JP3924175B2 - Steam superheater - Google Patents

Steam superheater Download PDF

Info

Publication number
JP3924175B2
JP3924175B2 JP2002029534A JP2002029534A JP3924175B2 JP 3924175 B2 JP3924175 B2 JP 3924175B2 JP 2002029534 A JP2002029534 A JP 2002029534A JP 2002029534 A JP2002029534 A JP 2002029534A JP 3924175 B2 JP3924175 B2 JP 3924175B2
Authority
JP
Japan
Prior art keywords
steam
tube
flow path
superheater
hot gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002029534A
Other languages
Japanese (ja)
Other versions
JP2003232502A (en
Inventor
英明 桑原
俊也 三宅
正彦 満田
和人 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002029534A priority Critical patent/JP3924175B2/en
Publication of JP2003232502A publication Critical patent/JP2003232502A/en
Application granted granted Critical
Publication of JP3924175B2 publication Critical patent/JP3924175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Description

【0001】
【発明の属する技術分野】
本発明は、各種ボイラからの蒸気を加熱して過熱蒸気を生成する蒸気過熱器の構造に関するものである。
【0002】
【従来の技術】
燃焼ボイラ、廃熱ボイラ、ごみ焼却ボイラ等各種ボイラの廃熱を利用して蒸気を生成し、この蒸気でタービンを駆動して発電することによって、利用価値の低い熱エネルギーを高付加価値の電気エネルギーに変換して回収する発電システムが注目されている。
【0003】
この種の発電システムにおいては、エネルギー効率を改善するためにボイラからの蒸気をさらに加熱して過熱蒸気とし、この過熱蒸気でタービンを駆動することが望ましい。一般的には、当該過熱器の蒸気管内を通る蒸気を高温の燃焼ガスで間接加熱する構成を採用している。そして、従来の蒸気過熱器では、燃焼ガスが通過する燃焼室の周りに蒸気が通過する蒸気管(蒸気チューブ)がメンブレン状に配置された構成や、蒸気が通過するモノチューブ(単管)がコイル状に巻かれた構成が採用されていた。また、特開平10−306902号公報には、複数本のチューブエレメントを有する過熱器内に、加熱したNa、K等の溶融金属を熱媒として循環させ、チューブエレメント内を通過する蒸気を加熱して加熱蒸気を生成させる方法が開示されている。
【0004】
また、特公昭53―39521号公報(図8参照)には、蒸気管103の外側に筒状の枠体102を設け、蒸気管103と枠体102との隙間に螺旋状のフィン105で螺旋状の流路104を形成し、この流路104に加熱ガスを流通させることにより、蒸気管103内の蒸気を間接的に加熱する蒸気過熱器が提案されている(以下、「従来器」という。)。蒸気管103内側は、環状構造とするとともに蒸気流れ方向に平行に縦フィンが取り付けられている。また、加熱ガスの入口部と出口部には放熱部と称する比較的広い空間部109、119が設けられている。
【0005】
【発明が解決しようとする課題】
ところが、メンブレン方式の過熱器では全体の熱効率を最適なものとするため各蒸気管に均等に蒸気を分配すべく複雑な流路となっていた。また、モノチューブ方式の過熱器では伝熱面積を確保するため、その蒸気配管が非常に長いものとなっていた。このような複雑な流路ないしは非常に長い配管内を通常、流速20〜30m/sという高速で蒸気が流れるために多大な圧力損失が生じ、蒸気の圧力が大幅に低下してしまう。蒸気の圧力エネルギーはタービンを駆動する際に動力エネルギーに効率良く変換される高品位のエネルギーであるため、蒸気の圧力の大幅な低下は大きなエネルギーロスとなる問題があった。また、特開平10−306902号公報に開示された方法は、燃焼ガスの替わりに溶融金属を熱媒として用いて熱効率の改善を図るものであるが、Na、K等腐食性の強い溶融金属を取り扱うため安全面や高コストが障害となり原子炉内の冷却等の特別な用途以外には、実用化されていないのが現状である。
【0006】
一方、上記特公昭53―39521号公報に開示された提案(図8参照)は、螺旋状のフィン105により伝熱面積を増加させるとともに螺旋状の流路により加熱ガスの流速を上昇させて伝熱を促進すること、蒸気管103内の縦フィンにより蒸気の流速を速めて周方向の伝熱の不均一を防止すること、放熱部109、119により加熱ガスから蒸気管103への輻射伝熱を利用すること等により、熱効率の高い低廉な過熱器を提供できるとするものである。この過熱器は、加熱ガス温度が比較的低い場合、すなわち、輻射による熱伝達の寄与が小さい場合に適合するものである。ところが、加熱ガスを生成させる燃焼バーナにおける燃料炊き量が多く、または空気比がそれほど高くない運転条件下では、加熱ガス温度は断熱火炎温度近くになり、輻射による熱伝達が支配的になる。このような運転条件下に上記の過熱器を適用すると、放熱部109や螺旋状流路の入口近傍およびそのすぐ下流では加熱ガスから蒸気管103への輻射による熱伝達が過大となり、蒸気管103の外表面温度が加熱ガス温度に近づき高温酸化等による寿命短縮が懸念される。一方、さらに螺旋状流路の下流側にいくと熱を奪われた加熱ガスの温度は低下し、それに伴い輻射による熱伝達も急激に減少するため、下流域での蒸気管103の受熱量は逆に過小となる。その結果、過熱器全体の熱効率も低下してしまう問題があった。
【0007】
そこで本発明の目的は、加熱ガスとして高温ガスを用いても、熱効率が高く、かつ蒸気の圧力損失が小さい、優れたエネルギー効率を有するとともに、蒸気管(蒸気チューブ)の寿命を延長しうる蒸気過熱器を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、過大なコスト増を招くことがない、簡易な設備構成により上記の目的を達成するものであり、その要旨は以下の通りである。
【0010】
請求項1に記載の発明は、加熱用高温ガスの流路を有する高温ガスチューブと、この高温ガスチューブ内に設けられた被加熱蒸気を通す蒸気チューブとを備えた蒸気過熱器であって、前記高温ガスチューブの両端部に、燃料を燃焼して加熱用高温ガスを発生させる一対のリジェネバーナを備え、この加熱用高温ガスが流通する前記加熱用高温ガスの流路が、前記蒸気チューブの周りにフィンを螺旋状に設けることにより形成されたものであり、前記フィンの高さが、前記流路の両端側より中央側の方が高く、かつ、前記フィンのピッチが、前記流路の両端側より中央側の方が小さいことを特徴とする蒸気過熱器である。
【0011】
請求項2に記載の発明は、前記高温ガスチューブ内であって、前記リジェネバーナと前記加熱用高温ガスの流路との間に燃料の燃焼を進行させる燃焼予備室を備えたことを特徴とする請求項1に記載の蒸気過熱器である。
【0012】
請求項3に記載の発明は、前記蒸気チューブの、前記燃焼予備室内を貫通する部分の外表面が、耐熱性材料で覆われていることを特徴とする請求項に記載の蒸気過熱器である。
【0013】
請求項4に記載の発明は、前記加熱用高温ガスが、前記螺旋状の流路に沿う方向に、前記高温ガスチューブの側壁に沿って導入されることを特徴とする請求項1〜のいずれか1項に記載の蒸気過熱器である。
【0014】
請求項5に記載の発明は、さらに、前記蒸気チューブ内長手方向に沿って中実棒又は中空管を配置し、前記被加熱蒸気が、前記蒸気チューブ内面と前記中実棒又は中空管の外面との間を通るようにしたことを特徴とする請求項1〜のいずれか1項に記載の蒸気過熱器である。
【0015】
(作用)
本発明によれば、高温ガスの流路を蒸気チューブの周りにフィンを螺旋状に設けたことにより、高温ガスの通過する流路の断面積が減少して、流路内における高温ガス流速が上昇する。これにより蒸気チューブ外表面側の対流熱伝達が増加する。すなわち、螺旋状フィンにより蒸気チューブの実質上の伝熱面積が増大し、対流熱伝達の上昇と実質上の伝熱面積の増大との複合効果により、蒸気管を介しての高温ガスから蒸気への伝熱速度が格段に上昇する。したがって、所要の伝熱量を確保するための蒸気チューブの実際の伝熱面積(フィンを除く)を大幅に縮小できる。したがって、蒸気チューブの長さを大幅に短縮でき、その結果、蒸気の圧力損失を著しく低減できるのである。
【0016】
さらに、フィンの高さを高温ガスの上流側より下流側の方を高くしたことにより、上流側ではフィンの面積を小さくして対流伝熱量を減少させ、高温ガスから蒸気チューブへの過大な伝熱を抑制する一方、下流側ではフィンの面積を大きくして、対流伝熱量を積極的に増加させることにより、上流から下流にかけての伝熱量が均一化される。その結果、過熱器の熱効率が大幅に改善されるとともに、蒸気チューブの局所加熱が緩和されて寿命が延長される。
【0017】
また、上記フィン高さの変更に加えて、フィンのピッチを高温ガスの上流側より下流側の方を小さくしたことにより、螺旋状の流路の断面積が上流側と下流側とで大きく異なることがなく、過大な圧力損失が生じない。なお、フィン高さとフィンピッチの組み合わせを適宜調節して流路断面積を上流側で過大としないことが好ましい。さらに、上流側では1ターン当たりの長手方向進行距離が大きく、上流側の滞留時間は下流側に比して短くできるため、下流側により多くの熱量を輸送できる。
【0018】
高温ガスとしては、各種燃料を燃焼した燃焼ガスを用いることができる。燃焼ガスの生成は、例えば別途設けた燃焼炉内で燃料を燃焼して燃焼ガスを生成し、これを配管で高温ガスチューブに導入するようにしてもよいが、高温ガスチューブの一端部に燃焼バーナを設置し、高温ガスチューブ内で燃焼を完了させるようにすることがさらに好ましい。燃焼が完了した後の燃焼ガスから単にガス輻射で伝熱するよりも、未燃物を含む放射率が高い輝炎で伝熱する方が伝熱量が増加するからである。しかも燃焼室内を螺旋構造としたことにより、燃焼ガスの滞留時間が確保されて緩慢な燃焼が実現できるため、確実に輝炎を発生させることができる。
【0019】
あるいは、高温ガスチューブの両端部に高温ガスを発生させるために一対のリジェネバーナを設置した構造としてもよい。リジェネバーナは燃焼空気を加熱する蓄熱体がバーナタイル内に設けられたものであり、一対のリジェネバーナのうち片方のバーナだけを燃焼しつつ、他方のバーナは燃焼せず専ら蓄熱体で燃焼ガスの熱を回収するという操作を交互に入れ替えて行うものである。なお、リジェネバーナを用いる場合には、蒸気チューブ周りの螺旋状のフィンは、フィン高さを流路の両端側より中央側の方を高くし、かつ、フィンピッチを流路の両端側より中央側の方を小さくするとよい。すなわち、一対のリジェネバーナの燃焼が交互に切り替わることにより流路の入口と出口が常時入れ替わるため、流路の両端部で高温ガスによる輻射伝熱が交互に支配的となるのに対し、流路の中央部は、常に対流伝熱が支配的であるためである。つまり、一対のリジェネバーナのうち一方が燃焼状態にある場合、螺旋状流路の上流側となる一端側においてガス温度が高いため輻射伝熱が促進されるが、フィン高さが小さくフィンピッチが大きいため、対流伝熱が抑制される。これに対し、螺旋状流路の中央側では、熱交換によりガス温度が低下して輻射伝熱が抑制されるが、フィン高さが大きくフィンピッチが小さいため、対流伝熱が促進される。さらに螺旋状流路の下流側となる他端側では、熱交換により一層ガス温度が低下し、ガスからの輻射伝熱はさらに抑制されるとともに、再度フィン高さが小さく、かつフィンピッチが大きくなるため、対流伝熱も抑制される。しかし、高温ガスの流通方向が常時入れ替わることにより現在は下流側であっても高温ガスチューブの内壁耐火物は十分加熱されて高温になっているため、時間平均でみればこの内壁面からの輻射伝熱が十分大きくなる。したがって、螺旋状流路の全長にわたって輻射+対流からなる全熱伝達量がさらに均一化される。その結果、過熱器の熱効率がさらに向上するとともに、蒸気チューブの局所加熱がより確実に防止されて寿命がさらに延長される。
【0020】
また、高温ガスチューブ内であって、リジェネバーナと螺旋状流路との間に燃料の燃焼を進行させる燃焼予備室を設けることが好ましい。燃料の燃焼空間を蒸気過熱器内に一体に設けることにより、この燃焼空間を蒸気過熱器と別に設ける必要がなく、設備がコンパクトになる。
【0021】
また、燃焼予備室を設ける場合、蒸気チューブの、燃焼予備室内を貫通する部分は単管であるためチューブ径によっては蒸気流速が低くなるので、その外表面を耐熱性材料で覆うことが好ましい。これにより、燃焼予備室において、蒸気チューブ外表面が高温のガスに直接曝されることがなく、蒸気チューブ外表面の昇温が抑制されて高温酸化が防止されるとともに、螺旋状流路へ無駄なく高温ガスの顕熱が輸送される。
【0022】
また、加熱用高温ガスを、螺旋状流路に沿う方向に、高温ガスチューブの側壁に沿って導入することが好ましい。これにより、高温ガスチューブ内(あるいは燃焼予備室内)にて、蒸気チューブを取り巻くような高温ガスの旋回流が形成され、高温ガスが螺旋状流路へ速やかに導入される。これにより、螺旋を形成するフィンと高温ガスチューブとの間に多少の隙間が存在しても、この隙間を介しての高温ガスのショートパスが生じがたく、高温ガスの顕熱が熱交換に有効に利用される。
【0023】
また、高温ガスの流路を螺旋状にして流路の断面積を小さくし、高温ガスの流速を上昇させたことにより、蒸気チューブ外表面側の対流熱伝達が増加する。これにより高温ガスから被加熱蒸気への対流熱伝達が増加する効果がある。しかし、蒸気チューブ外表面温度が高温ガス温度に近づくため蒸気チューブが高温になり、使用可能な蒸気チューブ材料が制限されたり、蒸気チューブの寿命が短くなる問題がある。
【0024】
この問題は、蒸気チューブ内に中実棒又は中空管を挿入して蒸気が通過する断面積を減少させて蒸気流速を上昇させることにより解決できる。蒸気流速の上昇により蒸気チューブ内表面側の対流熱伝達が上昇し、蒸気チューブ内表面温度が蒸気温度に近づくため蒸気チューブの温度が低下するからである。なお、蒸気の通過する断面積は圧力損失が過大にならない範囲で選択すればよい。
【0025】
【発明の実施の形態】
以下、本発明に係る蒸気過熱器の実施の形態について図面を参照しながら詳細に説明する。
【0026】
(実施形態1)
図1は、本発明(請求項)に係る蒸気過熱器の一形態を示し、(a)は水平断面図、(b)は垂直部分断面図(断熱材、耐火物、枠体のみ断面を示す)である。なお、(a)は、(b)のA―A線断面を示す図である。
【0027】
図1(a)に示すように、本発明に係る蒸気過熱器1は、加熱用の高温ガスの流路(燃焼室)4を有する高温ガスチューブ2と、この高温ガスチューブ2内を貫通させるように設けた、蒸気を通す蒸気チューブ3とを備えている。
【0028】
そして、流路(燃焼室)4内であって、蒸気チューブ3の周りにフィン5を螺旋状に設けて流路(燃焼室)4を螺旋状としている。図1(b)に示すように、フィン5の高さは、耐火物2aおよび/または断熱材2bの厚さを高温ガスチューブ2の高さ方向で変更することにより、流路4の両端側11より中央側12の方を高くしている。また、フィン5のピッチは両端側11で広く、中央側12で狭くする。図示するように、流路4の中央部に近づくほどフィン5のピッチを狭くしてガス流速を上昇させることにより対流熱伝達を促進するようにしてもよい。
【0029】
高温ガスチューブ2の両端部には一対のリジェネバーナ6を設けている。
【0030】
また、高温ガスチューブ2内であって、リジェネバーナ6と流路(燃焼室)4との間に燃焼予備室9を設けている。
【0031】
そして、燃焼予備室9内を貫通する、蒸気チューブ3の外表面は耐熱性材料である耐火物10で被覆している。
【0032】
さらに、図1(a)に示すように、リジェネバーナ6の取り付け方向を高温ガスチューブ2の中心軸から側壁側にずらし、高温ガスが側壁に沿って螺旋状流路4にスムーズに導入されるようにする。
【0033】
高温ガスチューブ2は、従来器(図8参照)と同様、図1(a)、(b)に示すように、例えば鉄製の枠体2cに断熱材2bを介して耐火物2aを内張りした炉とすればよい。炉の形状は特に限定されないが、フィン5の設置の容易さや高温ガスチューブ2外壁(枠体2c)からの熱損失の最小化等を考慮して、図1(a)に示すように円筒形とすることが好ましい。
【0034】
また、高温ガスチューブ2の炉内寸法は、蒸気チューブ3の長さおよび径との関係、後述の燃焼ガス(高温ガス)の必要滞留時間、フィン5の設置の容易さ等を総合的に考慮して決定すればよい。
【0035】
蒸気チューブ3は、熱伝導率が良好でかつ耐熱強度に優れた材料である高合金鋼あるいはステンレス鋼などから高温ガスの温度、組成などの加熱条件に応じて適宜選択すればよい。
【0036】
また、蒸気チューブ3の外表面温度は耐熱強度の関係からできる限り低下させることが望ましい。そのため蒸気チューブ3の管壁の厚さは可能な範囲で薄く形成する。
【0037】
蒸気チューブ3の径と長さは、以下のように決定すればよい。先ず、初期の蒸気温度から所要の過熱蒸気温度まで加熱するのに必要な熱量と、蒸気チューブ3の総括熱伝達係数とから蒸気チューブ3の必要伝熱面積を求める。次に、蒸気流速が、蒸気チューブ3内表面側の対流熱伝達率を十分高く維持しつつ、蒸気の圧力損失が過剰とならない流速範囲となるように蒸気チューブ3の断面積すなわち径を定める。このとき、二重管構造としてもよい。そして、この径と上記で求めた必要伝熱面積とから蒸気チューブ3の長さを決定する。
【0038】
フィン5の高さおよびピッチを調整して螺旋状の流路4の断面積を所定値に設定することにより、当該流路4内における高温ガス流速を所定流速範囲とすることが望ましい。
【0039】
フィン5の材質は、フィンとしての機能を有効に発揮させるため、蒸気チューブ3と同様、熱伝導率が高くかつ耐熱性に優れた材料である高合金鋼あるいはステンレス鋼などから高温ガスの温度、組成など加熱条件に応じて適宜選択すればよい。
【0040】
リジェネバーナの燃料は、ガス状、液状、固体状いずれであってもよい。
【0041】
(実施形態2)
図2は、本発明(請求項)に係る蒸気過熱器を示し、(a)は平面図、(b)は蒸気チューブの部分断面図である。
【0042】
図2に示すように、蒸気チューブ3内に中実棒7を挿入した構造としてもよい。中実棒7の挿入は蒸気流速を速めて蒸気チューブ3内表面側の対流熱伝達を増加させるためであるから、中実棒6の挿入範囲は、少なくとも蒸気チューブ3が高温チューブ2炉内を貫通する部分とすることが好ましい。また、上記対流熱伝達を蒸気チューブ3の円周方向でできるだけ均一にするため、中実棒7は蒸気チューブ3と同心の位置に挿入することが望ましい。なお、中実棒7の替わりに中空管を用いても同様の作用効果が得られる。中実棒(中実管)7の材質はある程度の耐熱性や強度を有するものであれば特に限定されるものではないが、中実棒(中空管)7と蒸気チューブ3との接合のしやすさを考慮して金属製にすることが推奨される。そして、中実棒(中空管)7と蒸気チューブ3との材質や温度の相違による伸びの差を吸収するため、例えば図2(b)に示すように、中実棒(中空管)7の一部をスライド構造8とすることやエクスパンジョン構造(図示せず)とすることが望ましい。
(実施形態3)
図3は、本発明(請求項)に係る蒸気過熱器の別形態を示す垂直部分断面図である。なお、本発明の蒸気過熱器はほぼ上下対称であるので、図3では蒸気過熱器の上半分のみを示す。
【0043】
上記実施形態1(図1参照)においては、燃焼予備室9内を貫通する、蒸気チューブ3の外表面を耐火物10で被覆した例を示したが、本実施形態2においては、耐火物で被覆するかわりに、図3に示すように、高合金鋼やステンレス鋼などの耐熱性材料で形成した輻射シールド10’で蒸気チューブ3を覆っている。これにより、耐火物で被覆した場合と同様、蒸気チューブ3表面を高温ガスの輻射熱から防御することができる。
【0044】
(実施形態4)
図4は、本発明(請求項)に係る蒸気過熱器の別形態を示す垂直部分断面図である。本図においても蒸気過熱器の上半分のみを示す。
【0045】
図4は、上記実施形態1(図1参照)において、流路4の中央側12内に流路4の幅(高温ガスチューブ2内表面と蒸気チューブ3外表面の隙間)の半分程度のフィン高さのフィンを設置する。これにより、中央側12の流路4内におけるガス流速を過大とすることなく(すなわち、圧力損失を過大とすることなく)対流熱伝達を増加させることができる。
【0046】
上記実施形態1〜4においては、燃焼予備室9を高温ガスチューブ2内に設けた例のみについて説明したが、本発明はこれに限られるものではない。例えば、燃焼予備室9を高温チューブ2外(過熱器1外)に別途設け、この燃焼予備室で生成した燃焼ガスを配管で過熱器に導入するようにしてもよい。
【0048】
【実施例】
(1)本発明例
上記実施形態1(図1参照)において、フィン4の高さおよびピッチを図5および表1に示すように過熱器長手方向で変化させて設定し、一対のリジェネバーナ6による燃焼時における過熱器長手方向の交換熱量(蒸気チューブ単位断面積当たりの、高温ガスから蒸気チューブへの熱伝達量)を伝熱計算により求めた。図6に計算結果を模式的に示す。なお、図6の熱交換量は、一対のリジェネバーナ6による燃焼と熱回収とからなる1サイクル分の時間平均値とした。
【0049】
【表1】

Figure 0003924175
【0050】
(2)比較例
従来器(図8参照)において、フィン4の高さおよびピッチを過熱器長手方向で一定とし、リジェネバーナでなく通常の単一のバーナを過熱器頂部側のみに設置した場合について、燃焼時における過熱器長手方向の交換熱量(蒸気チューブ単位断面積当たりの、高温ガスから蒸気チューブへの熱伝達量)を伝熱計算により求めた。図7に計算結果を模式的に示す。
【0051】
(3)本発明例と比較例との熱交換量の分布の比較
比較例(従来器)においては、図7に示すように、輻射による熱伝達量は、過熱器底部近傍(上流側)で非常に多いが、頂部(下流側)にいくにしたがい急速に減少している。一方、対流熱伝達量は、底部から頂部にいくにしたがい徐々に低下している。その結果、輻射+対流による全熱伝達量は、底部側(上流側)で非常に多く、頂部側(下流側)で非常に少なくなり、過熱器全体として熱効率が劣る。
【0052】
これに対し、本発明例においては、図8に示すように、輻射による熱伝達量は、過熱器頂部および底部近傍で多く、中央部近傍で少ないものの、その差は従来器ほど大きくない。これとは逆に、対流熱伝達量は、過熱器頂部および底部近傍で少なく、中央部近傍で多くなっている。その結果、輻射+対流による全熱伝達量は、頂部および底部側と、中央部側とで、従来器に比べ格段に差が小さくなっており、過熱器全体として熱効率が改善されている。
【0053】
【発明の効果】
以上述べたように、本発明によれば、加熱ガスとして高温ガスを用いても、熱効率を高く維持でき、かつ蒸気の圧力損失を小さくできる、エネルギー効率に優れた蒸気過熱器が得られる。また、蒸気チューブの局所加熱を防止して寿命を延長できる。
【0054】
また、簡易な設備構成としたので、過大なコスト増を招くことがない。
【図面の簡単な説明】
【図1】本発明(請求項)に係る蒸気過熱器を示し、(a)水平断面図、(b)は垂直部分断面図である。
【図2】本発明(請求項)に係る蒸気過熱器を示し、(a)は水平断面図、(b)は蒸気チューブの部分断面図である。
【図3】本発明(請求項)に係る蒸気過熱器の別形態を示す垂直部分断面図である。
【図4】本発明(請求項)に係る蒸気過熱器の別形態を示す垂直部分断面図である。
【図5】本発明(請求項)に係る蒸気過熱器のフィンの設置状況の一例を示す垂直部分断面図である。
【図6】本発明例における、過熱器長手方向と交換熱量との関係を模式的に示すグラフ図である。
【図7】比較例における、過熱器長手方向と交換熱量との関係を模式的に示すグラフ図である。
【図8】従来器の蒸気過熱器を示す部分断面図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the structure of a steam superheater that generates superheated steam by heating steam from various boilers.
[0002]
[Prior art]
Steam is generated using the waste heat of various boilers such as combustion boilers, waste heat boilers, waste incineration boilers, etc., and the turbines are driven by this steam to generate electricity. Attention has been focused on power generation systems that convert energy into energy.
[0003]
In this type of power generation system, in order to improve energy efficiency, it is desirable to further heat the steam from the boiler to superheated steam and drive the turbine with this superheated steam. In general, a configuration is adopted in which steam passing through the steam pipe of the superheater is indirectly heated with high-temperature combustion gas. And in the conventional steam superheater, the structure where the steam pipe (steam tube) through which the steam passes around the combustion chamber through which the combustion gas passes is arranged in a membrane shape, or the monotube (single pipe) through which the steam passes A configuration wound in a coil shape was adopted. Japanese Patent Laid-Open No. 10-306902 discloses that a heated metal such as Na and K is circulated as a heat medium in a superheater having a plurality of tube elements, and steam passing through the tube elements is heated. A method for generating heated steam is disclosed.
[0004]
In Japanese Patent Publication No. 53-39521 (see FIG. 8), a cylindrical frame 102 is provided outside the steam pipe 103, and a spiral fin 105 spirals between the steam pipe 103 and the frame 102. A steam superheater that indirectly heats the steam in the steam pipe 103 by forming a flow path 104 in the form of a gas and circulating a heating gas through the flow path 104 has been proposed (hereinafter referred to as “conventional device”). .) The inside of the steam pipe 103 has an annular structure, and vertical fins are attached in parallel to the steam flow direction. In addition, relatively wide spaces 109 and 119 called heat radiating portions are provided at the inlet and outlet portions of the heated gas.
[0005]
[Problems to be solved by the invention]
However, in the membrane type superheater, in order to optimize the overall thermal efficiency, the flow path is complicated to distribute the steam equally to each steam pipe. In addition, the monotube superheater has a very long steam pipe in order to secure a heat transfer area. Since steam flows through such a complicated flow path or a very long pipe at a high flow rate of 20 to 30 m / s, a great pressure loss occurs, and the pressure of the steam is greatly reduced. Since the pressure energy of steam is high-quality energy that is efficiently converted into motive energy when driving the turbine, there has been a problem that a significant decrease in the pressure of steam results in a large energy loss. Further, the method disclosed in Japanese Patent Application Laid-Open No. 10-306902 is intended to improve the thermal efficiency by using a molten metal as a heat medium instead of combustion gas. However, a highly corrosive molten metal such as Na or K is used. The current situation is that it has not been put to practical use except for special uses such as cooling in the reactor because safety and high cost are obstacles to handling.
[0006]
On the other hand, the proposal disclosed in Japanese Patent Publication No. 53-39521 (see FIG. 8) increases the heat transfer area by the spiral fin 105 and increases the flow rate of the heated gas by the spiral flow path. Accelerating heat, increasing the flow velocity of the steam by the vertical fins in the steam pipe 103 to prevent uneven heat transfer in the circumferential direction, and radiating heat transfer from the heated gas to the steam pipe 103 by the heat radiating portions 109 and 119 By utilizing the above, it is possible to provide an inexpensive superheater with high thermal efficiency. This superheater is suitable when the heating gas temperature is relatively low, that is, when the contribution of heat transfer by radiation is small. However, the heating gas temperature is close to the adiabatic flame temperature under the operating conditions where the amount of fuel burned in the combustion burner that generates the heating gas is large or the air ratio is not so high, and heat transfer by radiation becomes dominant. When the above-described superheater is applied under such operating conditions, heat transfer due to radiation from the heated gas to the steam pipe 103 becomes excessive near the inlet of the heat dissipating part 109 and the spiral flow path and immediately downstream thereof, and the steam pipe 103 There is a concern that the outer surface temperature of the glass approaches the heated gas temperature and the life is shortened by high-temperature oxidation or the like. On the other hand, since the temperature of the heated gas that has been deprived of heat further decreases further toward the downstream side of the spiral flow path, and the heat transfer due to radiation also decreases rapidly, the amount of heat received by the steam pipe 103 in the downstream region is On the contrary, it becomes too small. As a result, there is a problem that the thermal efficiency of the entire superheater is also lowered.
[0007]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a steam that has a high thermal efficiency and a low pressure loss of steam, and has excellent energy efficiency, and can extend the life of a steam pipe (steam tube) even when a high-temperature gas is used as a heating gas. It is to provide a superheater.
[0008]
[Means for Solving the Problems]
The present invention achieves the above-mentioned object with a simple equipment configuration that does not cause an excessive increase in cost, and the gist thereof is as follows.
[0010]
Invention of Claim 1 is a steam superheater provided with the high temperature gas tube which has the channel of the hot gas for heating, and the steam tube which passes the to-be-heated steam provided in this high temperature gas tube, At both ends of the hot gas tube, a pair of regenerative burners for burning the fuel to generate the hot gas for heating is provided, and the flow path of the hot gas for heating through which the hot gas for heating circulates The fin is formed in a spiral shape around the fin, the height of the fin is higher on the center side than the both ends of the flow path, and the pitch of the fins is The steam superheater is characterized in that the center side is smaller than the both end sides.
[0011]
The invention described in claim 2 is characterized in that a combustion preparatory chamber is provided in the high-temperature gas tube for advancing fuel combustion between the regenerative burner and the flow path for the heating high-temperature gas. The steam superheater according to claim 1 .
[0012]
The invention according to claim 3, of the steam tube, the outer surface of the portion penetrating the combustion preliminary chamber, steam superheater according to claim 2, characterized in that it is covered with a heat-resistant material is there.
[0013]
According to a fourth aspect of the invention, the heating hot gas, in the direction along the spiral flow path, according to claim 1 to 3, characterized in that it is introduced along the side wall of the hot gas tube It is a steam superheater given in any 1 paragraph.
[0014]
According to the fifth aspect of the present invention, a solid rod or a hollow tube is further disposed along the longitudinal direction in the steam tube, and the steam to be heated is the inner surface of the steam tube and the solid rod or the hollow tube. The steam superheater according to any one of claims 1 to 4 , wherein the steam superheater passes between the outer surface of the steam superheater.
[0015]
(Function)
According to the present invention, the flow path of the hot gas is provided with the fins spirally around the steam tube, so that the cross-sectional area of the flow path through which the hot gas passes is reduced, and the flow velocity of the hot gas in the flow path is increased. To rise. This increases convective heat transfer on the outer surface side of the steam tube. That is, the helical fins increase the effective heat transfer area of the steam tube, and the combined effect of increased convective heat transfer and substantially increased heat transfer area results in hot gas to steam via the steam pipe. The heat transfer rate increases dramatically. Therefore, the actual heat transfer area (excluding fins) of the steam tube for ensuring the required heat transfer amount can be greatly reduced. Therefore, the length of the steam tube can be greatly shortened, and as a result, the pressure loss of the steam can be significantly reduced.
[0016]
Furthermore, by increasing the height of the fin on the downstream side of the upstream side of the hot gas, the area of the fin is reduced on the upstream side to reduce the amount of convection heat transfer, resulting in excessive transfer of heat from the hot gas to the steam tube. While suppressing heat, increasing the area of the fins on the downstream side to positively increase the amount of convective heat transfer makes the amount of heat transfer from upstream to downstream uniform. As a result, the thermal efficiency of the superheater is greatly improved, and the local heating of the steam tube is alleviated to extend the life.
[0017]
In addition to the change in fin height, the pitch of the fins is made smaller on the downstream side than on the upstream side of the high-temperature gas, so that the cross-sectional area of the spiral channel differs greatly between the upstream side and the downstream side. Without excessive pressure loss. In addition, it is preferable that the combination of the fin height and the fin pitch is appropriately adjusted so that the channel cross-sectional area is not excessively increased on the upstream side. Furthermore, since the upstream traveling distance per turn is large on the upstream side, and the residence time on the upstream side can be shortened compared to the downstream side, more heat can be transported to the downstream side.
[0018]
As the high temperature gas, a combustion gas obtained by burning various fuels can be used. For example, combustion gas may be generated by burning fuel in a separately provided combustion furnace to generate combustion gas and introducing it into a high-temperature gas tube through piping. More preferably, a burner is installed to complete the combustion in the hot gas tube. This is because the amount of heat transfer increases when the heat is transferred with a luminous flame having a high emissivity including unburned material, rather than simply transferring heat from the combustion gas after the combustion is completed. In addition, since the combustion chamber has a spiral structure, the residence time of the combustion gas is secured and slow combustion can be realized, so that a bright flame can be reliably generated.
[0019]
Or it is good also as a structure which installed a pair of regeneration burner in order to generate high temperature gas in the both ends of a high temperature gas tube. A regenerative burner has a regenerator that heats combustion air in the burner tile, and burns only one burner of a pair of regenerative burners, while the other burner does not combust but is a regenerative burner. The operation of collecting the heat is alternately performed. When a regenerative burner is used, the fins around the steam tube have a fin height higher at the center than at both ends of the flow path, and the fin pitch is at the center from both ends of the flow path. The side should be smaller. That is, the combustion of the pair of regenerative burners is switched alternately so that the inlet and outlet of the flow path are always switched, so that the radiant heat transfer by the high-temperature gas is alternately dominant at both ends of the flow path. This is because the convective heat transfer is always dominant in the central part of. That is, when one of the pair of regenerative burners is in a combustion state, radiation heat transfer is promoted because the gas temperature is high on one end side, which is the upstream side of the spiral flow path, but the fin height is small and the fin pitch is small. Since it is large, convective heat transfer is suppressed. On the other hand, on the central side of the spiral flow path, the gas temperature is reduced by heat exchange and radiant heat transfer is suppressed, but convective heat transfer is promoted because the fin height is large and the fin pitch is small. Furthermore, on the other end side, which is the downstream side of the spiral flow path, the gas temperature is further lowered by heat exchange, and radiation heat transfer from the gas is further suppressed, and the fin height is again small and the fin pitch is large. Therefore, convective heat transfer is also suppressed. However, since the flow direction of the high-temperature gas constantly changes, the inner wall refractory of the high-temperature gas tube is sufficiently heated to a high temperature even at the downstream side. Heat transfer becomes large enough. Therefore, the total heat transfer amount including radiation + convection is further uniformized over the entire length of the spiral flow path. As a result, the thermal efficiency of the superheater is further improved, and local heating of the steam tube is more reliably prevented and the life is further extended.
[0020]
In addition, it is preferable to provide a combustion preparatory chamber in the high-temperature gas tube between the regenerative burner and the spiral flow path for promoting the combustion of fuel. By providing the combustion space of the fuel integrally in the steam superheater, it is not necessary to provide this combustion space separately from the steam superheater, and the equipment becomes compact.
[0021]
Further, when the combustion preparatory chamber is provided, the portion of the steam tube that penetrates the combustion preparatory chamber is a single tube, so that the steam flow rate is low depending on the tube diameter. Therefore, the outer surface is preferably covered with a heat resistant material. As a result, the outer surface of the steam tube is not directly exposed to the high-temperature gas in the preliminary combustion chamber, and the temperature rise on the outer surface of the steam tube is suppressed to prevent high-temperature oxidation, and the spiral channel is wasted. Without sensible heat of hot gas.
[0022]
Moreover, it is preferable to introduce the hot gas for heating along the side wall of the hot gas tube in a direction along the spiral flow path. As a result, a swirling flow of the high-temperature gas surrounding the steam tube is formed in the high-temperature gas tube (or the combustion preparatory chamber), and the high-temperature gas is quickly introduced into the spiral flow path. As a result, even if there are some gaps between the fins forming the spiral and the high-temperature gas tube, a short path for the high-temperature gas hardly occurs through the gap, and the sensible heat of the high-temperature gas is used for heat exchange. It is used effectively.
[0023]
Further, the convective heat transfer on the outer surface side of the steam tube is increased by making the flow path of the high-temperature gas spiral to reduce the cross-sectional area of the flow path and increasing the flow velocity of the high-temperature gas. This has the effect of increasing convective heat transfer from the hot gas to the heated steam. However, since the steam tube outer surface temperature approaches the high temperature gas temperature, the steam tube becomes high temperature, and there is a problem that usable steam tube material is limited or the life of the steam tube is shortened.
[0024]
This problem can be solved by inserting a solid rod or hollow tube into the steam tube to reduce the cross-sectional area through which the steam passes and increase the steam flow rate. This is because the convective heat transfer on the inner surface side of the steam tube increases due to the increase of the steam flow velocity, and the temperature of the steam tube decreases because the inner surface temperature of the steam tube approaches the steam temperature. In addition, what is necessary is just to select the cross-sectional area which a vapor | steam passes in the range which does not become excessive pressure loss.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a steam superheater according to the present invention will be described in detail with reference to the drawings.
[0026]
(Embodiment 1)
FIG. 1 shows an embodiment of a steam superheater according to the present invention (Claim 4 ), (a) is a horizontal cross-sectional view, (b) is a vertical partial cross-sectional view (insulating material, refractory, and frame only cross section). Show). In addition, (a) is a figure which shows the AA line cross section of (b).
[0027]
As shown in FIG. 1 (a), a steam superheater 1 according to the present invention penetrates through a high-temperature gas tube 2 having a flow path (combustion chamber) 4 for a high-temperature gas for heating and the inside of the high-temperature gas tube 2. And a steam tube 3 through which steam passes.
[0028]
In the flow path (combustion chamber) 4, fins 5 are provided in a spiral shape around the steam tube 3, and the flow path (combustion chamber) 4 is formed in a spiral shape. As shown in FIG. 1 (b), the height of the fin 5 can be adjusted by changing the thickness of the refractory 2a and / or the heat insulating material 2b in the height direction of the high-temperature gas tube 2 to both ends of the flow path 4. The central side 12 is made higher than 11. Further, the pitch of the fins 5 is wide at the both end sides 11 and narrowed at the central side 12. As shown in the figure, the pitch of the fins 5 may be narrowed toward the center of the flow path 4 to increase the gas flow rate, thereby promoting convective heat transfer.
[0029]
A pair of regeneration burners 6 are provided at both ends of the high temperature gas tube 2.
[0030]
Further, a combustion preliminary chamber 9 is provided in the high temperature gas tube 2 between the regenerative burner 6 and the flow path (combustion chamber) 4.
[0031]
And the outer surface of the steam tube 3 which penetrates the inside of the combustion preliminary chamber 9 is coat | covered with the refractory 10 which is a heat resistant material.
[0032]
Further, as shown in FIG. 1A, the attaching direction of the regenerative burner 6 is shifted from the central axis of the hot gas tube 2 to the side wall, and the hot gas is smoothly introduced into the spiral flow path 4 along the side wall. Like that.
[0033]
As shown in FIGS. 1 (a) and 1 (b), the high temperature gas tube 2 is a furnace in which a refractory 2a is lined through a heat insulating material 2b, for example, as shown in FIGS. 1 (a) and 1 (b). And it is sufficient. The shape of the furnace is not particularly limited, but is cylindrical as shown in FIG. 1 (a) in consideration of ease of installation of the fins 5 and minimization of heat loss from the outer wall of the high temperature gas tube 2 (frame body 2c). It is preferable that
[0034]
In addition, the dimensions of the high-temperature gas tube 2 in the furnace are comprehensively considered in relation to the length and diameter of the steam tube 3, the required residence time of the combustion gas (high-temperature gas) described later, the ease of installation of the fins 5, etc. And decide.
[0035]
The steam tube 3 may be appropriately selected from high alloy steel or stainless steel, which is a material having good thermal conductivity and excellent heat resistance, according to heating conditions such as the temperature and composition of the high-temperature gas.
[0036]
Moreover, it is desirable to reduce the outer surface temperature of the steam tube 3 as much as possible from the relation of the heat resistance strength. Therefore, the thickness of the tube wall of the steam tube 3 is made as thin as possible.
[0037]
The diameter and length of the steam tube 3 may be determined as follows. First, the necessary heat transfer area of the steam tube 3 is obtained from the amount of heat necessary for heating from the initial steam temperature to the required superheated steam temperature and the overall heat transfer coefficient of the steam tube 3. Next, the cross-sectional area, that is, the diameter of the steam tube 3 is determined so that the steam flow velocity is within a flow velocity range in which the steam pressure loss is not excessive while maintaining the convective heat transfer coefficient on the inner surface side of the steam tube 3 sufficiently high. At this time, a double tube structure may be used. And the length of the steam tube 3 is determined from this diameter and the required heat transfer area calculated | required above.
[0038]
By adjusting the height and pitch of the fins 5 and setting the cross-sectional area of the spiral flow path 4 to a predetermined value, it is desirable that the high-temperature gas flow rate in the flow path 4 be within a predetermined flow rate range.
[0039]
The material of the fin 5 is a high-temperature gas temperature from high alloy steel or stainless steel, which is a material having high thermal conductivity and excellent heat resistance, in order to effectively exhibit the function as the fin, What is necessary is just to select suitably according to heating conditions, such as a composition.
[0040]
The fuel of the regenerative burner may be gaseous, liquid, or solid.
[0041]
(Embodiment 2)
FIG. 2 shows a steam superheater according to the present invention (Claim 5 ), wherein (a) is a plan view and (b) is a partial sectional view of a steam tube.
[0042]
As shown in FIG. 2, the solid tube 7 may be inserted into the steam tube 3. The insertion of the solid rod 7 is to increase the convection heat transfer on the inner surface side of the steam tube 3 by increasing the steam flow velocity. Therefore, the insertion range of the solid rod 6 is at least that of the steam tube 3 in the high-temperature tube 2 furnace. It is preferable to use a penetrating part. In order to make the convective heat transfer as uniform as possible in the circumferential direction of the steam tube 3, it is desirable to insert the solid rod 7 at a position concentric with the steam tube 3. The same effect can be obtained by using a hollow tube instead of the solid rod 7. The material of the solid rod (solid tube) 7 is not particularly limited as long as it has a certain degree of heat resistance and strength. However, the solid rod (hollow tube) 7 and the steam tube 3 are joined together. It is recommended to use metal for ease of use. And in order to absorb the difference in elongation due to the difference in material and temperature between the solid rod (hollow tube) 7 and the steam tube 3, for example, as shown in FIG. 2 (b), the solid rod (hollow tube) It is desirable that a part of 7 be a slide structure 8 or an expansion structure (not shown).
(Embodiment 3)
FIG. 3 is a vertical partial sectional view showing another embodiment of the steam superheater according to the present invention (claim 4 ). Since the steam superheater of the present invention is substantially symmetrical in the vertical direction, only the upper half of the steam superheater is shown in FIG.
[0043]
In the first embodiment (see FIG. 1), the example in which the outer surface of the steam tube 3 penetrating the combustion preliminary chamber 9 is coated with the refractory 10 has been shown. However, in the second embodiment, the refractory is used. Instead of covering, the steam tube 3 is covered with a radiation shield 10 'formed of a heat-resistant material such as high alloy steel or stainless steel as shown in FIG. Thereby, the surface of the vapor | steam tube 3 can be protected from the radiant heat of high temperature gas like the case where it coat | covers with a refractory.
[0044]
(Embodiment 4)
FIG. 4 is a vertical partial sectional view showing another embodiment of the steam superheater according to the present invention (claim 4 ). Also in this figure, only the upper half of the steam superheater is shown.
[0045]
FIG. 4 shows a fin about half the width of the flow path 4 (gap between the inner surface of the high temperature gas tube 2 and the outer surface of the steam tube 3) in the central side 12 of the flow path 4 in the first embodiment (see FIG. 1). Install height fins. Thereby, convective heat transfer can be increased without excessively increasing the gas flow velocity in the flow path 4 on the central side 12 (that is, without excessively increasing pressure loss).
[0046]
In the first to fourth embodiments, only the example in which the combustion preliminary chamber 9 is provided in the high temperature gas tube 2 has been described, but the present invention is not limited to this. For example, the combustion preliminary chamber 9 may be separately provided outside the high-temperature tube 2 (outside the superheater 1), and the combustion gas generated in this combustion preliminary chamber may be introduced into the superheater by piping.
[0048]
【Example】
(1) Invention Example In the first embodiment (see FIG. 1), the height and pitch of the fins 4 are set by changing in the longitudinal direction of the superheater as shown in FIG. The amount of heat exchanged in the longitudinal direction of the superheater during the combustion by (the amount of heat transfer from the hot gas to the steam tube per unit cross-sectional area of the steam tube) was obtained by heat transfer calculation. FIG. 6 schematically shows the calculation result. In addition, the heat exchange amount of FIG. 6 was made into the time average value for 1 cycle which consists of combustion by a pair of regenerative burner 6, and heat recovery.
[0049]
[Table 1]
Figure 0003924175
[0050]
(2) Comparative example In the conventional device (see FIG. 8), the height and pitch of the fins 4 are constant in the superheater longitudinal direction, and a normal single burner is installed only on the top side of the superheater instead of the regenerative burner The amount of heat exchanged in the longitudinal direction of the superheater during combustion (the amount of heat transferred from the hot gas to the steam tube per unit cross-sectional area of the steam tube) was determined by heat transfer calculation. FIG. 7 schematically shows the calculation result.
[0051]
(3) In the comparative comparative example (conventional device) of the heat exchange amount distribution between the present invention example and the comparative example, as shown in FIG. 7, the heat transfer amount by radiation is near the bottom of the superheater (upstream side). Although it is very large, it decreases rapidly as it goes to the top (downstream side). On the other hand, the amount of convective heat transfer gradually decreases as it goes from the bottom to the top. As a result, the total heat transfer amount by radiation + convection is very large on the bottom side (upstream side) and very small on the top side (downstream side), and the overall superheater is inferior in thermal efficiency.
[0052]
On the other hand, in the example of the present invention, as shown in FIG. 8, the amount of heat transfer due to radiation is large near the top and bottom of the superheater and small near the center, but the difference is not as great as the conventional device. On the contrary, the amount of convective heat transfer is small near the top and bottom of the superheater and large near the center. As a result, the total heat transfer amount by radiation + convection is much smaller on the top and bottom sides and on the center side than in the conventional device, and the overall efficiency of the superheater is improved.
[0053]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a steam superheater excellent in energy efficiency that can maintain high thermal efficiency and reduce pressure loss of steam even when a high-temperature gas is used as a heating gas. In addition, it is possible to extend the life by preventing local heating of the steam tube.
[0054]
In addition, since the equipment configuration is simple, an excessive cost increase is not caused.
[Brief description of the drawings]
FIG. 1 shows a steam superheater according to the present invention (Claim 4 ), wherein (a) is a horizontal sectional view and (b) is a vertical partial sectional view.
FIG. 2 shows a steam superheater according to the present invention (Claim 5 ), (a) is a horizontal sectional view, and (b) is a partial sectional view of a steam tube.
FIG. 3 is a vertical partial sectional view showing another embodiment of the steam superheater according to the present invention (claim 4 ).
FIG. 4 is a vertical partial sectional view showing another embodiment of the steam superheater according to the present invention (claim 4 ).
FIG. 5 is a vertical partial cross-sectional view showing an example of installation status of fins of the steam superheater according to the present invention (Claim 4 ).
FIG. 6 is a graph schematically showing the relationship between the superheater longitudinal direction and the amount of exchange heat in an example of the present invention.
FIG. 7 is a graph schematically showing the relationship between the superheater longitudinal direction and the amount of exchange heat in a comparative example.
FIG. 8 is a partial cross-sectional view showing a conventional steam superheater.

Claims (5)

加熱用高温ガスの流路を有する高温ガスチューブと、この高温ガスチューブ内に設けられた被加熱蒸気を通す蒸気チューブとを備えた蒸気過熱器であって、
前記高温ガスチューブの両端部に、燃料を燃焼して加熱用高温ガスを発生させる一対のリジェネバーナを備え、この加熱用高温ガスが流通する前記加熱用高温ガスの流路が、前記蒸気チューブの周りにフィンを螺旋状に設けることにより形成されたものであり、前記フィンの高さが、前記流路の両端側より中央側の方が高く、かつ、前記フィンのピッチが、前記流路の両端側より中央側の方が小さいことを特徴とする蒸気過熱器。
A steam superheater comprising a high-temperature gas tube having a flow path for a high-temperature gas for heating, and a steam tube for passing the heated steam provided in the high-temperature gas tube,
At both ends of the hot gas tube, a pair of regenerative burners for burning the fuel to generate the hot gas for heating is provided, and the flow path of the hot gas for heating through which the hot gas for heating circulates The fin is formed in a spiral shape around the fin, the height of the fin is higher on the center side than the both ends of the flow path, and the pitch of the fins is A steam superheater characterized in that the center side is smaller than the both end sides.
前記高温ガスチューブ内であって、前記リジェネバーナと前記加熱用高温ガスの流路との間に燃料の燃焼を進行させる燃焼予備室を備えたことを特徴とする請求項に記載の蒸気過熱器。2. The steam superheat according to claim 1 , further comprising a combustion pre-chamber that advances combustion of fuel between the regenerative burner and the flow path of the heating hot gas in the hot gas tube. vessel. 前記蒸気チューブの、前記燃焼予備室内を貫通する部分の外表面が、耐熱性材料で覆われていることを特徴とする請求項に記載の蒸気過熱器。The steam superheater according to claim 2 , wherein an outer surface of a portion of the steam tube passing through the combustion preparatory chamber is covered with a heat resistant material. 前記加熱用高温ガスが、前記螺旋状の流路に沿う方向に、前記高温ガスチューブの側壁に沿って導入されることを特徴とする請求項1〜のいずれか1項に記載の蒸気過熱器。The steam superheating according to any one of claims 1 to 3 , wherein the hot gas for heating is introduced along a side wall of the hot gas tube in a direction along the spiral flow path. vessel. さらに、前記蒸気チューブ内長手方向に沿って中実棒又は中空管を配置し、前記被加熱蒸気が、前記蒸気チューブ内面と前記中実棒又は中空管の外面との間を通るようにしたことを特徴とする請求項1〜のいずれか1項に記載の蒸気過熱器。Furthermore, a solid rod or a hollow tube is arranged along the longitudinal direction in the steam tube so that the heated steam passes between the inner surface of the steam tube and the outer surface of the solid rod or the hollow tube. The steam superheater according to any one of claims 1 to 4 , wherein the steam superheater is provided.
JP2002029534A 2002-02-06 2002-02-06 Steam superheater Expired - Fee Related JP3924175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002029534A JP3924175B2 (en) 2002-02-06 2002-02-06 Steam superheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002029534A JP3924175B2 (en) 2002-02-06 2002-02-06 Steam superheater

Publications (2)

Publication Number Publication Date
JP2003232502A JP2003232502A (en) 2003-08-22
JP3924175B2 true JP3924175B2 (en) 2007-06-06

Family

ID=27773724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002029534A Expired - Fee Related JP3924175B2 (en) 2002-02-06 2002-02-06 Steam superheater

Country Status (1)

Country Link
JP (1) JP3924175B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019822B2 (en) * 2005-08-19 2012-09-05 モーディーン・マニュファクチャリング・カンパニー Water evaporator with intermediate steam superheat path
US8171985B2 (en) * 2005-08-19 2012-05-08 Modine Manufacturing Company Water vaporizer with intermediate steam superheating pass
JP5473342B2 (en) * 2008-02-27 2014-04-16 大阪瓦斯株式会社 Fluid heating device, superheated steam generator, and hot water supply device
CN102620471A (en) * 2010-02-23 2012-08-01 傅礼铭 Solar heating and cooling system for building
JP5744672B2 (en) * 2011-08-08 2015-07-08 大阪瓦斯株式会社 Steam superheater
JP6744666B2 (en) * 2018-06-21 2020-08-19 株式会社宮村鐵工所 Steam heating device
JP2023506006A (en) * 2019-12-12 2023-02-14 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド Heat exchanger components with varying helix angles
CN114110560B (en) * 2021-10-20 2023-07-21 西安精密机械研究所 Variable-structure spiral coil boiler reactor

Also Published As

Publication number Publication date
JP2003232502A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
US9546798B2 (en) Combined gas-water tube hybrid heat exchanger
EP2069692B1 (en) Radiant heat transfer system
JP3924175B2 (en) Steam superheater
JPH0313482B2 (en)
JP2000146139A (en) Steam generator generating superheated steam for incineration facility using corrosive flue gas
US6318305B1 (en) Water-tube boiler
US6253715B1 (en) Water-tube boiler
JP2001041402A (en) Oxygen combustion water tube boiler
CN102913892B (en) T-shaped boiler with reheater
CN101002053A (en) Method and apparatus for generating water vapour adapted to oxycombustion
JP2002533643A (en) Fossil fuel once-through boiler
RU69198U1 (en) HEATER
JP4463825B2 (en) Once-through boiler
JP4458552B2 (en) Through-flow boiler with evaporator tubes arranged in a spiral
US20230349546A1 (en) Boiler Tube Insert and Boiler Tubes Having Inserts
CN217952265U (en) Primary air secondary heating system for improving stable combustion capacity of circulating fluidized bed boiler
JPH11211353A (en) Heating furnace using radiant tube as heat source
JP4165097B2 (en) Water tube boiler
EP2795189B1 (en) A steam boiler comprising a radiation element
JPH10246403A (en) Water tube boiler
KR200284723Y1 (en) Heat Exchanger of Gas Boiler for Home use
RU2296919C2 (en) Hot-water water-tube boiler
JP2005156131A (en) Water tube boiler
JPH0275803A (en) Flue water tube boiler
SU342020A1 (en) WATER BOILER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees