JP3923657B2 - Diameter measurement method for circular holes - Google Patents

Diameter measurement method for circular holes Download PDF

Info

Publication number
JP3923657B2
JP3923657B2 JP16736598A JP16736598A JP3923657B2 JP 3923657 B2 JP3923657 B2 JP 3923657B2 JP 16736598 A JP16736598 A JP 16736598A JP 16736598 A JP16736598 A JP 16736598A JP 3923657 B2 JP3923657 B2 JP 3923657B2
Authority
JP
Japan
Prior art keywords
image
hole
circular hole
diameter
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16736598A
Other languages
Japanese (ja)
Other versions
JP2000002512A (en
Inventor
稔 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP16736598A priority Critical patent/JP3923657B2/en
Publication of JP2000002512A publication Critical patent/JP2000002512A/en
Application granted granted Critical
Publication of JP3923657B2 publication Critical patent/JP3923657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,外形加工されたリードフレームとその治具孔を有する製品等、円孔が形成されている製品の円孔の径の測定方法に関する。
【0002】
【従来の技術】
近年、半導体装置は、電子機器の高性能化と軽薄短小化の傾向(時流)からLSIのASICに代表されるように、ますます高集積化、高機能化になっている。
これに伴い、外部端子(ピン)の総数の増加となり、ますます多端子(ピン)化が求められるようになってきた。
多端子(ピン)IC、特にゲートアレイやスタンダードセルに代表されるASICあるいは、マイコン、DSP(Digital Signal Processor)等の半導体装置化には、リードフレームを用いたものとしては、QFP(Quad Flat Package)等の表面実装型パッケージが用いられており、QFPでは300ピンクラスのものまでが実用化に至ってきている。QFPは、図7(b)に示す単層リードフレーム710を用いたもので、図7(a)に示すように、ダイパッド711上に半導体素子720を搭載し、銀めっき、金めっき等の処理がされたインナーリード712の先端部と半導体素子720の端子(電極パッド)721とをワイヤ730にて結線した後に、樹脂740で封止し、ダムバー部714をカットし、アウターリード713部をガルウイング状に折り曲げて作製されている。このようなQFPは、パッケージの4方向へ外部回路と電気的に接続するためのアウターリードを設けた構造となり、多端子(ピン)化に対応できるものとして開発されてきた。ここで用いられる単層リードフレーム710は、通常、コバール、42合金(42%Ni−鉄)、銅系合金等の導電性に優れ、且つ強度が大きい金属板をフオトリソグラフイー技術を用いたエッチング加工方法やスタンピング法等により、図7(b)(イ)に示すような形状に加工して作製されていた。
尚、図7(b)(ロ)は図7(b)(イ)のF1−F2における断面図である。
【0003】
リードフレームは、通常、図7(b)に示すリードフレーム単体を複数個、連結部にて枠部(フレーム部とも言う)に連結した1フレーム(1連とも言う)の状態で外形加工された後、1フレーム(1連とも言う)の状態のまま、めっき処理、ダウンセット処理、半導体素子の搭載、樹脂封止処理が行われる。
このため、各処理における位置決めを行うための、貫通孔からなる治具孔を1フレームの枠部等に設けることが一般的であるが、特に、エッチングによるリードフレームの外形加工においては、この治具孔の径寸法により、製品部の寸法的な品質判断する目安とする場合があり、近年の半導体装置の多端子化に伴う多ピン化、狭ピッチ化により、ますます、この治具孔の径寸法の正確な測定が求められている。
【0004】
従来、この治具孔の測定は、撮像手段により得られた治具孔画像から画像処理手段により治具孔画像に対し、膨張、縮退処理を施し、孔部に突出した形状や異物の影響を除去して、輪郭データを抽出し、さらに得られた円孔画像の輪郭データから試料の円孔の径寸法を演算処理して求めていた。
しかし、この方法の場合、治具孔画像に対する膨張、縮退処理を施しても、大きな異物を除去しきれなかったり、正常の部分の形状まで変化してしまうことがあり、また、本当に孔の径が小さい場合にも異物付着と判定されてしまうことがあり、問題となっていた。
【0005】
【発明が解決しようとする課題】
上記のように、エッチングによるリードフレームの外形加工においては、この治具孔の径寸法を正確に測定する方法が求められていた。
本発明は、これに対応するもので、撮像手段により円孔を含む領域を撮影し、得られた円孔画像から画像処理手段により円孔画像の輪郭データを抽出し、さらに得られた円孔画像の輪郭データから試料の円孔の径寸法を演算処理して求める、試料の円孔の径寸法の測定方法で、試料の円孔の径寸法を正確に測定する方法を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明の円孔の径寸法測定方法は、撮像手段により円孔を含む領域を撮影し、得られた円孔画像から画像処理手段により円孔画像の輪郭データを抽出し、さらに得られた円孔画像の輪郭データから試料の円孔の径寸法を演算処理して求める、試料の円孔の径寸法の測定方法であって、円孔を含む領域を撮影した撮影画像から、円孔画像の輪郭をたどり、円孔画像の輪郭を表す第1のベクトル列を求め、該第1のベクトル列のうち、ベクトルの方向の変化が所定の値の範囲でない急峻な箇所で挟まれた区間のベクトルがあれば、これを第1のベクトル列から除外して残った第2ベクトル列から、なければ第1のベクトル列から、実座標で表される輪郭座標列を得て、得られた輪郭座標列を用い、楕円近似により円孔画像の中心位置座標を求め、楕円近似により求められた円孔画像の中心位置座標を通り、且つ、円孔画像の径を測定する方向を含む所定の角度範囲内の直線を1つないし複数とり、それぞれの直線と輪郭座標列により表される輪郭との2交点間の距離をそれぞれ算出し、これらを平均化して、測定する方向における円孔画像の径寸法として求め、これより試料の円孔の径寸法を求めることを特徴とするものである。
そして、上記において、試料が外形加工されたリードフレームとその治具孔を有するもので、治具孔の径寸法を測定するものであることを特徴とするものであり、該治具孔は貫通孔で、透過照明によりその治具孔を含む領域を撮影し、画像処理手段により治具孔画像の各画素データを所定のスライスレベルにより2値化して、2値化画像データから治具孔画像の輪郭データを抽出するものであることを特徴とするものである。
【0007】
【作用】
本発明の円孔の径寸法測定方法は、上記のように構成することにより、撮像手段により円孔を含む領域を撮影し、得られた円孔画像から画像処理手段により円孔画像の輪郭データを抽出し、さらに得られた円孔画像の輪郭データから演算処理部により試料の円孔の径寸法を演算処理して求める、試料の円孔の径寸法の測定方法で、試料の円孔の径寸法を正確に測定する方法の提供を可能としている。具体的には、円孔を含む領域を撮影した撮影画像から、円孔画像の輪郭をたどり、円孔画像の輪郭を表す第1のベクトル列を求め、該第1のベクトル列のうち、ベクトルの方向の変化が所定の値の範囲でない急峻な箇所で挟まれた区間のベクトルがあれば、これを第1のベクトル列から除外して残った第2のベクトル列から、なければ第1のベクトル列から、実座標で表される輪郭座標列を得て、得られた輪郭座標列を用い、楕円近似により円孔画像の中心位置座標を求め、楕円近似により求められた円孔画像の中心位置座標を通り、且つ、円孔画像の径を測定する方向を含む所定の角度範囲内の直線を1つないし複数とり、それぞれの直線と輪郭座標列により表される輪郭との2交点間の距離をそれぞれ算出し、これらを平均化して、測定する方向における円孔画像の径寸法として求め、これより試料の円孔の径寸法を求めることにより、これを達成している。
また、試料が外形加工されたリードフレームとその治具孔を有するもので、治具孔の径寸法を測定するものである場合には、エッチング加工における、リードフレームの外形加工の寸法品質管理上で特に有効である。
また、治具孔を貫通孔とし、透過照明によりその治具孔を含む領域を撮影し、画像処理手段により治具孔画像の各画素データを所定のスライスレベルにより2値化して、2値化画像データから治具孔画像の輪郭データを抽出するものであることにより、比較的簡単に、且つ正確に治具孔画像の輪郭データを得ることができる。
【0008】
【発明の実施の形態】
本発明の円孔の径寸法測定方法の実施の形態の1例を挙げて説明する。
図1は、本発明の円孔の径寸法測定方法の実施の形態の1例の工程フロー図で、図2は治具孔の撮影画像の図で、図3(a)は2値化画像の治具孔の輪郭と輪郭に沿うベクトルを示した図で、図3(b)は図3(a)に示す各ベクトルを成分表示した図で、図4はベクトルの方向の変化を示した図、図5は一部のベクトルを除いたベクトル列から実座標で表される輪郭座標列をつなぎ表示した図、図6は径寸法を測定する方法を説明するための図である。
本例はリードフレームの貫通孔からなる治具孔の径寸法を測定する例で、治具孔を含む領域を透過照明により撮影し、得られた治具孔画像から画像処理手段により治具孔画像の輪郭データを抽出し、さらに得られた治具孔画像の輪郭データから治具孔の径寸法を演算処理して求める径寸法の測定方法である。
図1〜図6中、110は光強度大の領域(貫通部の領域)、120は光強度小の領域、125は異物部、130は画素、131は値が1の画素、132は値が0の画素、A0〜A9はベクトルを示している。
【0009】
以下、図1に基づいて本例の円孔の径寸法測定方法処理を説明する。
尚、説明を分かり易くするため、治具孔部のみについて説明を限定する。
図1中、S110〜S130は処理ステップを示すものである。
治具孔部を透過照明により撮影する。(S110)
透過照明による撮影のため、撮影画像は、治具孔部が光強度大の領域(貫通部の領域)となり、それ以外の素材部分は光強度小の領域となり撮影される。
治具孔がほぼ円状である場合には、治具孔画像は、図2(b)に示すように、ほぼ円状の光強度大の領域110を形成するが、治具孔領域内に達する照明光に不透明な異物がある場合には、例えば、図2(a)に示すように、光強度小の領域120である異物の画像125が撮影され、光強度大の領域110の形状が、本来の治具孔の形状と異なってくる。
撮影はCCD素子を用いたエリアセンサカメラで、あるいはラインセンサカメラを用い、試料であるリードフレームを移動させながら行う。
照明は、ハロゲン光源を用いた光ファイバー照明等で行っても良い。
【0010】
次いで、得られた撮影画像を以下のように画像処理して、治具孔の径寸法を抽出する。
はじめに、撮影により得られた撮影画像について、各画素毎に、所定のスライスレベルで2値化処理を行い、2値化画像を作成する。(S121)
ここでは光強度が所定のレベル以上の画素を値1、所定のレベルより下の画素を値0として2値化する。
次いで、得られた2値化画像から、治具孔画像の輪郭をたどり、治具孔画像の輪郭を表すベクトル列を求める。(S122)
尚、2値化画像から治具孔のおおよその中心を求めるには、例えば、それぞれ、X、Y方向の画素位置ごとに、値1の画素の数を採り、各方向のピークの位置を、それぞれおおよその中心(仮中心座標とも言う)を表す座標とすれば良い。
そして、このようにして得られた仮中心座標から任意の方向へ、画像の値を検索し、画素の値が1から0に変化する箇所、即ち、2値化画像の治具孔の輪郭の一部に相当する箇所を探索し、その箇所を起点として、順番に、2値化画像の治具孔の輪郭をたどり、輪郭を表すベクトル列を求める。
例えば、図3(a)のように、2値化画像の治具孔の一部が拡大して示された場合、画素A(i、j)を起点の画素とした場合、治具孔の輪郭をたどるベクトルは、図3に示す、A0、A1、A2、A3、A4、A5、A6、A7、A8、A9となり、それぞれ、図3(b)のように、その成分で表される。
これらのベクトルの列を第1のベクトル列と言い、ここではベクトル列A(i)(i=0、1、2、−−−、nでnは整数)とする。
尚、ここでは、各ベクトルは、値1の輪郭画素から隣接する最短距離の値1の輪郭画素へのベクトルを示すものである。
【0011】
次いで得られたベクトル列のベクトルの方向変化を調べる。(S123)
通常、図3に示すような、最短距離に隣接する輪郭画素毎のベクトル列をそのまま用いず、大局的にベクトル列のベクトルの方向変化をとらえるには、例えば、図3に示す、ベクトル列を順に複数個毎に1つのベクトルとして表したベクトル列を作成し、このベクトル列の各ベクトルの変化をとる。
例えば、図3に示すベクトル列A(i)を、順に、5個づつ加算したベクトルからなるベクトル列B(j)(j=0、1、2、−−−−、mで、mは整数)を作成する。
B(j)は以下の式で表される。

Figure 0003923657
(但し、j=0、1、2、−−−−、mで、mは整数)
B(j)とB(j+1)とのなす角をθ(j)とした場合、cosθ(j)をCjとすると、Cjは以下の式で表される。
Figure 0003923657
(但し、Lv.B(j)はB(j)の長さを表すものとする。)
そして、Cjをグラフをベクトル列の順にグラフ化する。
図4は、2値化画像に異物部の画像(図2(a)の125に相当)を含む場合のグラフである。
通常、画素のサイズと治具孔の孔径との関係より、治具孔がほぼ円に近い場合には、Cjはほぼ1に近い値を示すが、図2(a)に示す撮影画像の場合のように、その2値化画像に異物部の画像(図2(a)の125に相当)を含む箇所においては、図4に示すように、その値は2箇所で大きな変化をする。この箇所は、2値化画像の治具孔の輪郭から異物部の2値化画像の輪郭に変わる、あるいはその逆に変わる2箇所である。
このようにして、Cjをグラフから、ベクトルBjのうち、異物部の2値化画像の輪郭を表すベクトルの区間を知ることができる。図4では区間▲1▼に対応する範囲のベクトルがこれに相当する。
また、これより、ベクトル列A(i)のうち、異物部の2値化画像の輪郭を表すベクトルの区間を知ることができる。
【0012】
図4に示すように、ベクトル方向の変化の大の箇所がある場合(即ち、撮影画像が図2(a)に示すような場合)には、区間▲1▼に対応するベクトルを第1のベクトル列(ベクトル列A(i))から除いた第2のベクトル列を作成し、これより、実座標の治具孔の輪郭座標配列を求める。(S124)
また、図4に示すように、ベクトル方向の変化の大の箇所がない場合(即ち、撮影画像が図2(b)のような場合)には、第1のベクトル列(ベクトル列A(i))から、そのまま、実座標の治具孔の輪郭座標配列を求める。(S125)ここで言う、実座標の輪郭標配列とは、ベクトル列にそった2値化画像の輪郭画素の座標である。
【0013】
次いで、このようにして求められた輪郭標配列の複数点の輪郭画素の座標を用い、楕円近似を行い、2値化画像の治具孔の中心位置座標を算出する。(S126)
【0014】
次いで、楕円近似により求められた円孔画像の中心位置座標を通り、且つ、治具孔画像の径を測定する方向を含む所定の角度範囲内の直線を1つないし複数とり、それぞれの直線と輪郭座標列により表される輪郭との2交点間の距離をそれぞれ算出し、これらを平均化して、測定する方向における円孔画像の径寸法として求め、これより2値化画像の治具孔の径寸法を求める。(S127)
勿論、上記治具孔画像の径を測定する方向を含む所定の角度範囲内の1つないし複数の直線と輪郭座標列により表される輪郭とで2交点がない場合には、この測定する方向では、所望とする径が無いものとする。
尚、エッチング加工によるリードフレーム、治具孔の加工を行った場合、通常、測定する方向を含む所定の角度を±5度の範囲とすれば、この範囲内の直線で2交点が得られる箇所がある。
【0015】
このようにして、撮影画像から治具孔部に付着した異物の影響をうけることなく高精度に、径寸法の測定を行うことができる。
上記においては、輪郭の抽出を値1、値0の2値化画像で行ったが、2値以外の多値画像のまま画素の明るさを利用して1画素以下の精度で輪郭抽出を行っても良い。
【0016】
【発明の効果】
本発明は、上記のように、撮像手段により円孔を含む領域を撮影し、得られた円孔画像から画像処理手段により円孔画像の輪郭データを抽出し、さらに得られた円孔画像の輪郭データから試料の円孔の径寸法を演算処理して求める、試料の円孔の径寸法の測定方法で、試料の円孔の径寸法を正確に測定する方法の提供を可能とした。
結果、撮影画像から治具孔部に付着した異物の影響をうけることなく高精度に、径寸法の測定を行うことができものとし、エッチング加工における、リードフレームとその治具孔を備えた加工においては、加工工程における寸法品質の管理を、正確に行えるものとした。
【図面の簡単な説明】
【図1】本発明の円孔の径寸法測定方法の実施の形態の1例の工程フロー図
【図2】治具孔の撮影画像の図
【図3】図3(a)は2値化画像の治具孔の輪郭と輪郭に沿うベクトルを示した図で、図3(b)は図3(a)に示す各ベクトルを成分表示した図
【図4】ベクトルの方向の変化を示した図
【図5】一部のベクトルを除いたベクトル列から実座標で表される輪郭座標列をつなぎ表示した図
【図6】径寸法を測定する方法を説明するための図
【図7】QFPタイプの半導体装置とリードフレームの図
【符号の説明】
110 光強度大の領域(貫通部の領域)
120 光強度小の領域
125 異物部
130 画素
131 値が1の画素
132 値が0の画素
A0〜A9 ベクトル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the diameter of a circular hole of a product in which a circular hole is formed, such as a product having an externally processed lead frame and its jig hole.
[0002]
[Prior art]
2. Description of the Related Art In recent years, semiconductor devices have become increasingly highly integrated and highly functional, as represented by LSI ASICs, due to the trend toward higher performance and lighter and thinner electronic devices (current).
Along with this, the total number of external terminals (pins) has increased, and the number of terminals (pins) has been increasingly demanded.
For semiconductor devices such as multi-terminal (pin) ICs, particularly ASICs typified by gate arrays and standard cells, microcomputers, DSPs (Digital Signal Processors), etc., QFP (Quad Flat Package) ) And the like are used, and in the QFP, even a 300-pin class package has come into practical use. QFP uses a single-layer lead frame 710 shown in FIG. 7B. As shown in FIG. 7A, a semiconductor element 720 is mounted on a die pad 711, and processing such as silver plating or gold plating is performed. After connecting the tip of the inner lead 712 to the terminal (electrode pad) 721 of the semiconductor element 720 with a wire 730, the inner lead 712 is sealed with a resin 740, the dam bar portion 714 is cut, and the outer lead 713 is gull-winged It is made by bending it into a shape. Such a QFP has a structure in which outer leads for electrical connection with an external circuit are provided in four directions of the package, and has been developed as one that can cope with the increase in the number of terminals (pins). The single-layer lead frame 710 used here is usually an etching using a photolithographic technique for a metal plate having excellent conductivity and high strength, such as Kovar, 42 alloy (42% Ni-iron), and copper alloy. It was fabricated by processing into a shape as shown in FIGS. 7B and 7A by a processing method, a stamping method, or the like.
7B and 7B are cross-sectional views taken along line F1-F2 of FIGS. 7B and 7A.
[0003]
The lead frame is usually processed in the form of one frame (also referred to as a single frame) in which a plurality of single lead frames shown in FIG. After that, plating, downset, semiconductor element mounting, and resin sealing are performed in the state of one frame (also referred to as one series).
For this reason, it is common to provide a jig hole made up of a through hole for positioning in each process in a frame portion of one frame. Depending on the diameter of the tool hole, it may be used as a guideline for judging the dimensional quality of the product part. With the recent increase in the number of pins and narrow pitch associated with the increase in the number of terminals in semiconductor devices, this jig hole is increasingly becoming increasingly difficult. There is a need for accurate measurement of diameter.
[0004]
Conventionally, the measurement of the jig hole has been performed by subjecting the jig hole image obtained by the imaging means to the jig hole image by the image processing means to perform expansion and contraction processing, and the influence of the shape protruding from the hole and foreign matter. Then, the contour data is extracted, and the diameter of the circular hole of the sample is calculated from the contour data of the obtained circular hole image.
However, in this method, even if the expansion and contraction processing is performed on the jig hole image, large foreign matter may not be completely removed or the shape of the normal part may change. Even if it is small, it may be determined that the foreign matter is attached, which is a problem.
[0005]
[Problems to be solved by the invention]
As described above, in the outer shape processing of the lead frame by etching, a method for accurately measuring the diameter of the jig hole has been required.
The present invention is corresponding to this, the region including the circular hole is imaged by the imaging means, the contour data of the circular hole image is extracted by the image processing means from the obtained circular hole image, and the obtained circular hole is further obtained. A method for measuring the diameter of a sample hole, which is obtained by calculating the diameter of the sample hole from the contour data of the image, and is intended to provide a method for accurately measuring the diameter of the sample hole. It is.
[0006]
[Means for Solving the Problems]
In the method for measuring the diameter of a circular hole of the present invention, a region including a circular hole is imaged by an imaging unit, the contour data of the circular hole image is extracted from the obtained circular hole image by an image processing unit, and the obtained circle is further obtained. A method for measuring the diameter of a circular hole of a sample, which is obtained by calculating the diameter of the circular hole of the sample from the contour data of the hole image. A first vector sequence representing the contour of the circular hole image is obtained by tracing the contour, and a vector of a section sandwiched between steep portions where the change in the direction of the vector is not within a predetermined value range in the first vector sequence If there is, a contour coordinate sequence represented by real coordinates is obtained from the second vector sequence remaining after being excluded from the first vector sequence, otherwise from the first vector sequence, and the obtained contour coordinates are obtained. Using the column, find the center position coordinates of the circular hole image by elliptic approximation, One or a plurality of straight lines that pass through the center position coordinates of the circular hole image obtained by the circular approximation and that include the direction in which the diameter of the circular hole image is measured are taken. The distance between two intersections with the contour represented by the above is calculated, averaged, and obtained as the diameter of the hole image in the direction of measurement, and the diameter of the hole of the sample is obtained from this. It is what.
Further, in the above, the sample has a lead frame whose outer shape is processed and its jig hole, and measures the diameter dimension of the jig hole. An area including the jig hole is photographed with transmitted illumination, and each pixel data of the jig hole image is binarized by a predetermined slice level by the image processing means, and the jig hole image is obtained from the binarized image data. The contour data is extracted.
[0007]
[Action]
In the method for measuring the diameter of a circular hole according to the present invention, the region including the circular hole is imaged by the imaging unit, and the contour data of the circular hole image is obtained from the obtained circular hole image by the image processing unit. In addition, the diameter of the hole in the sample is calculated from the contour data of the hole image obtained by the calculation processing unit, and the diameter of the hole in the sample. It is possible to provide a method for accurately measuring the diameter. Specifically, the contour of the circular hole image is traced from the captured image obtained by photographing the region including the circular hole, and a first vector sequence representing the contour of the circular hole image is obtained. If there is a vector in a section sandwiched between steep points where the change in the direction of is not within the predetermined value range, this is excluded from the first vector sequence and from the remaining second vector sequence, Obtain the contour coordinate sequence expressed in real coordinates from the vector sequence, use the obtained contour coordinate sequence to obtain the center position coordinate of the circular hole image by elliptic approximation, and the center of the circular hole image obtained by elliptic approximation One or a plurality of straight lines that pass through the position coordinates and include a direction in which the diameter of the circular hole image is measured are taken, and between two intersections of the respective straight lines and the contours represented by the contour coordinate sequence Calculate each distance, average these, and measure That determined as the diameter of the circular hole image in the direction, by determining the diameter of the circular hole of the sample than this, we have achieved this.
Also, if the sample has a lead frame that has been contoured and its jig hole, and the diameter of the jig hole is to be measured, it is necessary to control the size of the lead frame in the etching process. Is particularly effective.
Also, a jig hole is used as a through hole, a region including the jig hole is photographed by transmitted illumination, and each pixel data of the jig hole image is binarized by a predetermined slice level by the image processing means, and binarized. By extracting the contour data of the jig hole image from the image data, the contour data of the jig hole image can be obtained relatively easily and accurately.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An example of an embodiment of the method for measuring the diameter of a circular hole of the present invention will be described.
FIG. 1 is a process flow diagram of an example of an embodiment of a diameter measurement method for a circular hole according to the present invention, FIG. 2 is a photographed image of a jig hole, and FIG. 3A is a binarized image. 3B is a diagram showing the contour of the jig hole and the vector along the contour, FIG. 3B is a diagram showing the components of each vector shown in FIG. 3A, and FIG. 4 shows the change in the direction of the vector. FIGS. 5 and 5 are diagrams in which a contour coordinate sequence expressed in real coordinates is connected to a vector sequence excluding some vectors, and FIG. 6 is a diagram for explaining a method of measuring a radial dimension.
This example is an example of measuring the diameter of a jig hole consisting of a through hole of a lead frame. An area including the jig hole is photographed with transmitted illumination, and the jig hole image is obtained from the obtained jig hole image by image processing means. This is a diameter dimension measuring method for extracting contour data of an image and calculating the diameter dimension of the jig hole from the contour data of the obtained jig hole image.
1 to 6, 110 is a region having a high light intensity (a region of a penetrating portion), 120 is a region having a low light intensity, 125 is a foreign matter portion, 130 is a pixel, 131 is a pixel having a value of 1, and 132 is a value. Pixels 0 and A0 to A9 indicate vectors.
[0009]
Hereinafter, the diameter dimension measuring method processing of the circular hole of this example will be described based on FIG.
In order to make the description easy to understand, the description is limited to only the jig hole.
In FIG. 1, S110 to S130 indicate processing steps.
The jig hole is photographed with transmitted illumination. (S110)
Because of the photographing by transmitted illumination, the photographed image is photographed with the jig hole portion being a region having a high light intensity (a region of a penetrating portion) and the other material portions being regions having a low light intensity.
When the jig hole is substantially circular, as shown in FIG. 2B, the jig hole image forms a substantially circular area 110 having a large light intensity. When there is an opaque foreign object in the illumination light that reaches, for example, as shown in FIG. 2A, an image 125 of the foreign object, which is a region 120 with low light intensity, is photographed, and the shape of the region 110 with high light intensity is The shape of the original jig hole is different.
Photographing is performed using an area sensor camera using a CCD element or a line sensor camera while moving a lead frame as a sample.
Illumination may be performed by optical fiber illumination using a halogen light source.
[0010]
Next, the obtained photographed image is subjected to image processing as follows to extract the diameter dimension of the jig hole.
First, a binarized image is created by performing binarization processing at a predetermined slice level for each pixel on a captured image obtained by shooting. (S121)
Here, binarization is performed with a pixel having a light intensity equal to or higher than a predetermined level as a value 1 and a pixel lower than the predetermined level as a value 0.
Next, the contour of the jig hole image is traced from the obtained binarized image, and a vector sequence representing the contour of the jig hole image is obtained. (S122)
In order to obtain the approximate center of the jig hole from the binarized image, for example, the number of pixels of value 1 is taken for each pixel position in the X and Y directions, and the peak position in each direction is Coordinates representing approximate centers (also referred to as provisional central coordinates) may be used.
Then, the value of the image is searched in an arbitrary direction from the temporary center coordinates obtained in this manner, and the portion where the pixel value changes from 1 to 0, that is, the contour of the jig hole of the binarized image. A part corresponding to a part is searched, and the outline of the jig hole in the binarized image is traced in order starting from that part, and a vector sequence representing the outline is obtained.
For example, as shown in FIG. 3A, when a part of the jig hole of the binarized image is shown enlarged, when the pixel A (i, j) is the starting pixel, the jig hole The vectors that follow the contour are A0, A1, A2, A3, A4, A5, A6, A7, A8, and A9 shown in FIG. 3, and are represented by their components as shown in FIG.
These vector columns are referred to as a first vector column, which is a vector column A (i) (i = 0, 1, 2,..., N and n is an integer).
Here, each vector represents a vector from a contour pixel having a value of 1 to an adjacent contour pixel having a value of 1 at the shortest distance.
[0011]
Next, the change in the direction of the vector in the obtained vector sequence is examined. (S123)
Normally, in order to catch the change in the direction of a vector in a vector sequence without using the vector sequence for each contour pixel adjacent to the shortest distance as shown in FIG. 3, for example, the vector sequence shown in FIG. A vector sequence expressed as one vector for each of a plurality of items is created in order, and each vector of the vector sequence is changed.
For example, a vector sequence B (j) (j = 0, 1, 2, ----, m, where m is an integer) consisting of vectors obtained by adding the vector sequence A (i) shown in FIG. ).
B (j) is represented by the following equation.
Figure 0003923657
(However, j = 0, 1, 2, ----, m, m is an integer)
When the angle formed by B (j) and B (j + 1) is θ (j), Cj is represented by the following equation, where cos θ (j) is Cj.
Figure 0003923657
(However, Lv.B (j) represents the length of B (j).)
Then, Cj is graphed in the order of the vector sequence.
FIG. 4 is a graph in the case where the binarized image includes an image of the foreign matter portion (corresponding to 125 in FIG. 2A).
Usually, from the relationship between the pixel size and the hole diameter of the jig hole, when the jig hole is almost circular, Cj shows a value close to 1, but in the case of the photographed image shown in FIG. As shown in FIG. 4, as shown in FIG. 4, the value changes greatly at the two places where the binarized image includes the image of the foreign matter portion (corresponding to 125 in FIG. 2A). This location is two locations that change from the contour of the jig hole of the binarized image to the contour of the binarized image of the foreign matter portion, or vice versa.
In this way, from the graph of Cj, it is possible to know the section of the vector that represents the contour of the binarized image of the foreign substance portion in the vector Bj. In FIG. 4, the vector corresponding to the section (1) corresponds to this.
In addition, from this, it is possible to know a vector section representing the contour of the binarized image of the foreign substance portion in the vector sequence A (i).
[0012]
As shown in FIG. 4, when there is a large portion of the vector direction change (that is, when the photographed image is as shown in FIG. 2A), the vector corresponding to the section (1) is set to the first. A second vector sequence excluding the vector sequence (vector sequence A (i)) is created, and from this, the contour coordinate array of jig holes in real coordinates is obtained. (S124)
Also, as shown in FIG. 4, when there is no significant change in the vector direction (that is, when the captured image is as shown in FIG. 2B), the first vector sequence (vector sequence A (i )), The contour coordinate array of the jig holes in real coordinates is obtained as it is. (S125) The contour mark array of real coordinates referred to here is the coordinates of the contour pixels of the binarized image along the vector sequence.
[0013]
Next, ellipse approximation is performed using the coordinates of a plurality of contour pixels of the contour mark array obtained in this manner, and the center position coordinates of the jig hole of the binarized image are calculated. (S126)
[0014]
Next, one or a plurality of straight lines that pass through the center position coordinates of the circular hole image obtained by the ellipse approximation and that include the direction in which the diameter of the jig hole image is measured are obtained. The distance between the two intersections with the contour represented by the contour coordinate sequence is calculated, averaged, and obtained as the diameter dimension of the circular hole image in the measuring direction, and from this, the jig hole of the binarized image is obtained. Find the diameter. (S127)
Of course, when there are no two intersections between one or more straight lines within a predetermined angle range including the direction in which the diameter of the jig hole image is measured and the contour represented by the contour coordinate sequence, this measuring direction is used. Then, it is assumed that there is no desired diameter.
In addition, when the lead frame and jig hole are processed by etching, usually, if a predetermined angle including the direction to be measured is within a range of ± 5 degrees, a point where two intersections can be obtained with a straight line within this range There is.
[0015]
In this way, it is possible to measure the diameter dimension with high accuracy without being affected by the foreign matter adhering to the jig hole from the photographed image.
In the above description, contour extraction is performed with a binary image having a value of 1 and a value of 0, but contour extraction is performed with an accuracy of 1 pixel or less using the brightness of a pixel as a multi-valued image other than binary. May be.
[0016]
【The invention's effect】
In the present invention, as described above, a region including a circular hole is imaged by the imaging means, the contour data of the circular hole image is extracted from the obtained circular hole image by the image processing means, and the obtained circular hole image is further extracted. It is possible to provide a method for accurately measuring the diameter of a sample hole, which is obtained by calculating the diameter of the sample hole from the contour data.
As a result, it is possible to measure the diameter dimension with high accuracy without being affected by the foreign matter adhering to the jig hole from the photographed image, and processing with the lead frame and the jig hole in the etching process. In, dimensional quality control in the machining process can be accurately performed.
[Brief description of the drawings]
FIG. 1 is a process flow diagram of an example of an embodiment of a diameter measurement method for a circular hole of the present invention. FIG. 2 is a photographed image of a jig hole. FIG. 3 (a) is binarized. FIG. 3B is a diagram showing the contour of the jig hole in the image and the vector along the contour, and FIG. 3B is a diagram showing the components of each vector shown in FIG. 3A. FIG. 4 shows the change in the direction of the vector. FIG. 5 is a diagram in which a contour coordinate sequence expressed in real coordinates is connected to a vector sequence excluding a part of vectors. FIG. 6 is a diagram for explaining a method for measuring a radial dimension. Type semiconductor device and lead frame [Explanation of symbols]
110 Area with high light intensity (area of penetration)
120 Area with low light intensity 125 Foreign object part 130 Pixel 131 Pixel with value 1 Pixel A0 to A9 with value 0 Vector

Claims (3)

撮像手段により円孔を含む領域を撮影し、得られた円孔画像から画像処理手段により円孔画像の輪郭データを抽出し、さらに得られた円孔画像の輪郭データから試料の円孔の径寸法を演算処理して求める、試料の円孔の径寸法の測定方法であって、円孔を含む領域を撮影した撮影画像から、円孔画像の輪郭をたどり、円孔画像の輪郭を表す第1のベクトル列を求め、該第1のベクトル列のうち、ベクトルの方向の変化が所定の値の範囲でない急峻な箇所で挟まれた区間のベクトルがあれば、これを第1のベクトル列から除外して残った第2のベクトル列から、なければ第1のベクトル列から、実座標で表される輪郭座標列を得て、得られた輪郭座標列を用い、楕円近似により円孔画像の中心位置座標を求め、楕円近似により求められた円孔画像の中心位置座標を通り、且つ、円孔画像の径を測定する方向を含む所定の角度範囲内の直線を1つないし複数とり、それぞれの直線と輪郭座標列により表される輪郭との2交点間の距離をそれぞれ算出し、これらを平均化して、測定する方向における円孔画像の径寸法として求め、これより試料の円孔の径寸法を求めることを特徴とする円孔の径寸法測定方法。A region including a circular hole is imaged by the imaging means, the contour data of the circular hole image is extracted from the obtained circular hole image by the image processing means, and the diameter of the circular hole of the sample is further extracted from the contour data of the obtained circular hole image. A method for measuring the diameter of a hole in a sample, which is obtained by calculating a dimension, and tracing a contour of a circular hole image from a photographed image obtained by photographing a region including the circular hole, and representing a contour of the circular hole image. 1 vector sequence is obtained, and if there is a vector in a section sandwiched between steep portions where the change in the direction of the vector is not within the range of the predetermined value in the first vector sequence, this is calculated from the first vector sequence. A contour coordinate sequence expressed in real coordinates is obtained from the second vector sequence remaining after exclusion, or from the first vector sequence if there is not, and using the obtained contour coordinate sequence, the circular hole image is obtained by elliptic approximation. Round hole image obtained by ellipse approximation with center position coordinates One or a plurality of straight lines passing through the center position coordinates and including a direction in which the diameter of the circular hole image is measured, and two intersection points of the respective straight lines and the contour represented by the contour coordinate sequence A method for measuring the diameter of a circular hole, characterized by calculating the distance between each of them, averaging them, and obtaining the diameter of the hole image in the direction of measurement, and determining the diameter of the hole of the sample from this . 請求項1において、試料が外形加工されたリードフレームとその治具孔を有するもので、治具孔の径寸法を測定するものであることを特徴とする円孔の径寸法測定方法。2. The method for measuring a diameter of a circular hole according to claim 1, wherein the sample has a lead frame whose outer shape is processed and a jig hole thereof, and the diameter of the jig hole is measured. 請求項2において、治具孔は貫通孔で、透過照明によりその治具孔を含む領域を撮影し、画像処理手段により治具孔画像の各画素データを所定のスライスレベルにより2値化して、2値化画像データから治具孔画像の輪郭データを抽出するものであることを特徴とする円孔の径寸法測定方法。In claim 2, the jig hole is a through hole, a region including the jig hole is photographed by transmitted illumination, each pixel data of the jig hole image is binarized by a predetermined slice level by an image processing unit, A method for measuring the diameter of a circular hole, wherein the contour data of the jig hole image is extracted from the binarized image data.
JP16736598A 1998-06-15 1998-06-15 Diameter measurement method for circular holes Expired - Lifetime JP3923657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16736598A JP3923657B2 (en) 1998-06-15 1998-06-15 Diameter measurement method for circular holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16736598A JP3923657B2 (en) 1998-06-15 1998-06-15 Diameter measurement method for circular holes

Publications (2)

Publication Number Publication Date
JP2000002512A JP2000002512A (en) 2000-01-07
JP3923657B2 true JP3923657B2 (en) 2007-06-06

Family

ID=15848371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16736598A Expired - Lifetime JP3923657B2 (en) 1998-06-15 1998-06-15 Diameter measurement method for circular holes

Country Status (1)

Country Link
JP (1) JP3923657B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590759B2 (en) * 2001-03-14 2010-12-01 日本電気株式会社 Land appearance inspection apparatus and land appearance inspection method
KR20160087600A (en) * 2015-01-14 2016-07-22 한화테크윈 주식회사 Apparatus for inspecting defect and method thereof
CN112288693B (en) * 2020-10-19 2024-02-13 佛山(华南)新材料研究院 Round hole detection method and device, electronic equipment and storage medium
CN116907368A (en) * 2023-08-26 2023-10-20 广州市西克传感器有限公司 Method for automatically measuring diameter of monocrystalline silicon rod based on height map of multiple 3D cameras

Also Published As

Publication number Publication date
JP2000002512A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
US5592562A (en) Inspection system for cross-sectional imaging
CN108802046B (en) Optical detection device and detection method for defects of hybrid integrated circuit assembly
CN110487189B (en) Flatness detection method, flatness detection device, and storage medium
JP3923657B2 (en) Diameter measurement method for circular holes
JP5045591B2 (en) Method for creating area setting data for inspection area and board appearance inspection apparatus
US11756919B2 (en) Wedge tool, bonding device, and bonding inspection method
JP5546364B2 (en) Solder inspection method
JP2008112882A (en) Method and device for detecting failure of cream solder printing
JP3655046B2 (en) Lead frame dimensions measurement method
KR100291780B1 (en) Bond wire inspection device and its inspection method
US20220180494A1 (en) Wire shape measurement device, wire three-dimensional image generation method, and wire shape measurement method
JP2020119988A (en) Wire bonding apparatus, wire bonding method, and semiconductor device manufacturing method
JPH10325707A (en) Measuring method for dimension of lead frame
JP2007315818A (en) Minute height measuring method by image processing
JP3332001B2 (en) Recognition method of the tip of the contact probe
JP4862149B2 (en) Inspection method and apparatus for cream solder printing
CN113569854B (en) Method for measuring span of chip welding gold wire
US20010017765A1 (en) Built-in inspection template for a printed circuit
JPH11297912A (en) Method for measuring dimension of lead frame
KR102236258B1 (en) Method for inspecting wire bonding
JP2973982B2 (en) Image inspection method of molded terminal of electronic component and chip type electronic component
JP2006023229A (en) Probe card quality evaluation method, its apparatus, and probe inspection method
JP2010192610A (en) Method of manufacturing and method of inspecting base material for printed wiring board having multiple development patterns formed, method of manufacturing and method of inspecting multiple-patterned printed wiring board, method of manufacturing semiconductor device, and exposure mask
JPH10335900A (en) Device for inspecting mounted electronic component
JP2008145171A (en) Method and device for inspecting lead frame

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6