数)
Figure 0003925178
(式中、R=HまたはCH3、R1=Cl、Br、I、OCH3、OC25またはSCH3、m=0〜9の整数、l=10〜30の整数)
The hygroscopic polymer is one of vinyl sulfonic acid, a vinyl monomer represented by the following general formula [I], a vinyl monomer represented by the following general formula [II], and a vinyl monomer represented by the following general formula [III]. The windbreaker according to claim 4, wherein the windbreaker is a polymer mainly composed of seeds or two or more kinds.
Figure 0003925178
(Where X = H or CH3, n = integer of 9 to 23)
Figure 0003925178
(Wherein, X = H or CH3, m + n = is an integer of 10-30)
Figure 0003925178
(In the formula, R = H or CH3, R 1 = Cl, Br, I, OCH 3 , OC 2 H 5 or SCH 3 , m = 0 to 9 and l = 10 to 30)
吸湿性微粒子がシリカ微粒子であることを特徴とする請求項4記載のウインドブレーカー。The windbreaker according to claim 4, wherein the hygroscopic fine particles are silica fine particles. 改質繊維が、下記一般式[IV]に記載の群より選ばれた親水基を1つ以上含む単量体を合成繊維にグラフト共重合または架橋反応してなる改質繊維であることを特徴とする請求項4〜6のいずれかに記載のウインドブレーカー。
Figure 0003925178
(式中、R=アルキル基、M=アルカリ金属または−NH4、X=ハロゲン原子、n=1〜10)
The modified fiber is a modified fiber obtained by graft copolymerization or crosslinking reaction with a synthetic fiber containing a monomer containing one or more hydrophilic groups selected from the group described in the following general formula [IV]. The windbreaker according to any one of claims 4 to 6.
Figure 0003925178
(In the formula, R = alkyl group, M = alkali metal or —NH 4, X = halogen atom, n = 1 to 10)
水分吸着発熱性能を有する布帛が、蓄熱剤を含有することを特徴とする請求項1〜7のいずれかに記載のウインドブレーカー。The windbreaker according to any one of claims 1 to 7, wherein the fabric having moisture adsorption heat generation performance contains a heat storage agent.
JP2001371528A 2001-12-05 2001-12-05 Windbreaker Expired - Fee Related JP3925178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001371528A JP3925178B2 (en) 2001-12-05 2001-12-05 Windbreaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001371528A JP3925178B2 (en) 2001-12-05 2001-12-05 Windbreaker

Publications (2)

Publication Number Publication Date
JP2003171814A JP2003171814A (en) 2003-06-20
JP3925178B2 true JP3925178B2 (en) 2007-06-06

Family

ID=19180557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001371528A Expired - Fee Related JP3925178B2 (en) 2001-12-05 2001-12-05 Windbreaker

Country Status (1)

Country Link
JP (1) JP3925178B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206972A (en) * 2004-01-23 2005-08-04 Toray Ind Inc Waterproof and moisture-permeable fabric
TW200615424A (en) * 2004-07-20 2006-05-16 Schoeller Textil Ag Finishings for textile fibres and babrics to give hydrophobic oleophobic and self-cleaning surfaces
JP4563773B2 (en) * 2004-11-04 2010-10-13 帝人ファイバー株式会社 Thermal storage and warm clothes
CN101389803B (en) * 2006-04-28 2011-05-04 日本爱克兰工业株式会社 Process for production of composite fiber
WO2010107133A1 (en) * 2009-03-19 2010-09-23 セーレン株式会社 Composite material
EP3239374B1 (en) 2014-12-25 2020-03-25 Asahi Kasei Kabushiki Kaisha Thin fabric having excellent comfort
JP6735546B2 (en) * 2015-09-18 2020-08-05 小松マテーレ株式会社 FIBER STRUCTURE, garment and other articles using the same, and method for manufacturing fiber structure
WO2020170692A1 (en) * 2019-02-21 2020-08-27 東レ株式会社 Garment with fan
CN118613612A (en) * 2022-01-28 2024-09-06 东丽株式会社 Fabric and clothing using the same

Also Published As

Publication number Publication date
JP2003171814A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
KR100821281B1 (en) Warmth retaining fiber structure
KR101244963B1 (en) Fabric and fabric laminate
CN102888754B (en) Polyester fabric with one-way moisture-diffusion and quick-drying functions, and production method thereof
JP3925178B2 (en) Windbreaker
JP5230286B2 (en) Moisture permeable waterproof fabric
JP4508669B2 (en) Moisture permeable waterproof heat retaining fabric and method for producing the same
JPWO2015119037A1 (en) Waterproof fabric and textile product using the same
JP2002180308A (en) Thermal insulating wear
KR101965583B1 (en) Permeable waterproof resin compositions for fabric coating and coating fabric using the same
Midha et al. Smart breathable coatings for textiles
JP2003193310A (en) Lining
CN111572110A (en) Flame-retardant, anti-cutting and acid-base-resistant fabric and preparation method thereof
JP3075581U (en) Water-repellent insulation fabric
JP2004300598A (en) Fiber structure
JPS6330243A (en) Heat-insulating sheet
JP6422115B2 (en) Fabric and manufacturing method thereof
JPH0268366A (en) Coated cloth of dry touch
JP2003020574A (en) Method for producing moisture-permeating and waterproofing laminated fabric
JP7417475B2 (en) Windproof fabrics and clothing
JP2003013313A (en) Warmth-keeping grove
JP7372257B2 (en) Moisture-permeable and waterproof fabric and textile products using the same
KR100556062B1 (en) Thermo-keeping moisture permeant and waterproof textile
JP2001248073A (en) Resin composition for moisture permeable waterproof fabric
JPH08291473A (en) Composite material, its production and moisture-permeable waterproofing cloth made thereof
Midha et al. National Institute of Technology Jalandhar, Punjab, India

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R151 Written notification of patent or utility model registration

Ref document number: 3925178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees