JP3924273B2 - Materials for electric double layer capacitors using carbon nanotubes - Google Patents

Materials for electric double layer capacitors using carbon nanotubes Download PDF

Info

Publication number
JP3924273B2
JP3924273B2 JP2003311270A JP2003311270A JP3924273B2 JP 3924273 B2 JP3924273 B2 JP 3924273B2 JP 2003311270 A JP2003311270 A JP 2003311270A JP 2003311270 A JP2003311270 A JP 2003311270A JP 3924273 B2 JP3924273 B2 JP 3924273B2
Authority
JP
Japan
Prior art keywords
double layer
carbon nanotubes
electric double
ionic liquid
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003311270A
Other languages
Japanese (ja)
Other versions
JP2005079505A (en
Inventor
孝典 福島
卓三 相田
正義 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003311270A priority Critical patent/JP3924273B2/en
Publication of JP2005079505A publication Critical patent/JP2005079505A/en
Application granted granted Critical
Publication of JP3924273B2 publication Critical patent/JP3924273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new material that can be used as an electrode for an electric double layer capacitor making use of characteristics of a carbon nanotube. <P>SOLUTION: The material for the electric double layer capacitor comprises a gel composition comprising: subdivided carbon nanotube which has been obtained with the application of shear force under the presence of ionic liquid; and the ionic liquid. The material can be utilized for an electric double layer capacitor which has a large electric capacity per surface area and a simple configuration as a device, and makes use of the characteristics of the ionic liquid. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は、電気二重層キャパシタに関し、特に、カーボンナノチューブを含むゲル状組成物から構成される新規な電気二重層キャパシタ用材料に関する。   The present invention relates to an electric double layer capacitor, and more particularly to a novel material for an electric double layer capacitor composed of a gel composition containing carbon nanotubes.

カーボンナノチューブは、その特異な形状と構造に由来する多様で優れた特性を発揮する次世代先端材料として期待されている。例えば、単層カーボンナノチューブは、内壁および外壁を合わせた理論比表面積が非常に大きく(〜2600m−1)、特に、チューブ端が開いていれば理想的な均一ミクロ孔性炭素材料であり、電解質イオンの細孔へのアクセスがスムーズであると予想される。したがって、カーボンナノチューブは超高速充放電が可能な大容量電気二重層キャパシタの電極材料となり得る。しかしながら、現実には、カーボンナノチューブは加工性が悪く、そのままでは電極材料として使用することは困難である。 Carbon nanotubes are expected as next-generation advanced materials that exhibit various and excellent properties derived from their unique shapes and structures. For example, single-walled carbon nanotubes have a very large theoretical specific surface area (˜2600 m 2 g −1 ), which is the ideal uniform microporous carbon material when the tube ends are open. The access to the electrolyte ion pores is expected to be smooth. Therefore, the carbon nanotube can be an electrode material of a large-capacity electric double layer capacitor capable of ultra-high speed charge / discharge. However, in reality, carbon nanotubes have poor processability, and as such are difficult to use as electrode materials.

本発明の目的は、カーボンナノチューブの特性を活かした電気二重層キャパシタの電極として使用することのできる新しい材料を提供することにある。   An object of the present invention is to provide a new material that can be used as an electrode of an electric double layer capacitor utilizing the characteristics of carbon nanotubes.

本発明者らは、先に、カーボンナノチューブをイオン性液体中でシェア(せん断力)をかけることによりゲルが生成することを見出している(非特許文献1)。
福島孝典、小阪敦子、石村陽二、山本崇、瀧川敏算、石井則行、相田卓三、Science 300, 2072(2003)。
The present inventors have previously found that gel is generated by applying a shear (shearing force) to carbon nanotubes in an ionic liquid (Non-patent Document 1).
Fukushima Takanori, Kosaka Kyoko, Ishimura Yoji, Yamamoto Takashi, Sasakawa Toshinori, Ishii Noriyuki, Aida Takuzo, Science 300, 2072 (2003).

本発明者らは、研究を進めた結果、このカーボンナノチューブとイオン性液体から成るゲル状組成物が電気二重層キャパシタの材料(電極材料)としてきわめて適した特性を有することを発見し本発明を導き出した。
かくして、本発明は、イオン性液体の存在下にカーボンナノチューブにせん断力を加えて細分化することによって得られるカーボンナノチューブとイオン性液体とから成るゲル状組成物から構成されることを特徴とする電気二重層キャパシタ用材料を提供するものである。
As a result of advancing research, the present inventors have found that the gel-like composition comprising the carbon nanotube and the ionic liquid has very suitable characteristics as an electric double layer capacitor material (electrode material). Derived.
Thus, the present invention is characterized by comprising a gel-like composition comprising carbon nanotubes and ionic liquid obtained by applying shearing force to carbon nanotubes in the presence of an ionic liquid to subdivide them. An electrical double layer capacitor material is provided.

本発明に従えば、カーボンナノチューブとイオン性液体とから成るゲル状組成物をそのまま電極二重層キャパシタの電極材料として利用できる。すなわち、従来の活性炭を電極とする場合のように、ポリマーとコンポジットしたり、導電性を補うために添加剤を使用する必要はなく、ゲルを詰めるだけでよくセル構造が極めて単純となる。また、カーボンナノチューブの存在が導電性の向上にも寄与することになる。   According to the present invention, a gel composition composed of carbon nanotubes and an ionic liquid can be used as it is as an electrode material of an electrode double layer capacitor. In other words, unlike the case where conventional activated carbon is used as an electrode, it is not necessary to composite with a polymer or use an additive to supplement conductivity, and the cell structure can be made extremely simple by simply packing a gel. In addition, the presence of carbon nanotubes contributes to the improvement of conductivity.

本発明が適用されるカーボンナノチューブは、よく知られているように、グラフェンシートが筒形に巻いた形状から成る炭素系材料であり、その周壁の構成数から単層ナノチューブ(SWCNT)と多層ナノチューブ(MWCNT)とに大別され、また、グラフェンシートの構造の違いからカイラル(らせん)型、ジグザグ型、およびアームチェア型に分けられるなど各種のものが知られている。本発明の原理は、このような所謂カーボンナノチューブと称されるものであれば、いずれのタイプのカーボンナノチューブにも適用することができる。実用に供されるカーボンナノチューブの好適な例として、一酸化炭素を原料とし比較的量産が可能なHiPco(Carbon Nanotechnologies社から入手できる)があげられるが、勿論、これに限定されるものではない。   As is well known, the carbon nanotube to which the present invention is applied is a carbon-based material having a shape in which a graphene sheet is wound into a cylindrical shape, and single-walled nanotubes (SWCNT) and multi-walled nanotubes are determined from the number of peripheral walls. It is roughly classified into (MWCNT), and various types are known such as a spiral type, a zigzag type, and an armchair type due to the difference in the structure of the graphene sheet. The principle of the present invention can be applied to any type of carbon nanotubes, so-called carbon nanotubes. A suitable example of a carbon nanotube to be put to practical use is HiPco (available from Carbon Nanotechnologies) which can be relatively mass-produced using carbon monoxide as a raw material, but of course is not limited thereto.

また、本発明において用いられるイオン性液体(ionic
liquid)とは、よく知られているように、常温溶融塩または単に溶融塩などとも称されるものであり、常温(室温)を含む幅広い温度域で溶融状態を呈する塩であり、第4級アンモニウムイオンに代表されるカチオン(陽イオン)とアニオン(陰イオン)とから構成される。本発明においては、従来より知られた各種のイオン性液体を使用することができるが、常温(室温)または可及的に常温に近い温度において液体を呈し安定であるとともにイオン伝導性の優れたものが好ましい。この点から、本発明において用いられるイオン性液体を構成するカチオンの好適な例としては、下記の式(I)で表されるイミダゾリウムイオンが挙げられる。
In addition, the ionic liquid (ionic) used in the present invention
As is well known, “liquid” is also called a room temperature molten salt or simply a molten salt, and is a salt that exhibits a molten state in a wide temperature range including room temperature (room temperature). It consists of a cation (cation) represented by ammonium ion and an anion (anion). In the present invention, various ionic liquids known in the art can be used, but the liquid is stable at room temperature (room temperature) or as close to room temperature as possible, and has excellent ion conductivity. Those are preferred. From this point, as a suitable example of the cation constituting the ionic liquid used in the present invention, an imidazolium ion represented by the following formula (I) can be given.

Figure 0003924273
Figure 0003924273

式(I)において、一般に、Rは炭素数1〜4のアルキル基または水素原子をあらわし、特に炭素数1のメチル基が好ましい。また、Rは炭素数10以下のアルキル基(エーテル結合を含んでいてもよい)を表し、好ましい例はエチル基である。 In the formula (I), R 1 generally represents an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, and a methyl group having 1 carbon atom is particularly preferable. R 2 represents an alkyl group having 10 or less carbon atoms (which may contain an ether bond), and a preferred example is an ethyl group.

アニオンとしては、ビス(トリフロロメタンスルホニル)イミド酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、過塩素酸、トリス(トリフロロメチルスルホニル)炭素酸、トリフロロメタンスルホン酸、ジシアンアミド、トリフロロ酢酸又は有機カルボン酸またはハロゲンのイオンより選ばれた少なくとも1種が例示できる。かくして、本発明に従い、電極二重層キャパシタの電極材料に用いられるのに好適なイオン性液体の例として、1−エチル−3メチルイミダゾリウムビストリフルオロメタンスルホニルイミド(本明細書ではEMITfNと略称することがある)が挙げられる。 Anions include bis (trifluoromethanesulfonyl) imidic acid, tetrafluoroboric acid, hexafluorophosphoric acid, perchloric acid, tris (trifluoromethylsulfonyl) carbonic acid, trifluoromethanesulfonic acid, dicyanamide, trifluoroacetic acid or organic Examples thereof include at least one selected from carboxylic acid or halogen ions. Thus, according to the present invention, as an example of an ionic liquid suitable for use in an electrode material of an electrode double layer capacitor, 1-ethyl-3methylimidazolium bistrifluoromethanesulfonylimide (abbreviated herein as EMITf 2 N) May be included).

本発明に従い電気二重層キャパシタの電極材料として使用するのには、如上のイオン性液体の存在下にカーボンナノチューブにせん断力を加えて細分化することによりゲル状組成物を調製する。ゲル状組成物の調製に際して、せん断力を付与する手段は特に限定されるものではなく、例えば、実験室におけるような小規模の製造の場合は手動または自動の乳鉢ですり潰すことによってもよく、また、多量の製造を目的とする場合には、ボールミル、ローラーミル、振動ミルなどの高せん断力を付与することができる湿式粉砕装置を使用することができる。さらに、ニーダータイプの混練機も使用可能である。細分化に要する時間も特に限定されるものではないが、一般的には5分間〜1時間程度である。   For use as an electrode material of an electric double layer capacitor in accordance with the present invention, a gel composition is prepared by applying shearing force to carbon nanotubes in the presence of the above ionic liquid to subdivide them. In preparing the gel composition, the means for applying the shearing force is not particularly limited. For example, in the case of small-scale production such as in a laboratory, it may be ground with a manual or automatic mortar, Moreover, when aiming at manufacture of a large quantity, the wet grinding apparatus which can provide high shear force, such as a ball mill, a roller mill, and a vibration mill, can be used. Furthermore, a kneader type kneader can also be used. Although the time required for subdivision is not particularly limited, it is generally about 5 minutes to 1 hour.

本発明において電気二重層キャパシタとして使用されるカーボンナノチューブとイオン性液体から成るゲルの組成は、用いるカーボンナノチューブとイオン性液体の種類に応じて異なるが、一般的にはカーボンナノチューブとイオン性液体の合計量に対して2〜15重量%の含有率のカーボンナノチューブが用いられる。   The composition of the gel composed of carbon nanotubes and ionic liquid used as an electric double layer capacitor in the present invention varies depending on the types of carbon nanotubes and ionic liquid used, but in general, carbon nanotubes and ionic liquids Carbon nanotubes with a content of 2 to 15% by weight relative to the total amount are used.

カーボンナノチューブとイオン性液体から成る如上のゲル状組成物は、電気二重層キャパシタとして使用されるのに好適な電気容量を有し、単位表面積あたりの電気容量は従来より多用されている活性炭と同等以上であることが見出されている。
以下、本発明に従うカーボンナノチューブとイオン性液体から成るゲル状組成物の電気的特性を実施例に沿って更に具体的に示す。
The above gel composition composed of carbon nanotubes and ionic liquid has a capacitance suitable for use as an electric double layer capacitor, and the capacitance per unit surface area is the same as that of activated carbon, which has been widely used conventionally. It has been found that this is the case.
Hereinafter, the electrical characteristics of the gel-like composition comprising the carbon nanotube and the ionic liquid according to the present invention will be described more specifically with reference to examples.

カーボンナノチューブとイオン性液体から成るゲル状組成物を用いて充放電試験による電気容量測定を行ないキャパシタ特性について検討した。
用いたカーボンナノチューブは、Carbon Nanotechnology社から入手したHiPco(登録商標)単層カーボンナノチューブ(以下、単層CNTと記す場合がある)である。また、イオン性液体として既述のEMITfNを用いた。比較のために、活性炭(有機電解液を用いた市販の電気二重層キャパシタに使用されている椰子殻由来の活性炭)とEMITfNから成る系についても同様の測定を行なった。
図1は、測定に用いたセルの構造を示すものであり、ステンレス製容器(1)内に、シリコンスペーサー(2)に入れたサンプル(3)(イオン性液体+カーボンナノチューブ)をセルロース製スペーサー(4)を介して上下に設置した。
充放電試験は、温度を25℃の恒温槽で制御し、一定電流で0Vから2.3Vまで充放電を三回繰り返すことにより行なった。試験結果の1例を下記の表1に示す。
Capacitor characteristics were examined by measuring the capacitance by charge / discharge test using gel-like composition composed of carbon nanotube and ionic liquid.
The carbon nanotubes used are HiPco (registered trademark) single-walled carbon nanotubes (hereinafter sometimes referred to as single-walled CNT) obtained from Carbon Nanotechnology. Further, the aforementioned EMITf 2 N was used as the ionic liquid. For comparison, the same measurement was performed on a system composed of activated carbon (activated carbon derived from coconut shells used in a commercially available electric double layer capacitor using an organic electrolyte) and EMITf 2 N.
FIG. 1 shows the structure of a cell used for measurement. A sample (3) (ionic liquid + carbon nanotube) placed in a silicon spacer (2) in a stainless steel container (1) is made of a cellulose spacer. Installed up and down via (4).
The charge / discharge test was performed by controlling the temperature in a constant temperature bath at 25 ° C. and repeating the charge / discharge three times from 0 V to 2.3 V at a constant current. An example of the test results is shown in Table 1 below.

Figure 0003924273
Figure 0003924273

表1から容量(電気二重層容量)の最大値を示す組成の存することが認められる。なお、表1に示す電気二重層容量とは、上記のようにして行なった充放電試験において3回目の放電曲線の0.5Vから1.0Vの範囲の傾きから下記の式1を用いて算出したC(単極CNT重量あたりの放電容量)の値である。   From Table 1, it is recognized that a composition showing the maximum value of capacity (electric double layer capacity) exists. The electric double layer capacity shown in Table 1 is calculated by using the following formula 1 from the slope of the third discharge curve in the range of 0.5 V to 1.0 V in the charge / discharge test performed as described above. C (discharge capacity per unit CNT weight).

Figure 0003924273
Figure 0003924273

式1において、Iは定電流(mA)、Δtは0.5〜1.0V間で放電に要する時間(秒)、wは単極CNT重量(g)を表し、ΔVは0.5(V)である。
表1は、単層CNTの重量あたり0.157(mA/mg)の定電流を流した場合を示しているが、電気容量の電流密度への依存性を調べるために、定電流の大きさを変えた試験を行なった。図2は、このような充放電試験における充放電曲線の典型例を示すものであり、また、図3は活性炭+EMITfNの系と対比しながら電気容量の電流密度依存性を示すものである。なお、図2および図3に示す系の単層CNTの含有率は4.4重量%である。
In Equation 1, I is a constant current (mA), Δt is a time (seconds) required for discharge between 0.5 and 1.0 V, w is a monopolar CNT weight (g), and ΔV is 0.5 (V ).
Table 1 shows the case where a constant current of 0.157 (mA / mg) is applied per weight of the single-walled CNT. In order to examine the dependence of the capacitance on the current density, the magnitude of the constant current is shown. The test which changed was performed. FIG. 2 shows a typical example of a charge / discharge curve in such a charge / discharge test, and FIG. 3 shows the current density dependence of electric capacity while comparing with the activated carbon + EMITf 2 N system. . The content of the single-walled CNT in the system shown in FIGS. 2 and 3 is 4.4% by weight.

図3に示されるように、単層CNTとEMITfNのゲル状組成物から成る本発明の系は、電気容量の電流密度依存性が殆ど見られない。なお、図3は、単層CNTを含む本発明の系が活性炭を含む系よりも電極重量あたりの電気容量は小さいという結果を与えているが、表面積に違いを考慮して表面積あたりの電気容量を算出すると、下記の表2に示すように、単層CNTの系が約6.5μF/cmに対し、活性炭の系は約5.5μF/cmとなり前者の方が優れている。このことは、カーボンナノチューブを使用する系は、電極材料として表面積をきわめて有効に利用できるためと理解される。 As shown in FIG. 3, the system of the present invention consisting of a single-walled CNT and a gel composition of EMITf 2 N shows almost no current density dependency of electric capacity. Note that FIG. 3 gives the results that the system of the present invention containing single-walled CNTs has a smaller electric capacity per electrode weight than the system containing activated carbon, but considering the difference in surface area, the electric capacity per surface area As shown in Table 2, the single-walled CNT system is about 6.5 μF / cm 2, while the activated carbon system is about 5.5 μF / cm 2 , and the former is superior. This is understood because the system using carbon nanotubes can utilize the surface area very effectively as an electrode material.

Figure 0003924273
Figure 0003924273

本発明に従うカーボンナノチューブとイオン性液体から成るゲル状組成物は、炭素電極材料として従来より多用されている活性炭を含む系と同等の電気容量を発現するとともに、取扱いの容易なゲルとして供されるので、装置の構成が簡単となり、さらに、電気容量を低下させることなく電極層を厚くできたり、導電性のイオン性液体の特性を活用できるなどの利点を有する新しいタイプの電気二重層キャパシタ用材料として利用が期待される。   The gel-like composition comprising carbon nanotubes and ionic liquid according to the present invention exhibits an electric capacity equivalent to that of a system containing activated carbon that has been widely used as a carbon electrode material, and is provided as an easy-to-handle gel. Therefore, the structure of the device becomes simple, and further, a new type of material for electric double layer capacitors having advantages such as that the electrode layer can be thickened without reducing the electric capacity, and the characteristics of the conductive ionic liquid can be utilized. It is expected to be used as

実施例に示す電気二重層キャパシタ特性評価に用いたセルの構成を示す。The structure of the cell used for the electrical double layer capacitor characteristic evaluation shown in an Example is shown. 実施例に示す電気二重層キャパシタ特性評価で得られる充放電曲線の典型例を示す。The typical example of the charging / discharging curve obtained by the electrical double layer capacitor characteristic evaluation shown in an Example is shown. 実施例に示す電気二重層キャパシタ特性評価で得られた電気容量の電流密度依存性に関する試験結果を表す。The test result regarding the current density dependence of the electric capacity obtained by the electrical double layer capacitor characteristic evaluation shown in an Example is represented.

符号の説明Explanation of symbols

1 ステンレス製容器
2 シリコンスペーサー
3 サンプル(イオン性液体・カーボンナノチューブゲル)
4 セルロース製スペーサー
1 Stainless steel container 2 Silicon spacer 3 Sample (ionic liquid / carbon nanotube gel)
4 Cellulose spacer

Claims (1)

イオン性液体の存在下にカーボンナノチューブにせん断力を加えて細分化することによって得られるカーボンナノチューブとイオン性液体とから成るゲル状組成物から構成されることを特徴とする電気二重層キャパシタの電極材料。
An electrode of an electric double layer capacitor comprising a gel-like composition comprising carbon nanotubes and ionic liquid obtained by applying shearing force to carbon nanotubes in the presence of an ionic liquid to subdivide the carbon nanotubes material.
JP2003311270A 2003-09-03 2003-09-03 Materials for electric double layer capacitors using carbon nanotubes Expired - Fee Related JP3924273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003311270A JP3924273B2 (en) 2003-09-03 2003-09-03 Materials for electric double layer capacitors using carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003311270A JP3924273B2 (en) 2003-09-03 2003-09-03 Materials for electric double layer capacitors using carbon nanotubes

Publications (2)

Publication Number Publication Date
JP2005079505A JP2005079505A (en) 2005-03-24
JP3924273B2 true JP3924273B2 (en) 2007-06-06

Family

ID=34412880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003311270A Expired - Fee Related JP3924273B2 (en) 2003-09-03 2003-09-03 Materials for electric double layer capacitors using carbon nanotubes

Country Status (1)

Country Link
JP (1) JP3924273B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048025B2 (en) 2011-11-14 2015-06-02 Sumitomo Electric Industries, Ltd. Electrode for electric storage device, electric storage device and manufacturing method of electrode for electric storage device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691703B2 (en) * 2005-03-31 2011-06-01 独立行政法人産業技術総合研究所 Actuator element and manufacturing method thereof
JP4873453B2 (en) * 2005-03-31 2012-02-08 独立行政法人産業技術総合研究所 Conductive thin film, actuator element and manufacturing method thereof
JP4926411B2 (en) * 2005-04-08 2012-05-09 出光興産株式会社 Grease composition
JP5365260B2 (en) * 2008-02-29 2013-12-11 住友化学株式会社 Electrode film and electrode containing ionic liquid, manufacturing method thereof, and electricity storage device
JP5087466B2 (en) * 2008-05-08 2012-12-05 昭和電工株式会社 Electric double layer capacitor
KR101046098B1 (en) * 2009-07-17 2011-07-01 삼성전기주식회사 Polarizable Electrodes for Capacitors and Electrical Double Layer Capacitors Comprising the Same
JP2014220327A (en) * 2013-05-07 2014-11-20 住友電気工業株式会社 Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
JP2014220328A (en) * 2013-05-07 2014-11-20 住友電気工業株式会社 Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
JP2014225508A (en) 2013-05-15 2014-12-04 住友電気工業株式会社 Electrode for electricity storage device, electricity storage device, and method for manufacturing electrode for electricity storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048025B2 (en) 2011-11-14 2015-06-02 Sumitomo Electric Industries, Ltd. Electrode for electric storage device, electric storage device and manufacturing method of electrode for electric storage device

Also Published As

Publication number Publication date
JP2005079505A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
Mei et al. Physical interpretations of Nyquist plots for EDLC electrodes and devices
Dong et al. MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors
To et al. Ultrahigh surface area three-dimensional porous graphitic carbon from conjugated polymeric molecular framework
Yang et al. Sponge‐templated preparation of high surface area graphene with ultrahigh capacitive deionization performance
Tsai et al. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from− 50 to 80 C
An et al. High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole
JP4754553B2 (en) Electrode manufacturing method, obtained electrode, and super capacitor including this electrode
Yun et al. High-performance supercapacitors based on defect-engineered carbon nanotubes
JP6158308B2 (en) Power storage device and electrode material thereof
JP3924273B2 (en) Materials for electric double layer capacitors using carbon nanotubes
Mahanta et al. Ionic-liquid-based deep eutectic solvents as novel electrolytes for supercapacitors: COSMO-SAC predictions, synthesis, and characterization
Kim et al. Shinshu University Institutional Repository SOAR-IR
Basirico et al. Moving towards high-power, high-frequency and low-resistance CNT supercapacitors by tuning the CNT length, axial deformation and contact resistance
Borenstien et al. Composite carbon nano-tubes (CNT)/activated carbon electrodes for non-aqueous super capacitors using organic electrolyte solutions
Vijayakumar et al. Electrode mass ratio impact on electrochemical capacitor performance
Wang et al. Coal tar residues-based nanostructured activated carbon/Fe 3 O 4 composite electrode materials for supercapacitors
Li et al. Nitrogen‐Doped Hierarchical Porous Carbon through One‐Step Activation of Bean Curd for High‐Performance Supercapacitor Electrode
Xie et al. Flexible solid‐state supercapacitor based on carbon nanotube/Fe3O4/reduced graphene oxide binary films
KR20180102554A (en) Sodium-ion electrolyte composition
Weinberger et al. Bimodal mesoporous CMK-5 carbon: selective pore filling with sulfur and SnO2 for lithium battery electrodes
Wang et al. Maximized energy density of RuO2//RuO2 supercapacitors through potential dependence of specific capacitance
Kowsari et al. Influence of different N‑benzoyl derivatives of isoleucine on electrochemical properties and pseudocapacitance performance of conductive polymer electroactive film: Electrochemical and theoretical study
Liao et al. The role of alkali cation intercalates on the electrochemical characteristics of Nb2CTX Mxene for energy storage
JP2007112704A (en) Activated carbon, its manufacturing method and polarizable electrode and electric double-layer capacitor using the activated carbon
Kalkan et al. Investigation of supercapacitor electrode performances of phosphorus-doped graphene oxide electrodes in various deep eutectic solvents and symmetric supercapacitor application

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees