JP3923102B2 - Production method of yeast haploid strain - Google Patents

Production method of yeast haploid strain Download PDF

Info

Publication number
JP3923102B2
JP3923102B2 JP21302695A JP21302695A JP3923102B2 JP 3923102 B2 JP3923102 B2 JP 3923102B2 JP 21302695 A JP21302695 A JP 21302695A JP 21302695 A JP21302695 A JP 21302695A JP 3923102 B2 JP3923102 B2 JP 3923102B2
Authority
JP
Japan
Prior art keywords
yeast
strain
spore
medium
sake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21302695A
Other languages
Japanese (ja)
Other versions
JPH0937769A (en
Inventor
浩子 堤
哲義 水津
章嗣 川戸
孝二 杉並
聰 今安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gekkeikan Sake Co Ltd
Original Assignee
Gekkeikan Sake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gekkeikan Sake Co Ltd filed Critical Gekkeikan Sake Co Ltd
Priority to JP21302695A priority Critical patent/JP3923102B2/en
Publication of JPH0937769A publication Critical patent/JPH0937769A/en
Application granted granted Critical
Publication of JP3923102B2 publication Critical patent/JP3923102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酵母1倍体株の製造方法に関し、より詳細には、酵母の胞子形成率および胞子の生存率を高くさせるための変異処理及び変異株の選択方法に関する。
【0002】
【従来の技術】
実用酵母(二倍体)の中には、胞子形成率が低くまた形成された子のう胞子の生存率が低い株が多いことが知られている。このような胞子形成に問題を持つ株から1倍体株を作成するためには、一般にはランダム胞子分離法と呼ばれる手法が用いられる。この手法は、胞子形成させた酵母の子のうを細胞壁溶解酵素で処理し、子のう壁のみを溶解させ、得られた胞子懸濁液を熱処理することにより、未溶解の二倍体株を死滅させるか胞子のみを分別した後に分散させ、次いで例えばYPDの様な培地(2%ブドウ糖、2%ポリペプトン、1%酵母エキス、2%寒天)に塗布し、生育したコロニーより1倍体株を分離する手法である。
【0003】
1倍体株の見分け方としては、生育の早さ、TTC染色性、色素培地での染色性(永井ら 酵母研究における方法論p71−p76)がある。二倍体株の選択的死滅方法としては熱処理の他に、エーテル処理、アルコール処理(黒瀬ら 特開平5−317035)や、高圧処理法(中富ら 特開平5−236948)があり、胞子の分別方法としてはミネラルオイル法やポリエチレングリコール法がある。
【0004】
【発明が解決しようとする課題】
しかしながら、実用酵母の中で例えば清酒酵母等は前述のように胞子形成率が低く、さらに胞子の生存率が低い特徴を有している。黒瀬らの手法(特開平5−317035)により胞子形成率は数倍に上昇し、1倍体株の取得頻度も数%と有為に改善されてはいるものの、単胞子分離可能な通常の実験室酵母と比較すると、極めて頻度が低く多大の時間を要する。したがって、本発明の目的は、清酒酵母等の実用酵母の1倍体株をより容易に、実験室酵母並に簡便に製造する方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、上記目的を達成するためになされたものであって、本発明者らは、胞子形成に問題を持つ一般の清酒酵母等の実用酵母の性質について研究を重ねた結果、これら実用酵母の持つ特徴的な性質と胞子形成率および胞子の生存率の間に関連があることを見いだした。
【0006】
通常用いられる清酒酵母等の実用酵母は以下の性質のいずれかあるいは複数を有していることが知られている。(A)メチオニンのアナログであるエチオニンに対する耐性、(B)メチオニンの代謝産物であるS−アデノシルメチニオンの細胞内含量が高いこと、(C)構成型酸性ホスファターゼ活性が検出されないこと、(D)清酒酵母の中でも協会7号あるいは協会7号由来の酵母はβ−アラニン寒天培地上35℃で生育出来ないこと。これらの清酒酵母の性質については、酵母の清酒醸造特性に関連する知見は得られておらず、専ら清酒醪の純度検定の指標として用いられていた。
【0007】
本発明者らは、胞子形成率および胞子生存率の高い株がこれら清酒酵母にみられる性質を有していないことから、まず胞子形成率および胞子生存率の高い株より突然変異処理によってエチニオン耐性変異株を作製した。その結果、エチオニン耐性変異株のうちの数株が他の(B)〜(D)の性質を同時に有することを明らかにした。次に、(A)〜(D)の性質を有している清酒酵母よりエチオニン感受性変異株を選択したところ、これらの性質を失った変異株は胞子形成率および胞子の生存率が極めて上昇することを見いだした。即ち、これらの性質を指標として酵母を選択することにより、胞子形成の良好な酵母が得られることが実証され、本発明を完成した。本発明におけるエチオニン感受性の範囲は少なくとも0.1mMから10mMのエチオニンを含むSD培地に生育できないことを意味している。
【0008】
本発明における酵母とは、上記の(A)〜(D)の性質の何れかを有している酵母であればワイン酵母、ビール酵母、焼酎酵母など実用酵母の種類を問わないが、これらの性質をもつ酵母として、清酒酵母協会7号株、清酒酵母協会9号株、清酒酵母協会10号或はこれらの株の泡無し変異株協会701号株・協会901号株・協会1001号株或は清酒酵母協会11号株等が好適である。
【0009】
本発明において、変異処理は常法が適宜使用され、例えば、X線照射、紫外線照射、N−メチル−N′−ニトロ−N−ニトロソグアニジン、2−アミノプリン、EMS等の変異処理が適宜使用される。また、天然変異株についても、本法はもちろん適用することが可能である。
以下に、本発明に係る実用酵母1倍体の製造法について、詳細に説明する。
【0010】
(1)酵母の胞子形成率・四胞子形成率と胞子生存率の測定法
酵母の前培養にはYPD寒天培地(2%ブドウ糖、2%ポリペプトン、1%酵母エキス、2%寒天)を用い、30℃で18時間〜24時間培養した後に適量をかきとり、胞子形成培地(2%酢酸カリウム、0.05%酵母エキス、0.02%ブドウ糖、2%寒天)に塗布し30℃で3日培養する。胞子形成率は血球計算盤を用いて計数した酵母菌数あたりの子のうの数をパーセントで表した。また、四胞子形成率は計数された子のう数あたりの四胞子を形成した子のうの数をパーセントで表した。得られた子のうは滅菌水に懸濁しザイモリアーゼ等の細胞壁溶解酵素で処理して子のう壁を溶解した後に、マイクロマニピュレーターを用いてYPD寒天培地上にて単胞子分離を行い、30℃で3日間培養し単胞子由来の一体酵母を得た。胞子の生存率は単胞子分離した胞子数あたりの生育した一倍体酵母の数をパーセントで表した。また、得られた一倍体株のメーティングタイプ(aあるいはα)の決定は、既知の標準一倍体株との交配により行った。
【0011】
(2)酵母の性質の測定法
【0012】
(2)−(i)エチオニン耐性の測定法
酵母の前培養にはYPD寒天培地(2%ブドウ糖、2%ポリペプトン、1%酵母エキス、2%寒天)を用い、30℃で18時間〜24時間培養した後に適量をかきとり、0.1〜1mMエチオニンを含むSD培地(2%ブドウ糖、0.67% Yeast Nitrogen Base“Difco社製”、2%寒天)に接種し、30℃で3日間培養した後にコロニー形成を判定し、コロニーを形成する株を耐性、形成しない株を感受性とした。
【0013】
(2)−(ii)酵母S−アデノシルメチオニンの測定法
YPD寒天培地で前培養した酵母を5mlのYPD液体培地(2%ブドウ糖、2%ポリペプトン、1%酵母エキス)に1白金耳植菌し、30℃で18時間培養した。次いで培養液を3000rpm、10分遠心分離して得た酵母菌体を蒸留水で2回洗浄した。得られた洗浄酵母菌体に0.5ml 10%TCA(トリクロロ酢酸)を添加、攪拌後30℃で1時間保温しS−アデノシルメチオニンを抽出した。S−アデノシルメチオニンの定量はAsahipakGS-320カラムを用いる高速液体クロマトグラフィーで行い、移動相としては0.1Mリン酸緩衝液(pH10)を用い、波長254nmの吸収を測定してS−アデノシルメチオニン標準溶液と比較して定量した。
【0014】
(2)−(iii)構成型酸性ホスファターゼ活性の検定
酵母の前培養にはYPD寒天培地(2%ブドウ糖、2%ポリペプトン、1%酵母エキス、2%寒天)を用い、30℃で18時間〜24時間培養した後に適量をかきとり、Burkholderの最小培地(2%ブドウ糖、0.2%アスパラギン、0.15%リン酸1カリウム、0.033%塩化カルシウム、0.05%硫酸マグネシウム、60μg/mlほう酸、30μg/ml硫酸マンガン、300μg/ml硫酸亜鉛、40μg/ml硫酸銅、250μg/ml塩化第1鉄、25μg/mlモリブデン酸ナトリウム、200μg/lチアミン、200μg/lピリドキシン、200μg/lニコチン酸、200μg/lパントテン酸、2μg/lビオチン、10mg/lイノシトール、2%寒天、pH5.0)に接種し、30℃で2日培養した。次に、加熱溶解した3%寒天5mlと、染色液(α−ナフチルリン酸ナトリウム0.05%、Fast Blue B Salt 0.05%を含む0.1M酢酸緩衝液、pH4.0)5mlを混和し、コロニー形成した培地上に重層する。30℃で30分〜1時間保温し、コロニーが赤色に染まる株を陽性、白いままの株を陰性とした。
【0015】
(2)−(iv)β−アラニン培地における35℃での生育の判定
酵母の前培養にはYPD寒天培地(2%ブドウ糖、2%ポリペプトン、1%酵母エキス、2%寒天)を用い、30℃で18時間〜24時間培養した後に適量をかきとり、β−アラニン培地(2%ブドウ糖、0.05%硫酸アンモニウム、0.15%リン酸1カリウム、0.05%硫酸マグネシウム、200μg/mlチアミン、200μg/lピリドキシン、200μg/lニコチン酸、0.2μg/lビオチン、1000μg/lイノシトール、200μg/l p−アミノ安息香酸、40μg/l β−アラニン、2%寒天、pH5.0)に接種し、35℃で2日培養した。培養後生育の判定を行い、生育してきた株を陽性、生育しない株を陰性とした。
【0016】
以下、本発明の実施例について述べる。
【0017】
【実施例1】
清酒酵母協会7号のエチオニン感受性変異株
【0018】
清酒酵母協会7号をYPD培地にて一夜前培養し、集菌・洗浄後1mMのEMSを含む5mlの0.2Mリン酸緩衝液で、30℃、1時間振とう条件下にて変異誘起処理した。次に、酵母を滅菌水にて4回洗浄した後に、1mMエチオニンを含むSD培地に懸濁し、30℃で5時間培養した後に、終濃度10μg/mlになるようにナイスタチンを添加し、さらに培養を続け、エチオニンに耐性を示す酵母を選択的に死滅させた。生存した酵母は、適宜希釈した後、YPD寒天培地にて培養してコロニーを形成させ、生育してきた各株について胞子形成試験を行い、胞子形成率の良好な3株、7ETS1、7ETS2、7ETS3を得た。
【0019】
これらの変異株と親株の性質を酵母の性質の測定法に基づき測定したところ、下記表1に示したように、変異株に於て胞子形成率の改善、四胞子形成頻度の上昇、酵母の性質の変化が認められた。また、変異株の胞子は、明らかに胞子生存率が上昇していた。
【0020】
【表1】

Figure 0003923102
【0021】
【実施例2】
β−アラニン培地で35℃で生育できる清酒酵母協会7号変異株
【0022】
実施例1と同様にEMS処理した清酒酵母協会7号をβ−アラニン培地に塗布し、35℃で培養した。3日後に形成したコロニーについて胞子形成試験を行い、胞子形成良好な3株、7β−1、7β−2、7β−3を得た。
【0023】
これらの変異株と親株の性質を酵母の性質の測定法に基づき測定したところ、下記表2に示したように、変異株に於て胞子形成率の改善、四胞子形成頻度の上昇、酵母の性質の変化が認められた。また、変異株の胞子は明らかに胞子生存率が上昇していた。
【0024】
【表2】
Figure 0003923102
【0025】
【発明の効果】
本発明は、酵母に高い胞子形成能と胞子の生存率を付与する目的で開発された為に、従来1倍体の取得法のように多数の栄養細胞が混在する実験系を用いることなく、容易に1倍体株を単離できる。またその結果、これまで困難であった実用清酒酵母の遺伝解析が容易になり、醸造酵母としての有用形質の解析や、優良酵母の育種の原株として高い利用価値を持つ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a yeast haploid strain, and more particularly, to a mutation treatment and a mutant strain selection method for increasing the spore formation rate and spore survival rate of yeast.
[0002]
[Prior art]
It is known that among practical yeasts (diploids), there are many strains with low sporulation rate and low survival rate of the formed spore spores. In order to create a haploid strain from a strain having a problem with such spore formation, a technique called a random spore separation method is generally used. In this method, the spore-formed yeast pupa is treated with a cell wall lytic enzyme, only the pupa wall is lysed, and the resulting spore suspension is heat-treated, whereby an undissolved diploid strain is obtained. Or after separating only spores, and then spreading on a medium such as YPD (2% glucose, 2% polypeptone, 1% yeast extract, 2% agar), and haploid strains from the grown colonies Is a technique for separating
[0003]
As a method for distinguishing haploid strains, there are rapid growth, TTC stainability, and stainability in a dye medium (Nagai et al. Methodology p71-p76 in yeast research). In addition to heat treatment, selective killing of diploid strains includes ether treatment, alcohol treatment (Kurose et al., JP-A-5-317035) and high-pressure treatment method (Nakatomi et al., JP-A-5-236948). As a method, there are a mineral oil method and a polyethylene glycol method.
[0004]
[Problems to be solved by the invention]
However, among practical yeasts, sake yeast, for example, has a low spore formation rate and a low spore survival rate as described above. Although Kurose et al. (Japanese Patent Laid-Open No. 5-317035) has improved the spore formation rate several times and the acquisition frequency of haploid strains has been significantly improved by several percent, the normal spore separation is possible. Compared with laboratory yeast, the frequency is extremely low and a great deal of time is required. Accordingly, an object of the present invention is to provide a method for producing a haploid strain of a practical yeast such as sake yeast more easily and as easily as a laboratory yeast.
[0005]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and the present inventors have conducted research on the properties of practical yeasts such as general sake yeast having a problem in spore formation. It was found that there is a relationship between the characteristic properties of spore and the spore formation rate and spore survival rate.
[0006]
Commonly used practical yeasts such as sake yeast are known to have one or more of the following properties. (A) resistance to methionine analog ethionine, (B) high intracellular content of methionine metabolite S-adenosylmethinion, (C) constitutive acid phosphatase activity not detected, (D ) Among sake yeasts, Association No. 7 or yeast derived from Association No. 7 cannot grow on a β-alanine agar medium at 35 ° C. As for the properties of these sake yeasts, no knowledge related to the sake brewing characteristics of yeast has been obtained, and they have been used exclusively as an indicator for the purity test of sake lees.
[0007]
Since the strains having a high spore formation rate and spore survival rate do not have the properties found in these sake yeasts, the present inventors have first made ethinion resistance by mutation treatment than a strain having a high spore formation rate and spore survival rate. A mutant strain was prepared. As a result, it was clarified that several of the ethionine resistant mutants have the other properties (B) to (D) at the same time. Next, when an ethionine-sensitive mutant strain was selected from sake yeast having the properties (A) to (D), the spore formation rate and spore survival rate of the mutant strains that lost these properties increased significantly. I found out. That is, it was demonstrated that yeast having good spore formation can be obtained by selecting yeast using these properties as indices, and the present invention has been completed. The range of ethionine sensitivity in the present invention means that it cannot grow on an SD medium containing at least 0.1 mM to 10 mM ethionine.
[0008]
The yeast in the present invention is not limited to any kind of practical yeast such as wine yeast, beer yeast, shochu yeast, etc., as long as it has any of the above properties (A) to (D). As yeast having properties, Sake Yeast Association No.7, Sake Yeast Association No.9, Sake Yeast Association No.10 or No Bubble Mutant Association of these strains No.701, No.901, No.1001 Sake Yeast Association No.11 strain is suitable.
[0009]
In the present invention, a conventional method is appropriately used for the mutation treatment, for example, mutation treatment such as X-ray irradiation, ultraviolet irradiation, N-methyl-N′-nitro-N-nitrosoguanidine, 2-aminopurine, EMS, etc. is appropriately used. Is done. Of course, this method can also be applied to natural mutant strains.
Below, the manufacturing method of the practical yeast haploid which concerns on this invention is demonstrated in detail.
[0010]
(1) Method of measuring yeast spore formation rate, tetraspore formation rate and spore viability YPD agar medium (2% glucose, 2% polypeptone, 1% yeast extract, 2% agar) was used for yeast preculture. After culturing at 30 ° C. for 18 to 24 hours, scrape an appropriate amount, apply to a spore formation medium (2% potassium acetate, 0.05% yeast extract, 0.02% glucose, 2% agar) and culture at 30 ° C. for 3 days. To do. The sporulation rate was expressed as a percentage of the number of offspring per yeast number counted using a hemocytometer. The tetraspore formation rate was expressed as a percentage of the number of offspring that formed four spores per the number of offspring counted. The obtained pupa was suspended in sterilized water and treated with a cell wall lytic enzyme such as zymolyase to lyse the pupa wall, followed by monospore separation on a YPD agar medium using a micromanipulator, and 30 ° C. And culturing for 3 days to obtain monospore-derived integrated yeast. Spore viability was expressed as a percentage of the number of haploid yeast grown per single spore isolate. The mating type (a or α) of the obtained haploid strain was determined by crossing with a known standard haploid strain.
[0011]
(2) Method for measuring the properties of yeast [0012]
(2)-(i) Method for measuring ethionine resistance YPD agar medium (2% glucose, 2% polypeptone, 1% yeast extract, 2% agar) was used for preculture of yeast at 30 ° C. for 18-24 hours. After culturing, an appropriate amount is scraped off and inoculated on SD medium (2% glucose, 0.67% Yeast Nitrogen Base “Difco”, 2% agar) containing 0.1-1 mM ethionine, and cultured at 30 ° C. for 3 days. Colony formation was determined later, and a strain that formed a colony was considered resistant and a strain that did not form was considered sensitive.
[0013]
(2)-(ii) Method for measuring yeast S-adenosylmethionine 1 platinum ear inoculation of yeast precultured on YPD agar medium in 5 ml YPD liquid medium (2% glucose, 2% polypeptone, 1% yeast extract) And cultured at 30 ° C. for 18 hours. Next, the yeast cells obtained by centrifuging the culture solution at 3000 rpm for 10 minutes were washed twice with distilled water. 0.5 ml 10% TCA (trichloroacetic acid) was added to the obtained washed yeast cells, and after stirring, the mixture was kept at 30 ° C. for 1 hour to extract S-adenosylmethionine. S-adenosylmethionine was quantified by high performance liquid chromatography using an Asahipak GS-320 column, 0.1M phosphate buffer (pH 10) was used as the mobile phase, and absorption at a wavelength of 254 nm was measured to determine S-adenosyl. Quantification was performed in comparison with a methionine standard solution.
[0014]
(2)-(iii) Constitutive Acid Phosphatase Activity Assay YPD agar medium (2% glucose, 2% polypeptone, 1% yeast extract, 2% agar) is used for preculture of yeast at 30 ° C. for 18 hours to After culturing for 24 hours, scrape an appropriate amount and use Burkholder's minimum medium (2% glucose, 0.2% asparagine, 0.15% potassium phosphate, 0.033% calcium chloride, 0.05% magnesium sulfate, 60 μg / ml). Boric acid, 30 μg / ml manganese sulfate, 300 μg / ml zinc sulfate, 40 μg / ml copper sulfate, 250 μg / ml ferrous chloride, 25 μg / ml sodium molybdate, 200 μg / l thiamine, 200 μg / l pyridoxine, 200 μg / l nicotinic acid 200 μg / l pantothenic acid, 2 μg / l biotin, 10 mg / l inositol, 2% agar, pH 5. Inoculated in), and cultured for 2 days at 30 ℃. Next, 5 ml of 3% agar dissolved by heating and 5 ml of the staining solution (0.1 M acetate buffer solution, pH 4.0 containing 0.05% sodium α-naphthyl phosphate and 0.05% Fast Blue B Salt) were mixed, and colonies were mixed. Overlay on the formed medium. Incubation was carried out at 30 ° C. for 30 minutes to 1 hour, and a strain in which the colony was stained red was positive, and a strain that remained white was negative.
[0015]
(2)-(iv) Determination of growth at 35 ° C. in β-alanine medium YPD agar medium (2% glucose, 2% polypeptone, 1% yeast extract, 2% agar) was used for yeast pre-culture. After culturing for 18 hours to 24 hours at ° C, an appropriate amount is scraped, and β-alanine medium (2% glucose, 0.05% ammonium sulfate, 0.15% potassium phosphate, 0.05% magnesium sulfate, 200 μg / ml thiamine, 200 μg / l pyridoxine, 200 μg / l nicotinic acid, 0.2 μg / l biotin, 1000 μg / l inositol, 200 μg / l p-aminobenzoic acid, 40 μg / l β-alanine, 2% agar, pH 5.0) And cultured at 35 ° C. for 2 days. After the cultivation, the growth was determined, and the growing strain was positive and the non-growing strain was negative.
[0016]
Examples of the present invention will be described below.
[0017]
[Example 1]
Ethionine-sensitive mutant of Sake Yeast Association No. 7
Sake Yeast Association No. 7 is pre-cultured overnight in YPD medium, and after harvesting and washing, 5 ml of 0.2 M phosphate buffer containing 1 mM EMS is subjected to mutagenesis under shaking conditions at 30 ° C. for 1 hour. did. Next, after washing the yeast four times with sterilized water, suspending in SD medium containing 1 mM ethionine, culturing at 30 ° C. for 5 hours, adding nystatin to a final concentration of 10 μg / ml, and further culturing The yeast showing resistance to ethionine was selectively killed. The surviving yeast was appropriately diluted and then cultured on a YPD agar medium to form colonies. A spore formation test was performed on each of the grown strains. Three strains with good spore formation rates, 7ETS1, 7ETS2, and 7ETS3 were obtained. Obtained.
[0019]
The properties of these mutants and parent strains were measured based on the method for measuring yeast properties. As shown in Table 1 below, in the mutant strains, the spore formation rate was improved, the tetraspore formation frequency was increased, Changes in properties were observed. Moreover, the spore survival rate of the mutant spore clearly increased.
[0020]
[Table 1]
Figure 0003923102
[0021]
[Example 2]
Sake Yeast Association No. 7 mutant that can grow at 35 ° C. in β-alanine medium.
Sake yeast association No. 7 treated with EMS in the same manner as in Example 1 was applied to a β-alanine medium and cultured at 35 ° C. A colony formed after 3 days was subjected to a spore formation test, and three strains with good spore formation, 7β-1, 7β-2, and 7β-3 were obtained.
[0023]
The properties of these mutants and the parent strain were measured based on the method for measuring yeast properties. As shown in Table 2 below, in the mutant strains, the spore formation rate was improved, the tetraspore formation frequency was increased, Changes in properties were observed. In addition, the spore survival rate of the mutant spore was clearly increased.
[0024]
[Table 2]
Figure 0003923102
[0025]
【The invention's effect】
Since the present invention was developed for the purpose of imparting high spore-forming ability and spore survival rate to yeast, without using an experimental system in which a large number of vegetative cells coexist like the conventional haploid acquisition method, A haploid strain can be easily isolated. As a result, genetic analysis of practical sake yeast, which has been difficult until now, becomes easy, and it has high utility value as a source strain for analysis of useful traits as brewing yeast and breeding of excellent yeast.

Claims (1)

実用清酒酵母を親株とし、親株からエチオニン感受性及びβ−アラニン培地における35℃での生育能を有する株を取得することにより胞子形成率の高い変異株を選択すること、を特徴とする実用清酒酵母1倍体株の製造法。 Practical sake yeast characterized by selecting a mutant strain having a high spore formation rate by obtaining a strain having a practical brewer's yeast as a parent strain and obtaining a strain having ethionine sensitivity and a growth ability at 35 ° C. in a β-alanine medium from the parent strain. Production method of haploid strains.
JP21302695A 1995-07-31 1995-07-31 Production method of yeast haploid strain Expired - Lifetime JP3923102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21302695A JP3923102B2 (en) 1995-07-31 1995-07-31 Production method of yeast haploid strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21302695A JP3923102B2 (en) 1995-07-31 1995-07-31 Production method of yeast haploid strain

Publications (2)

Publication Number Publication Date
JPH0937769A JPH0937769A (en) 1997-02-10
JP3923102B2 true JP3923102B2 (en) 2007-05-30

Family

ID=16632286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21302695A Expired - Lifetime JP3923102B2 (en) 1995-07-31 1995-07-31 Production method of yeast haploid strain

Country Status (1)

Country Link
JP (1) JP3923102B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6007426B2 (en) * 2012-02-20 2016-10-12 新潟県 Sake production method

Also Published As

Publication number Publication date
JPH0937769A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
JP5872520B2 (en) Non-recombinant Saccharomyces strain growing on xylose
Johnston et al. Genetic control of flocculation
Parker et al. Mutants of yeast with altered oxidative energy metabolism: selection and genetic characterization
Lipson et al. Double mutants of Phycomyces with abnormal phototropism
JP3923102B2 (en) Production method of yeast haploid strain
Belcour Cytoplasmic mutations isolated from protoplasts of Podospora anserina
Tingle et al. Germination of yeast spores lacking mitochondrial deoxyribonucleic acid
Miret et al. Polyamines and cell wall organization in Saccharomyces cerevisiae
JPH03206880A (en) Yeast and its use in production of astaxanthin
Subden et al. Mutational analysis of malate pathways in Schizosaccharomyces pombe
US9175257B2 (en) Yeast strains for producing alcohol
Schlitzer et al. Characterization of atypical Candida tropicalis and other uncommon clinical yeast isolates
JPH0636734B2 (en) New flocculent alcohol fermenting yeast
Bilinski et al. Physiological requirements for induction of sporulation in lager yeast
JP4491563B2 (en) Novel yeast and method for producing sake using the same
Lee et al. Chemical Induction of Mutation or Variation In Aflatoxin‐Producing Cultures of Aspergillus Flavus
Kamada et al. Temperature-sensitive mutants of Coprinus cinereus defective in hyphal growth and stipe elongation
JP2916357B2 (en) New brewer's yeast
JP4393028B2 (en) Novel yeast and its use
Carnevali et al. Differential effects of nalidixate on the cell growth of respiratory competent strains and cytoplasmic petite mutants of Saccharomyces cerevisiae
Christensen Cross-breeding of distillers' yeast by hybridization of spore derived clones
Thornton et al. Rates of spontaneous mitotic recombination in Saccharomyces cerevisiae
JP4008539B2 (en) New yeast with high organic acid production and its use
KR950004007B1 (en) New fusion yeast
Colson et al. [81] Systems for membrane alteration: Genetic perturbations of mitochondria in a “Petite-Negative” yeast

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term