JP3922991B2 - Low pollution blinds - Google Patents

Low pollution blinds Download PDF

Info

Publication number
JP3922991B2
JP3922991B2 JP2002270803A JP2002270803A JP3922991B2 JP 3922991 B2 JP3922991 B2 JP 3922991B2 JP 2002270803 A JP2002270803 A JP 2002270803A JP 2002270803 A JP2002270803 A JP 2002270803A JP 3922991 B2 JP3922991 B2 JP 3922991B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
formula
photocatalyst
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002270803A
Other languages
Japanese (ja)
Other versions
JP2004107967A (en
Inventor
亮 中林
一也 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2002270803A priority Critical patent/JP3922991B2/en
Publication of JP2004107967A publication Critical patent/JP2004107967A/en
Application granted granted Critical
Publication of JP3922991B2 publication Critical patent/JP3922991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、防汚性能及び/または帯電防止性能を有するブラインドに関する。具体的には、ブラインドの表面が長期間にわたり光触媒活性及び/または高度に親水性であり、表面に埃が付着しにくい特性を有し、また表面に付着した汚れを容易に清掃できるブラインドを提供する。
【0002】
【従来の技術】
従来のブラインド特に横型ブラインドでは、その形状からスラット上に埃やタバコのヤニが付着しやすく、また、台所にブラインドを取り付けた場合には、飛散した油等の汚れが付着しやすい。ブラインドは多数のスラットを有して構成されており、これらの汚れを除去することは面倒であり、簡単、短時間に掃除できるようにすることは大きな課題となっていた。
そのため、汚れを付着しにくくし、また落としやすくするために、スラットの表面にフッ素樹脂やセラミック樹脂を塗布することが提案されている。
しかしながら、このようなフッ素樹脂やセラミック樹脂を塗布した場合、汚れを容易に掃除できるようになるが、反面、スラットが非常に帯電しやすくなるため、空気中の微粒子をひきつけてしまい、かえって汚れが付着しやすくなってしまうという課題がある。
【0003】
そこで、上記問題に対し、特開平9−228765号公報では、ブラインド基材の表面に光触媒粒子を含有する表面層を備えた易清掃性のブラインドが提案されている。
この方法は、光照射による光触媒の有機物分解作用による汚れ物質の除去効果と光触媒自体の光照射による親水化現象を利用し、ブラインド表面を親水化するものであり、親水化されたブラインドの表面は、散水や水濯ぎ、又は軽い水拭きや降雨にさらす程度で容易に洗浄できる。また、該ブラインドの表面は、親水性を呈することにより帯電防止性を示すようになり、ブラインドの表面は埃が付着しにくくなる。
【0004】
しかしながら、光触媒含有トップコート層を直接スラット上に形成すると、トップコート層中の光触媒の有機物分解作用によって、該トップコート層の剥離やスラットの変色、腐食といった課題があると共に、光触媒としての十分な活性が得られないという大きな問題があった。
上述した光触媒による劣化を防止する目的で、特開平11−207871号公報では、光触媒含有トップコート層とスラットとの間に難分解性の接着層を介在させる方法も提案されているが、この方法では塗装工程が煩雑で作業性が悪く、生産ロス増加やコスト高になってしまう上、均質な皮膜を得るのが非常に困難であり、ブラインド基材の劣化を完全に防止するのが難しいという欠点がある。また、この方法では光触媒層と難分解物質からなる層との間に明確な膜界面が存在するため、光触媒層の剥離等の問題も発生する。
上述した理由により、かねてより保護層を必要としない光触媒含有表層部を設けたブラインドが切望されていた。
【0005】
【特許文献1】
特開平9−228765号公報
【特許文献2】
特開平11−207871号公報
【0006】
【発明が解決しようとする課題】
本発明は、煩雑な工程を必要とせずに、光触媒による優れた防汚効果が付与されたブラインドを提供する事を目的とする。
具体的には、光触媒によるブラインド基材の劣化が無く、光照射により長期にわたり、その表面が光触媒活性及び/または親水性を発現する防汚性に優れたブラインドを提供することである。
【0007】
【課題を解決するための手段】
本発明者らは上記課題を解決すべく鋭意検討した結果、本発明に到達した。すなわち、本発明は以下の通りである。
1.光触媒(A)及びバインダー成分(B)を含む表層部を備えたブラインドであって、該光触媒(A)が、式(1)で表されるトリオルガノシラン単位、式(2)で表されるモノオキシジオルガノシラン単位、式(3)で表されるジオキシオルガノシラン単位、及びフッ化メチレン(―CF −)単位よりなる群から選ばれる少なくとも1種の構造単位を有する化合物類よりなる群から選ばれる少なくとも1種の変性剤化合物(b)で変性処理された変性光触媒(A1)であり、
Si− (1)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す)
−(R SiO)− (2)
(式中、Rは式(1)で定義した通りである。)
【0008】
【化5】

Figure 0003922991
(式中、Rは式(1)で定義した通りである。)
該表層部中における光触媒(A)の濃度がブラインドの内部側から表面に向かって高くなることを特徴とする低汚染性ブラインド。
【0009】
2.光触媒(A)及びバインダー成分(B)を含む表層部を備えたブラインドであって、該バインダー成分(B)が、下記式(4)で表されるフェニル基含有シリコーン(BP)を含有し、
SiO (4−p−q−r)/2 (4)
(式中、各R はフェニル基を表し、R は各々独立に直鎖状または分岐状の炭素数1〜
30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数2〜30個のアルケニル基を表す。Xは、各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。そしてp、q及びrは、0<p<4、0≦q<4、0≦r<4、及び0<(p+q+r)<4であり、そして0.05≦p/(p+q)≦1である。)
該表層部中における光触媒(A)の濃度がブラインドの内部側から表面に向かって高くなることを特徴とする低汚染性ブラインド。
【0010】
3.光触媒(A)及びバインダー成分(B)を含む表層部を備えたブラインドであって、該光触媒(A)が、式(1)で表されるトリオルガノシラン単位、式(2)で表されるモノオキシジオルガノシラン単位、式(3)で表されるジオキシオルガノシラン単位、及びフッ化メチレン(―CF −)単位よりなる群から選ばれる少なくとも1種の構造単位を有する化合物類よりなる群から選ばれる少なくとも1種の変性剤化合物(b)で変性処理された変性光触媒(A1)であり、
Si− (1)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す)
−(R SiO)− (2)
(式中、Rは式(1)で定義した通りである。)
【0011】
【化6】
Figure 0003922991
(式中、Rは式(1)で定義した通りである。)
該バインダー成分(B)が、下記式(4)で表されるフェニル基含有シリコーン(BP)を含有し、
【0012】
SiO (4−p−q−r)/2 (4)
(式中、各R はフェニル基を表し、R は各々独立に直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数2〜30個のアルケニル基を表す。Xは、各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。そしてp、q及びrは、0<p<4、0≦q<4、0≦r<4、及び0<(p+q+r)<4であり、そして0.05≦p/(p+q)≦1である。)
該表層部中における光触媒(A)の濃度がブラインドの内部側から表面に向かって高くなることを特徴とする低汚染性ブラインド。
【0013】
4.該フェニル基含有シリコーン(BP)が、下記式(5)で表される、アルキル基を含有しないフェニル基含有シリコーン(BP1)であることを特徴とする発明1〜3のいずれか一項に記載の低汚染性ブラインド。
SiO (4−s−t)/2 (5)
(式中、R はフェニル基を表し、Xは各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。s及びtは、0<s<4、0≦t<4、そして0<(s+t)<4である。)
【0014】
5.該バインダー成分(B)が、下記式(6)で表されるアルキル基含有シリコーン(BA)を更に含有することを特徴とする発明1〜4のいずれか一項に記載の低汚染性ブラインド。
SiO (4−u−v)/2 (6)
(式中、R は各々独立に直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数2〜30個のアルケニル基を表す。Xは、各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。そしてu及びvは、0<u<4、0≦v<4、そして0<(u+v)<4である。)
【0015】
6.該バインダー成分(B)が、式(5)で表される、アルキル基を含有しないフェニル基含有シリコーン(BP1)と式(6)で表されるアルキル基含有シリコーン(BA)を含有することを特徴とする発明1〜5のいずれか一項に記載の低汚染性ブラインド。
SiO (4−s−t)/2 (5)
(式中、R はフェニル基を表し、Xは各々独立に水素原子、水酸基、炭素数1〜20の
アルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。s及びtは、0<s<4、0≦t<4、そして0<(s+t)<4である。)
【0016】
SiO (4−u−v)/2 (6)
(式中、R は各々独立に直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数2〜30個のアルケニル基を表す。Xは、各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。u及びvは、0<u<4、0≦v<4、そして0<(u+v)<4である。)
【0017】
7.該アルキル基含有シリコーン(BA)が、式(7)で表されるモノオキシジオルガノシラン単位(D)と式(8)で表されるジオキシオルガノシラン単位(T)を有することを特徴とする発明1〜6のいずれか一項に記載の低汚染性ブラインド。
−(R SiO)− (7)
(式中、R は各々独立に直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数2〜30個のアルケニル基を表す。)
【0018】
【化7】
Figure 0003922991
(式中、R は式(7)で定義した通りである。)
【0019】
8.該フェニル基含有シリコーン(BP)と該アルキル基含有シリコーン(BA)につ
いて相分離構造を有する表層部であることを特徴とする発明1〜7のいずれか一項に記載の低汚染性ブラインド。
9.該光触媒(A)が該アルキル基含有シリコーン(BA)相に存在することを特徴とする発明1〜8のいずれか一項に記載の低汚染性ブラインド。
10.該光触媒(A)の数平均粒子径が400nm以下であることを特徴とする発明1〜9のいずれか一項に記載の低汚染性ブラインド。
11.該変性剤化合物(b)が、式(9)で表されるSi−H基含有ケイ素化合物(b1)であることを特徴とする発明1〜10のいずれか一項に記載の低汚染性ブラインド。
SiO (4−x−y)/2 (9)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す。x及びyは、0<x<4、0<y<4であり、そして(x+y)≦4である。)
12.該Si−H基含有ケイ素化合物(b1)が、式(10)で表されるモノSi−H基含有化合物、式(11)で表される両末端Si−H基含有化合物、式(12)で表されるHシリコーンよりなる群から選ばれる少なくとも1種の化合物であることを特徴とする発明1〜11のいずれか一項に記載の低汚染性ブラインド。
【0020】
【化8】
Figure 0003922991
(式中、R は各々独立に直鎖状または分岐状の炭素数が1〜30個のアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、フェニル基、又は式(13)で表されるシロキシ基を表す。
【0021】
−O−(R SiO) −SiR ・・・(13)
(式中、R はそれぞれ独立に直鎖状または分岐状の炭素数が1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数が1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、又はフェニル基を表す。また、mは整数であり、0≦m≦1000である。))
H−(R SiO) −SiR −H ・・・(11)
(式中、R は式(10)で定義した通りである。nは整数であり、0≦n≦1000である。)
(R HSiO) (R SiO) (R SiO 1/2 ・・・(12)
(式中、R は式(10)で定義した通りである。aは1以上の整数であり、bは0以上の整数であり、(a+b)≦10000であり、そしてcは0又は2である。但し、(a+b)が2以上の整数であり且つc=0の場合、式(12)の該Hシリコーンは環状シリコーンであり、c=2の場合、式(12)の該Hシリコーンは鎖状シリコーンである。)
【0022】
13.該表層部中のバインダー成分(B)が、相分離構造を形成していることを特徴とする発明1〜12のいずれか一項に記載の低汚染性ブラインド。
14.該表層部に含まれる光触媒(A)のバンドギャップエネルギーよりも高いエネルギーの光を照射することにより光触媒活性及び/又は親水性を示すことを特徴とする発明1〜13のいずれか一項に記載の低汚染性ブラインド。
15.該表層部に含まれる光触媒(A)のバンドギャップエネルギーよりも高いエネルギーの光を照射することにより、該光触媒(A)粒子の近傍に存在する珪素原子に結合した有機基の少なくとも一部が水酸基及び/又はシロキサン結合に置換されてなることを特徴とする発明1〜14のいずれか一項に記載の低汚染性ブラインド。
【0023】
16.光触媒(A)の表面エネルギーよりもバインダー成分(B)の表面エネルギーが高いことを特徴とする発明1〜15のいずれか一項に記載の低汚染性ブラインド。
17.該表層部が皮膜状であり、該皮膜中における光触媒(A)の濃度がブラインド基材に接する面から他方の露出面に向かって高くなることを特徴とする発明1〜16のいずれか一項に記載の低汚染性ブラインド。
18.光触媒(A)とバインダー成分(B)を含む光触媒組成物(C)であって、発明1〜17のいずれか一項に記載の表層部を形成することを特徴とするブラインド用光触媒被覆組成物。
【0024】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の低汚染性ブラインドに用いるブラインド基材としては、ポリプロピレン、ウレタン等のプラスチック基材やベースコート層を有するプラスチック基材(ハードコート板、塗装板)、さらにアルミニウム等の金属基材やベースコート層を有する金属基材(ハードコート板、塗装板)が好適に利用できる。
ここで、上記ベースコート層とは、ブラインドの基材表面に塗装された塗膜を言い、具体例としては、シリコンプライマー等の各種プライマー塗料から形成される塗膜、アクリル系の塗膜(メラミン硬化型アクリル、ウレタン硬化型アクリル、酸−エポキシ硬化型アクリル等)、フッ素系の塗膜等を好適に例示することができる。また、これらベースコート層には意匠性を向上させる目的で顔料等の添加剤が好適に含まれる。
【0025】
本発明の低汚染性ブラインドは、光触媒(A)及びバインダー成分(B)を含む表層部を備えたブラインドであって、該表層部中における光触媒(A)の濃度が、ブラインドの内部側から他方の露出面に向かって高くなることを特徴とする。
この際、全表層部中の光触媒含有量(濃度)100に対し、露出面と接する表面側近傍の相対濃度が120以上であることが光触媒能力や親水化能力の向上効果を発現し、防汚効果が大きくなるために好ましい。該表面側近傍の相対濃度はより好ましくは150以上、さらに好ましくは200以上であることがよい。また、ブラインド基材に接する面近傍の相対濃度が50以下であると界面劣化防止効果の点で好ましい。該ブラインドに基材に接する面近傍の相対濃度はより好ましくは10以下、さらに好ましくは0であると良い。
【0026】
また、本発明における表層部中における光触媒(A)の濃度は、該ブラインド基材に接する面から他方の露出面に向かって徐々に高くなっても良いし、単に該ブラインド基材に接する面での光触媒濃度が低く、他方の露出面における光触媒濃度が高く、その間の変化が不連続であっても良い。
さらに、本発明の表層部中において、保護層の上に光触媒層を塗布する場合に生じる様な明確な膜界面が存在しない方が好ましい。すなわち、保護層の上に光触媒層を塗布する場合に生じる様な明確な膜界面が存在しない場合、光触媒は強固に表層部中に固定化され、光触媒の剥離等の問題が発生しなくなる。
【0027】
本発明において、光触媒(A)とは、伝導帯と価電子帯との間のエネルギーギャップよりも大きなエネルギー(すなわち短い波長)の光(励起光)を照射したときに、価電子帯中の電子の励起(光励起)が生じて、伝導電子と正孔を生成しうる物質をいう。このとき、伝導帯に生成した電子の還元力および/または価電子帯に生成した正孔の酸化力を利用して、種々の化学反応を行うことができる。
この光触媒によって促進される化学反応の例としては、種々の有機物の酸化分解反応を挙げることができる。従って、この光触媒をブラインドの表面に固定化させれば、ブラインドに付着した種々の有機物(汚染物質)を、光エネルギーを利用して酸化分解することができ、さらにブラインドの表面を親水性に保つことが可能となる。
【0028】
本発明において光触媒活性とは、光照射によって酸化、還元反応を起こすことを言う。材料表面の、光照射時における色素等の有機物の分解性を測定することにより表面が光触媒活性であるか否かを判定できる。光触媒活性を有する表面は、優れた汚染有機物質の分解活性や耐汚染性を発現する。
本発明において親水性とは、好ましくは20℃での水の接触角が30゜以下である場合を言い、該親水性を有する表面に付着した油汚れは軽い水拭き程度で容易に洗浄できると共に、該表面は帯電防止性を示すようになり、表面は埃が付着しにくくなる。特に水の接触角が10゜以下、更に好ましくは5゜以下である場合は、上記効果が顕著となる。
【0029】
本発明において、ブラインドの表面を光触媒活性及び/又は親水性にするのに有用に使用できる光触媒(A)としては、例えばTiO、ZnO、SrTiO、CdS、GaP、InP、GaAs、BaTiO、BaTiO、BaTi、KNbO、Nb、Fe、Ta、KTaSi、WO、SnO、Bi、BiVO、NiO、CuO、SiC、MoS、InPb、RuO、CeO、Ta等、さらにはTi、Nb、Ta、Vから選ばれた少なくとも1種の元素を有する層状酸化物(特開昭62−74452号公報、特開平2−172535号公報、特開平7−24329号公報、特開平8−89799号公報、特開平8−89800号公報、特開平8−89804号公報、特開平8−198061号公報、特開平9−248465号公報、特開平10−99694号公報、特開平10−244165号公報等参照)や、窒素ドープ酸化チタン(特開平13−278625号公報、特開平13−278627号公報、特開平13−335321号公報、特開平14−029750号公報、特開平13−207082号公報等参照)や、酸素欠陥型の酸化チタン(特開平13−212457号公報参照)の如き、可視光応答型酸化チタン光触媒も好適に使用することができる。また、TaON、LaTiON、CaNbON、LaTaON、CaTaON等のオキシナイトライド化合物やSmTi等のオキシサルファイド化合物は可視光による光触媒活性が大きく、好適に使用することができる。
【0030】
更に、これらの光触媒に、Pt、Rh、Ru、Nb、Cu、Sn、Ni、Feなどの金属及び/又はこれらの酸化物を添加あるいは固定化したものや、多孔質リン酸カルシウム等で被覆された光触媒(特開平10−244166号公報参照)等を使用することもできる。
上記光触媒(A)の結晶粒子径(1次粒子径)は1〜400nmであることが好ましく、より好ましくは1〜50nmの光触媒が好適に選択される。
これらの光触媒のうち、酸化チタンは無毒であり、化学的安定性にも優れると共に、光照射により、酸化チタン自体の親水性が非常に高まるため好ましい。
該酸化チタンとしては、アナターゼ型、ルチル型、ブルッカイト型のうち、いずれの結晶形を使用してもよい。また、可視光応答性である上記窒素ドープ酸化チタンや酸素欠陥型の酸化チタンも、該酸化チタンとして好適に使用できる。
本発明の光触媒(A)として、該光触媒(A)を、後述する少なくとも1種の変性剤化合物(b)を用いて変性処理した変性光触媒(A1)を用いることが好ましい。
【0031】
本発明において光触媒(A)の変性とは、後述する少なくとも1種の変性剤化合物(b)を、光触媒(A)粒子の表面に固定化することを意味する。上記の変性剤化合物の光触媒粒子の表面への固定化は、ファン・デル・ワールス力(物理吸着)やクーロン力または化学結合によるものと考えられる。特に、化学結合を利用した変性は、変性剤化合物と光触媒との相互作用が強く、変性剤化合物が光触媒粒子の表面に強固に固定化されるので好ましい。
本発明の光触媒(A)を変性光触媒(A1)とすることにより、本発明の、ブラインドに、上記光触媒(A)を含む表層部を形成する場合に、該表層部中における光触媒(A)の濃度が、該表層部のブラインドの内部側から他方の露出面に向かって高くなる構造の形成が、特に後述するバインダー成分(B)と組み合わせた場合に容易になるため、非常に好ましい。
【0032】
本発明においては、変性に用いる光触媒(A)の性状が、変性光触媒(A1)の分散安定性、成膜性、及び種々の機能の発現にとって重要な因子となる。すなわち、本発明の変性に使用される光触媒(A)としては、1次粒子と2次粒子との混合物の数平均分散粒子径が400nm以下の光触媒が変性後の光触媒の表面特性を有効に利用できるために好ましい。特に数平均分散粒子径が100nm以下の光触媒を使用した場合、生成する変性光触媒(A1)と後述するバインダー成分(B)を含む光触媒組成物(C)から形成された本発明の表層部では、変性光触媒(A1)を効率的に該表層部の表面(露出面)に存在させることができるため非常に好ましい。より好ましくは80nm以下3nm以上、さらに好ましくは50nm以下3nm以上の光触媒(A)が好適に選択される。
【0033】
これらの光触媒(A)としては、以下の理由から、光触媒粉体ではなく光触媒ゾルを使用することが好ましい。一般に微細な粒子からなる粉体は、単結晶粒子(一次粒子)が強力に凝集した二次粒子を形成するため、無駄にする表面特性が多いが、一次粒子にまで分散させるのは非常に困難である。これに対して、光触媒ゾルの場合、光触媒粒子は溶解せずに一次粒子に近い形で存在しているため表面特性を有効に利用でき、それから生成する変性光触媒は分散安定性、成膜性等に優れるばかりか、種々の機能を有効に発現するので好ましく使用することができる。ここで、本発明に用いる光触媒ゾルとは、光触媒粒子が水及び/又は有機溶媒中に0.01〜70質量%、好ましくは0.1〜50質量%で一次粒子及び/または二次粒子として分散されたものである。
【0034】
ここで、上記光触媒ゾルに使用される上記有機溶媒としては、例えばエチレングリコール、ブチルセロソルブ、n−プロパノール、イソプロパノール、n−ブタノール、エタノール、メタノール等のアルコール類、トルエンやキシレン等の芳香族炭化水素類、ヘキサン、シクロヘキサン、ヘプタン等の脂肪族炭化水素類、酢酸エチル、酢酸n−ブチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、ジメチルアセトアミド、ジメチルホルムアミド等のアミド類、クロロホルム、塩化メチレン、四塩化炭素等のハロゲン化合物類、ジメチルスルホキシド、ニトロベンゼン等、さらにはこれらの2種以上の混合物が挙げられる。
【0035】
該光触媒ゾルとして酸化チタンのゾルを例にとると、例えば実質的に水を分散媒とし、その中に酸化チタン粒子が解膠された酸化チタンヒドロゾル等を挙げることができる。(ここで、実質的に水を分散媒とするとは、分散媒中に水が80質量%程度以上含有されていることを意味する。)かかるゾルの調整は公知であり、容易に製造できる(特開昭63−17221号公報、特開平7−819号公報、特開平9−165218号公報、特開平11−43327号公報等参照)。例えば、硫酸チタンや四塩化チタンの水溶液を加熱加水分解して生成したメタチタン酸をアンモニア水で中和し、析出した含水酸化チタンを濾別、洗浄、脱水させると酸化チタン粒子の凝集物が得られる。この凝集物を、硝酸、塩酸、又はアンモニア等の作用の下に解膠させ水熱処理等を行うことにより酸化チタンヒドロゾルが得られる。また、酸化チタンヒドロゾルとしては、酸化チタン粒子を酸やアルカリの作用の下で解膠させたものや、酸やアルカリを使用せず、必要に応じてポリアクリル酸ソーダなどの分散安定剤を使用し、強力なせん断力の下で水中に分散させたゾルも用いることができる。さらに、pHが中性付近の水溶液中においても分散安定性に優れる、粒子表面がペルオキソ基で修飾されたアナターゼ型酸化チタンゾルも特開平10−67516号公報で提案された方法によって容易に得ることができる。
【0036】
上述した酸化チタンヒドロゾルはチタニアゾルとして市販されている。(例えば、石原産業株式会社製「STS−02」、田中転写株式会社製「TO−240」等)
上記酸化チタンヒドロゾル中の酸化チタンは好ましくは50質量%以下、好ましくは30質量%以下である。さらに好ましくは30質量%以下0.1質量%以上である。
このようなヒドロゾルの粘度(20℃)は比較的低い。本発明においては、ヒドロゾルの粘度は、0.5mPa・s〜2000mPa・s程度の範囲にあるのが好ましい。より好ましくは1mPa・s〜1000mPa・s、さらに好ましくは1mPa・s〜500mPa・sである。
また、例えば酸化セリウムゾル(特開平8−59235号公報参照)やTi、Nb、Ta、Vよりなる群から選ばれた少なくとも1種の元素を有する層状酸化物のゾル(特開平9−25123号公報、特開平9−67124号公報、特開平9−227122号公報、特開平9−227123号公報、特開平10−259023号公報等参照)等、様々な光触媒ゾルの製造方法についても酸化チタンゾルと同様に知られている。
【0037】
また、実質的に有機溶媒を分散媒とし、その中に光触媒粒子が分散された光触媒オルガノゾルは、例えば上記光触媒ヒドロゾルをポリエチレングリコール類の如き相間移動活性を有する化合物(異なる第1の相と第2相との界面に第3の相を形成し、第1の相、第2の相、第3の相を相互に溶解及び/又は可溶化する化合物)で処理し有機溶媒で希釈したり(特開平10−167727号公報)、ドデシルベンゼンスルホン酸ナトリウム等の陰イオン界面活性剤で水に不溶性の有機溶剤中に分散移行させてゾルを調整する方法(特開昭58−29863号公報)やブチルセロソルブ等の水より高沸点のアルコール類を上記光触媒ヒドロゾルに添加した後、水を(減圧)蒸留等によって除去する方法等により得ることができる。また、実質的に有機溶媒を分散媒とし、その中に酸化チタン粒子が分散された酸化チタンオルガノゾルは市販されている(例えば、テイカ株式会社製「TKS−251」)。ここで、実質的に有機溶媒を分散媒とするとは、分散媒中に有機溶媒が80質量%程度以上含有されていることを意味する。
【0038】
本発明において、変性光触媒(A1)を得るのに用いられる少なくとも1種の変性剤化合物(b)は、式(1)で表されるトリオルガノシラン単位、式(2)で表されるモノオキシジオルガノシラン単位、式(3)で表されるジオキシオルガノシラン単位、及びフッ化メチレン(―CF−)単位よりなる群から選ばれる少なくとも1種の構造単位を有する化合物類よりなる群から選ばれる。
Si− (1)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す)
−(RSiO)− (2)
(式中、Rは式(1)で定義した通りである。)
【0039】
【化7】
Figure 0003922991
【0040】
(式中、Rは式(1)で定義した通りである。)
上述した構造単位を有する変性剤化合物(b)で光触媒粒子表面が変性処理された変性光触媒(A1)は、その粒子表面の表面エネルギーが非常に小さくなる。
【0041】
本発明において、光触媒(A)の変性剤化合物(b)による変性処理は、水及び/又は有機溶媒の存在、あるいは非存在下において、前述した光触媒(A)と、同じく前述した変性剤化合物(b)を好ましくは質量比(A)/(b)=1/99〜99.9/0.1、より好ましくは(A)/(b)=10/90〜99/1の割合で混合し、好ましくは0〜200℃、より好ましくは10〜80℃にて加熱したり、(減圧)蒸留等により該混合物の溶媒組成を変化させる等の操作をすることにより得ることができる。
【0042】
ここで上記変性処理を行う場合、使用できる有機溶媒としては、例えばトルエンやキシレン等の芳香族炭化水素類、ヘキサン、シクロヘキサン、ヘプタン等の脂肪族炭化水素類、酢酸エチル、酢酸n−ブチル等のエステル類、エチレングリコール、ブチルセロソルブ、イソプロパノール、n−ブタノール、エタノール、メタノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、ジメチルアセトアミド、ジメチルホルムアミド等のアミド類、クロロホルム、塩化メチレン、四塩化炭素等のハロゲン化合物類、ジメチルスルホキシド、ニトロベンゼン等やこれらの2種以上の混合物が挙げられる。
【0043】
本発明の変性光触媒(A1)を得るのに使用される上記変性剤化合物(b)としては、例えばSi−H基、加水分解性シリル基(アルコキシシリル基、ヒドロキシシリル基、ハロゲン化シリル基、アセトキシシリル基、アミノキシシリル基等)、エポキシ基、アセトアセチル基、チオール基、酸無水物基等の光触媒粒子(a)と反応性を有するケイ素化合物やフルオロアルキル化合物、フルオロオレフィン重合体等を挙げることができる。
また、上記変性剤化合物(b)の他の例としては、例えばポリオキシアルキレン基等の光触媒粒子(a)とファン・デル・ワールス力、クーロン力等により相互作用する構造を有するケイ素化合物等やフルオロアルキル化合物、フルオロオレフィン重合体等を挙げることができる。
本発明において、上記変性剤化合物(b)として、組成式(9)で表されるSi−H基含有ケイ素化合物(b1)を用いると、非常に効率よく光触媒粒子表面を変性することができるため好ましい。
SiO(4−x−y)/2 (9)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す。x及びyは、0<x<4、0<y<4であり、そして(x+y)≦4である。)
【0044】
本発明において、光触媒(A)の上記組成式(9)で表されるSi−H基含有ケイ素化合物(b1)による変性処理は、水及び/又は有機溶媒の存在、あるいは非存在下において、光触媒(a)と該Si−H基含有ケイ素化合物(b1)を好ましくは質量比(A)/(b1)=1/99〜99.9/0.1、より好ましくは(A)/(b1)=10/90〜99/1の割合で好ましくは0〜200℃にて混合することにより実施できる。この変性の操作により混合液からは水素ガスが発生すると共に、光触媒(A)として光触媒ゾルを用いた場合、その平均分散粒子径の増加が観察される。また、例えば光触媒(A)として酸化チタンを用いた場合、上記変性の操作により、Ti−OH基の減少がIRスペクトルにおける3630〜3640cm−1の吸収の減少として観測される。
【0045】
これらのことより、変性剤化合物(b)として上記式(9)で表されるSi−H基含有ケイ素化合物(b1)を選択した場合は、本発明の変性光触媒(A1)は、Si−H基含有ケイ素化合物(b1)と光触媒(A)との単なる混合物ではなく、両者の間には化学反応に伴う何らかの相互作用を生じていることが予測できるため非常に好ましい。実際、この様にして得られた変性光触媒(A1)は、有機溶媒に対する分散安定性や化学的安定性、耐久性等等において非常に優れたものとなっている。
【0046】
本発明において、光触媒(A)の上記式(9)で表されるSi−H基含有ケイ素化合物(b1)による変性処理は、Si−H基に対する脱水素縮合触媒を使用して好ましくは0〜150℃で実施することもできる。
この場合、あらかじめ光還元法等の方法で脱水素縮合触媒を光触媒(A)に固定し、上記Si−H基含有ケイ素化合物(b1)で変性処理しても良いし、脱水素縮合触媒の存在下に上記Si−H基含有化合物ケイ素(b1)で光触媒(A)を変性処理しても良い。
ここでSi−H基に対する脱水素縮合触媒とは、Si−H基と光触媒表面に存在する水酸基(酸化チタンの場合はTi−OH基)やチオール基、アミノ基、カルボキシル基等の活性水素基、さらには水等との脱水素縮合反応を加速する物質を意味し、該脱水素縮合触媒を使用することにより温和な条件で光触媒表面を変性することが可能となる。
【0047】
該脱水素縮合触媒としては、例えば白金族触媒、すなわちルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金の単体及びその化合物や、銀、鉄、銅、コバルト、ニッケル、錫等の単体及びその化合物が挙げられる。これらの中で白金族触媒が好ましく、白金の単体及びその化合物が特に好ましい。
ここで、上記白金の化合物としては、例えば塩化白金(II)、テトラクロロ白金酸(II)、塩化白金(IV)、ヘキサクロロ白金酸(IV)、ヘキサクロロ白金(IV)アンモニウム、ヘキサクロロ白金(IV)カリウム、水酸化白金(II)、二酸化白金(IV)、ジクロロ−ジシクロペンタジエニル−白金(II)、白金−ビニルシロキサン錯体、白金−ホスフィン錯体、白金−オレフィン錯体等を使用することができる。
【0048】
本発明の上記式(9)で表されるSi−H基含有ケイ素化合物において、Si−H基は光触媒を穏和な条件で選択性良く変性するために好ましい官能基である。これに対し、加水分解性基は、同様に光触媒の変性に利用することもできるが、副反応を抑制し、得られる変性光触媒の安定性を向上するためには、その含有量は少ない方が好ましい。
本発明に好適に使用できる上記式(9)で表されるSi−H基含有ケイ素化合物(b1)としては、例えば式(10)で表されるモノSi−H基含有化合物、式(11)で表される両末端Si−H基含有化合物、式(12)で表されるHシリコーンよりなる群から選ばれる少なくとも1種の、加水分解性シリル基を有さないS−H基含有化合物を挙げることができる。
【0049】
【化8】
Figure 0003922991
【0050】
(式中、Rは各々独立に直鎖状または分岐状の炭素数が1〜30個のアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、フェニル基、又は式(13)で表されるシロキシ基を表す。
−O−(R SiO)−SiR ・・・(13)
(式中、Rはそれぞれ独立に直鎖状または分岐状の炭素数が1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数が1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、又はフェニル基を表す。また、mは整数であり、0≦m≦1000である。))
H−(R SiO)−SiR −H ・・・(11)
(式中、Rは式(10)で定義した通りである。nは整数であり、0≦n≦1000である。)
(RHSiO)(R SiO)(R SiO1/2 ・・・(12)
(式中、Rは式(10)で定義した通りである。aは1以上の整数であり、bは0以上の整数であり、(a+b)≦10000であり、そしてcは0又は2である。但し、(a+b)が2以上の整数であり且つc=0の場合、式(12)の該Hシリコーンは環状シリコーンであり、c=2の場合、式(12)の該Hシリコーンは鎖状シリコーンである。)
【0051】
本発明において、上記式(10)で表されるモノSi−H基含有化合物の具体例としては、例えばビス(トリメチルシロキシ)メチルシラン、ビス(トリメチルシロキシ)エチルシラン、ビス(トリメチルシロキシ)n−プロピルシラン、ビス(トリメチルシロキシ)i−プロピルシラン、ビス(トリメチルシロキシ)n−ブチルシラン、ビス(トリメチルシロキシ)n−ヘキシルシラン、ビス(トリメチルシロキシ)シクロヘキシルシラン、ビス(トリメチルシロキシ)フェニルシラン、ビス(トリエチルシロキシ)メチルシラン、ビス(トリエチルシロキシ)エチルシラン、トリス(トリメチルシロキシ)シラン、トリス(トリエチルシロキシ)シラン、ペンタメチルジシロキサン、1,1,1,3,3,5,5−ヘプタメチルトリシロキサン、1,1,1,3,3,5,5,6,6−ノナメチルテトラシロキサン、トリメチルシラン、エチルジメチルシラン、メチルジエチルシラン、トリエチルシラン、フェニルジメチルシラン、ジフェニルメチルシラン、シクロヘキシルジメチルシラン、t−ブチルジメチルシラン、ジ−t−ブチルメチルシラン、n−オクタデシルジメチルシラン、トリ−n−プロピルシラン、トリ−i−プロピルシラン、トリ−i−ブチルシラン、トリ−n−ヘキシルシラン、トリフェニルシラン、アリルジメチルシラン、1−アリル−1,1,3,3−テトラメチルジシロキサン、クロロメチルジメチルシラン、7−オクテニルジメチルシラン等を挙げることができる。
【0052】
これらのモノSi−H基含有化合物の中で、光触媒の変性処理時におけるSi−H基の反応性(脱水素縮合反応)の良さや表面エネルギーの低さから、ビス(トリメチルシロキシ)メチルシラン、トリス(トリメチルシロキシ)シラン、ペンタメチルジシロキサン等の分子中にシロキシ基を有し、フェニル基を有さない下式(14)で表されるものが好ましい。
【0053】
【化9】
Figure 0003922991
【0054】
(式中、Rはそれぞれ独立に直鎖状または分岐状の炭素数が1〜30個のアルキル基、直鎖状または分岐状の炭素数が1〜30個のアルケニル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数が1〜30個のフルオロアルキル基、もしくは式(13b)で表されるシロキシ基から選ばれた1種以上からなる基であり、かつRの中の少なくとも1つは式(13b)で表されるシロキシ基である。
−O−(RSiO)−SiR ・・・(13b)
(式中、R’はそれぞれ独立に直鎖状または分岐状の炭素数が1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数が1〜30個のフルオロアルキル基を表す。また、mは整数であり、0≦m≦1000である。))
【0055】
本発明において、上記式(11)で表される両末端Si−H基含有化合物の具体例としては、例えば1,1,3,3−テトラメチルジシロキサン、1,1,3,3,5,5−ヘキサメチルトリシロキサン、1,1,3,3,5,5,7,7−オクタメチルテトラシロキサン等の数平均分子量50000以下のH末端ポリジメチルシロキサン類や、1,1,3,3−テトラエチルジシロキサン、1,1,3,3,5,5−ヘキサエチルトリシロキサン、1,1,3,3,5,5,7,7−オクタエチルテトラシロキサン等の数平均分子量50000以下のH末端ポリジエチルシロキサン類や、1,1,3,3−テトラフェニルジシロキサン、1,1,3,3,5,5−ヘキサフェニルトリシロキサン、1,1,3,3,5,5,7,7−オクタフェニルテトラシロキサン等の数平均分子量50000以下のH末端ポリジフェニルシロキサン類や、1,3−ジフェニル−1,3−ジメチル−ジシロキサン、1,3,5−トリメチル−1,3,5−トリフェニル−トリシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラフェニル−テトラシロキサン等の数平均分子量50000以下のH末端ポリフェニルメチルシロキサン類や、ジメチルシラン、エチルメチルシラン、ジエチルシラン、フェニルメチルシラン、ジフェニルシラン、シクロヘキシルメチルシラン、t−ブチルメチルシラン、ジ−t−ブチルシラン、n−オクタデシルメチルシラン、アリルメチルシラン等を例示することができる。
【0056】
これらの中で、光触媒の変性処理時におけるSi−H基の反応性(脱水素縮合反応)の良さや表面エネルギーの低さから、数平均分子量が好ましくは10000以下、より好ましくは2000以下、さらに好ましくは1000以下のH末端ポリジアルキルシロキサン(式(15))が両末端Si−H基含有化合物として好適に使用できる。
H−(R SiO)−SiR −H ・・・(15)
(式中、Rはそれぞれ独立に直鎖状または分岐状の炭素数が1〜30個のアルキル基、直鎖状または分岐状の炭素数が1〜30個のフルオロアルキル基を表す。dは整数であり、0≦d≦1000である。)
本発明に用いる上記式(12)で表されるHシリコーンとしては、光触媒の変性処理時における分散安定性(光触媒粒子の凝集の防止)の点より、数平均分子量が好ましくは5000以下、より好ましくは2000以下、さらに好ましくは1000以下のHシリコーンが好適に使用できる。
【0057】
また、本発明の変性光触媒(A1)の好ましい形態は、変性光触媒の一次粒子と二次粒子との混合物の数平均分散粒子径が400nm以下、さらに好ましくは1nm以上100nm以下、特に好ましくは5nm以上80nm以下である。ゾルの状態であることが好ましい。
また、特に数平均分散粒子径が100nm以下の変性光触媒ゾルを本発明の光触媒組成物(C)に用いると、変性光触媒粒子の濃度がブラインドと接する界面近傍では小さく、表層部の表面近傍では大きく分布するような表面方向に異方分布した表層部を形成するのに有利となり、光触媒作用によるブラインドとの界面劣化が無く、光触媒活性が大きい表層部を形成するため非常に好ましい。この様な変性光触媒ゾルは、上記変性剤化合物(b)で変性処理をする光触媒として前述した光触媒ゾルを用いることにより得ることができる。
【0058】
なお、従来、二酸化チタンなどで単に粒径として表示されている数値は、多くの場合一次粒子径(結晶子径)であり、凝集による二次粒子径を考慮した数値ではない。
本発明の表層部を形成する光触媒組成物(C)は、光触媒(A)(好ましくは変性光触媒(A1))とバインダー成分(B)を含むことを特徴とし、その質量比(A1)/(B)は0.1/99.9〜90/10であることが好ましく、(A1)/(B)が1/99〜50/50で含むことがより好ましい。
【0059】
本発明の変性光触媒(A1)は、表面エネルギーの非常に小さい構造(式(1)〜(3))を有する変性剤化合物(b)で変性処理されているため、表層部を形成する際、空気と接する側の表層部表面に移動しやすい性質を持っている。
ここで、本発明のバインダー成分(B)として、光触媒(A)、特に該変性光触媒(A1)より表面エネルギーが高いバインダー樹脂(B’)を用いることにより、変性光触媒(A1)の上記性質を助長するため、本発明の光触媒組成物(C)は、光触媒(A)、特に変性光触媒(A1)の分布について大きな自己傾斜性を有することが可能となる。ここで自己傾斜性とは、光触媒組成物(C)から表層部を形成する際、その形成過程において光触媒(A)、特に変性光触媒(A1)が、表層部が接する界面の性状(特に親水/疎水性)に対応して、光触媒(A)、特に変性光触媒(A1)の濃度勾配を有する構造を自律的に形成することを意味する。
【0060】
本発明のバインダー成分(B)としては、光触媒(A)(好ましくは変性光触媒(A1))より、表面エネルギーが2mN/m以上、好ましくは5mN/m以上大きい樹脂を選択すると、上記自己傾斜性が大きくなり非常に好ましい。
ここで、上記表面エネルギーや表面エネルギーの相対差は、例えばPolymer Handbook(米国 A Wiley-interscience publication 出版)等を参照したり、以下の方法で測定したりすることにより求めることができる。
すなわち、上記光触媒組成物(C)を構成する光触媒(A)、特に変性光触媒(A1)及びバインダー成分(B)から各々それらの表層部を有する基材を調整し、脱イオン水を滴下して20℃における接触角(θ)を測定し、下記のSellとNeumannの実験式により、各々の表面エネルギーを求めることができる。
【0061】
【数1】
Figure 0003922991
【0062】
[式中、γsは脱イオン水の接触角を測定した表層部の表面エネルギー(mN/m)を表し、γlは水の表面エネルギー{72.8mN/m(20℃)}を表わす。]
【0063】
本発明の光触媒組成物(C)において、バインダー成分(B)に使用できる化合物としては、上記条件を満たす表面エネルギーを有すればよく特に制限されないが、各種単量体、合成樹脂及び天然樹脂等が挙げられ、また被膜の形成後に、乾燥、加熱、吸湿、光照射等により硬化するものも挙げることができる。また、その形態については、無溶媒の状態(ペレット、粉体、液体等)であっても溶媒に溶解あるいは分散した形態であっても良く、特に制限はない。
【0064】
上記合成樹脂としては、熱可塑性樹脂と硬化性樹脂(熱硬化性樹脂、光硬化性樹脂、湿気硬化性樹脂等)の使用が可能であり、例えばシリコーン樹脂、アクリル樹脂、メタクリル樹脂、フッ素樹脂、アルキド樹脂、アミノアルキド樹脂、ビニル樹脂、ポリエステル樹脂、スチレン−ブタジエン樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリケトン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンオキシド樹脂、ポリスルフォン樹脂、ポリフェニレンスルホン樹脂ポリエーテル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、尿素樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン−アクリル樹脂等を挙げることができる。
また、上記天然高分子としては、ニトロセルロース等のセルロース系樹脂、天然ゴム等のイソプレン系樹脂、カゼイン等のタンパク質系樹脂やでんぷん等を挙げることができる。
【0065】
本発明において、光触媒組成物(C)に使用するバインダー成分(B)としては、下記式(4)で表されるフェニル基含有シリコーン(BP)が、本発明の変性光触媒(A1)より表面エネルギーが高く、その骨格を成すシロキサン結合(−O−Si−)は光触媒作用による酸化分解がおこらないため、最も好適に使用できる。
SiO(4−p−q−r)/2 (4)
(式中、各Rはフェニル基を表し、Rは各々独立に直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数2〜30個のアルケニル基を表す。Xは、各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。そしてp、q及びrは、0<p<4、0≦q<4、0≦r<4、及び0<(p+q+r)<4であり、そして0.05≦p/(p+q)≦1である。)
上記式(4)で示されるフェニル基含有シリコーン(BP)としては、例えば一般式(16)、(17)、(18)及び(19)で表されるシロキサン結合の少なくとも1種の構造を含むシリコーンを挙げることができる。
【0066】
【化10】
Figure 0003922991
【0067】
−(R SiO)− ・・・(17)
【0068】
【化11】
Figure 0003922991
【0069】
(式中、Rはそれぞれ独立に、フェニル基、直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基を表す。)
【0070】
【化12】
Figure 0003922991
【0071】
上述した構造を含むシリコーンは、例えば一般式RSiX3(式中、Rは、フェニル基、直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基を表す。各Xは、各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子からなる群より選ばれる一つの反応性基を表す。以下同様。)で表される3官能シラン誘導体及び/又は一般式R 2SiX2で表される2官能シラン誘導体及び/又は一般式SiX4で表される4官能シラン誘導体を部分的に加水分解・縮重合させ、必要により一般式R SiXで表される1官能シラン誘導体及び/又はアルコール類によって末端停止させることにより調製できる。この様にして得られるシラン誘導体モノマーの部分縮合物のポリスチレン換算重量平均分子量は、好ましくは100〜100,000、より好ましくは400〜50,000である。
【0072】
これらの中で、上記式(4)で示されるフェニル基含有シリコーンとして、上記式(16)で表されるラダー構造を10モル%以上、好ましくは40モル%以上含むものを選択すると、本発明の光触媒組成物(C)から形成される光触媒含有表層部は、硬度、耐熱性、耐候性、耐汚染性、耐薬品性等の点で非常に優れたものとなるため好ましい。特に、上記ラダー構造としてフェニルラダー構造〔式(16)におけるRが全てフェニル基のもの〕を有するものは上述した光触媒含有表層部の物性が非常に向上するため好ましい。この様なラダー構造は、例えば赤外線吸収スペクトルにおける1040cm−1と1160cm−1付近の2本のシロキサン結合に由来する吸収の存在により同定する事ができる。
(J.F.Brown.Jr.,etal.:J.Am.Chem.Soc.,82,6194(1960)参照。)
本発明に用いる上記式(4)で表されるフェニル基含有シリコーン(BP)は、Ph−Si結合(Ph:フェニル基)を有することが好ましい。
【0073】
すなわち、本発明の光触媒組成物(C)において、表面エネルギーの非常に小さい構造(式(1)〜(3))を有する変性剤化合物(b)で変性処理されている変性光触媒(A1)のバインダーとして、該変性光触媒(A1)より表面エネルギーが高いフェニル基含有シリコーン(BP)を含むバインダー成分(B)を用いることにより、本発明の光触媒組成物(C)は、変性光触媒(A1)の分布について高い自己傾斜性を有することが可能となる。
この様な表面エネルギーの高いフェニル基含有シリコーン(BP)による自己傾斜性の発現効果は、フェニル基(R)を、フェニル基(R)とR(Rは直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、炭素数2〜20のアルケニル基を表す。)の合計{以下(R+R)と表す。}に対し5モル%以上有する上記式(4)で示されるフェニル基含有シリコーン(BP)を用いることによってより顕著に発揮することができるので、このようなフェニル基含有シリコーン(BP)を用いることは好ましい。
【0074】
また、上述した自己傾斜性の発現効果は、フェニル基(R)の(R+R)に対する割合が増えるに従い増大する。よって、本発明の光触媒組成物に使用するバインダー成分(B)のフェニル基含有シリコーンとしてより好ましいものは、(R+R)に対するフェニル基(R)の割合が10モル%以上、さらに好ましくは20モル%以上、さらに好ましくは50モル%以上のものである。
また、該フェニル基含有シリコーン(BP)は有機樹脂等の有機基材に対する密着性が良好であり、その骨格を成すシロキサン結合(−O−Si−)は光触媒作用による酸化分解がおこらないため、本発明の光触媒組成物(C)をブラインドにコーティングして得られる光触媒含有表層部は、非常に耐候性に優れたものになる。
【0075】
本発明の光触媒組成物(C)において、バインダー成分(B)に使用するフェニル基含有シリコーン(BP)として、上述した効果を発揮するより好ましいものは、下記式(5)で表されるアルキル基を含有しないフェニル基含有シリコーン(BP1)である。
SiO(4−s−t)/2 (5)
(式中、Rはフェニル基を表し、Xは各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表し、s及びtは、0<s<4、0≦t<4、そして0<(s+t)<4である。)
【0076】
また、バインダー成分(B)が、下記式(6)で表されるアルキル基含有シリコーン(BA)を更に含有すると、本発明の光触媒組成物から形成される表層部は、成膜性、硬度、耐熱性、耐汚染性、耐薬品性等の点で優れたものとなるため好ましい。
SiO(4−u−v)/2 (6)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数2〜30個のアルケニル基を表す。Xは、各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。u及びvは、0<u<4、0≦v<4、そして0<(u+v)<4である。)
【0077】
さらに、上記フェニル基含有シリコーン(BP1)と混合する上記アルキル基含有シリコーン(BA)として、式(7)で表されるモノオキシジオルガノシラン単位(D)と式(8)で表されるジオキシオルガノシラン単位(T)を、モル比が好ましくは(D)/(T)=100/0〜5/95、より好ましくは90/10〜10/90の割合で有する構造のものを用いると、アルキル基含有シリコーン(BA)の応力緩和作用が増加し、本発明の光触媒組成物(C)から生成する光触媒含有表層部の耐クラック性が向上する結果、耐候性が非常に優れたものとなる。
−(R SiO)− (7)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数2〜30個のアルケニル基を表す。)
【0078】
【化13】
Figure 0003922991
【0079】
(式中、Rは式(7)で定義した通りである。)
【0080】
本発明において、長期の耐候性向上には、バインダー成分(B)が相分離構造を形成することが好ましく、特にミクロ相分離した構造を形成することが好ましい。
たとえば、バインダー成分(B)として、上述した光触媒(A)、特に該変性光触媒(A1)より表面エネルギーが高いバインダー樹脂(B’)と上記式(6)で表されるアルキル基含有シリコーン(BA)とを、好ましくは質量比(B’)/(BA)=5/95〜95/5、より好ましくは(B’)/(BA)=30/70〜90/10で混合したものを用いると、本発明の光触媒組成物(C)から形成される光触媒含有表層部は、表面エネルギーが高いバインダー樹脂(B’)とアルキル基含有シリコーン(BA)が相分離したバインダー中に光触媒(A)が分散した構造となり、長期の耐候性に優れたものとなるため好ましい。
【0081】
ここで、表面エネルギーが高いバインダー成分(B’)とアルキル基含有シリコーン(BA)の相分離は、連続層でない相が好ましくは1nm〜1μm、より好ましくは10nm〜0.1μm、さらに好ましくは10nm〜0.001μmの大きさのドメインを形成してミクロ相分離した場合に、より効果を奏する。
また、光触媒(A)が、表面エネルギーの高いバインダー樹脂(B’)と相分離状態にあるアルキル基含有シリコーン(BA)相中に存在した状態は、表層部の表面により多く光触媒(A)が存在することができるため好ましい。
【0082】
本発明におけるアルキル基含有シリコーン(BA)と相分離する表面エネルギーの高いバインダー樹脂(B’)としては、上述したフェニル基含有シリコーン(BP)が、その骨格を成すシロキサン結合(−O−Si−)は光触媒作用による酸化分解がおこらないため好ましく、アルキル基を含有しないフェニル基含有シリコーン(BP1)が特に好ましい。
この際、上記フェニル基含有シリコーン(BP1)及び上記アルキル基含有シリコーン(BA)の各々の、GPCで測定したポリスチレン換算重量平均分子量が、好ましくは100〜10,000、より好ましくは500〜6,000、さらに好ましくは700〜4,000であるものを使用すると、上述したバインダー成分(B)はミクロ相分離構造を容易に形成するため好ましい。
【0083】
本発明の光触媒組成物(C)に使用する前述したバインダー成分(B)は、溶剤に溶けたタイプ、溶媒に分散したタイプ、溶媒と混合されていないタイプ(液体、固体)のいずれであっても良い。
本発明の光触媒組成物(C)において上記式(4)で示されるフェニル基含有シリコーン(BP)は、反応性を有する基(式(4)中のX)を有しても、有さなくても良いが、反応性を有する基(式(4)中のX)を有する(即ち、式(4)において0<r)と、本発明の光触媒組成物(C)から得られる光触媒含有表層部は、硬度や耐熱性、耐薬品性、耐久性等に優れたものとなるため好ましい。また、同様の理由から、式(5)において0<t、式(6)において0<vが好ましい。
【0084】
本発明の光触媒組成物(C)において上記式(4)で示されるフェニル基含有シリコーン(BP)が反応性を有する基(式(4)中のX)として、水酸基及び/又は加水分解性基を有する場合、従来公知の加水分解触媒や硬化触媒を、フェニル基含有シリコーン(BP)に対し、好ましくは0.01〜20質量%、より好ましくは0.1〜5質量%の割合で添加することができる。
該加水分解触媒としては、酸性のハロゲン化水素、カルボン酸、スルホン酸、酸性あるいは弱酸性の無機塩、イオン交換樹脂などの固体酸などが好ましい。また、加水分解触媒の量は、ケイ素原子上の加水分解性基1モルに対して好ましくは0.001〜5モルの範囲内であることが好ましい。
【0085】
また上記硬化触媒としては、例えば水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、酢酸ナトリウム、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムヒドロキシドのごとき塩基性化合物類;トリブチルアミン、ジアザビシクロウンデセン、エチレンジアミン、ジエチレントリアミン、エタノールアミン類、γ−アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)−アミノプロピルトリメトキシシランのごときアミン化合物;テトライソプロピルチタネート、テトラブチルチタネートのようなチタン化合物;アルミニウムトリイソプロポキシド、アルミニウムアセチルアセトナート、過塩素酸アルミニウム、塩化アルミニウムのようなアルミニウム化合物;錫アセチルアセトナート、ジブチル錫オクチレート、ジブチル錫ジラウレートのような錫化合物;コバルトオクチレート、コバルトアセチルアセトナート、鉄アセチルアセトナートのごとき含金属化合物類;リン酸、硝酸、フタル酸、p−トルエンスルホン酸、トリクロル酢酸のごとき酸性化合物類などが挙げられる。
【0086】
本発明の光触媒組成物(C)において上記式(4)で示されるフェニル基含有シリコーン(BP)がSi−H基を有する場合、多官能アルケニル化合物のごとき架橋剤を、Si−H基に対しアルケニル基が好ましくは0.01〜2当量、より好ましくは0.1〜1当量となるように添加することが好ましい。該多官能アルケニル合物としては、アルケニル基を有しSi−H基と反応して硬化を促進するものであれば何でもよいが、ビニル基、アリル基、ヘキセニル基などの炭素数2〜30の1価不飽和炭化水素基を有するアルケニル基含有シリコーンが一般に用いられている。
【0087】
また、Si−H基と該多官能アルケニル化合物の反応を促進する目的で、触媒をフェニル基含有シリコーン(BP)と多官能アルケニル化合物の総量に対し、好ましくは1〜10000ppm、より好ましくは1〜1000ppmの割合で添加しても良い。該触媒としては白金族触媒、すなわちルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金の化合物が適しているが、特に白金の化合物とパラジウムの化合物が好適である。白金の化合物としては、例えば塩化白金(II)、テトラクロロ白金酸(II)、塩化白金(IV)、ヘキサクロロ白金酸(IV)、ヘキサクロロ白金(IV)アンモニウム、ヘキサクロロ白金(IV)カリウム、水酸化白金(II)、二酸化白金(IV)、ジクロロ−ジシクロペンタジエニル−白金(II)、白金−ビニルシロキサン錯体、白金−ホスフィン錯体、白金−オレフィン錯体や白金の単体、アルミナやシリカや活性炭に固体白金を担持させたものが挙げられる。パラジウムの化合物としては、例えば塩化パラジウム(II)、塩化テトラアンミンパラジウム(II)酸アンモニウム、酸化パラジウム(II)等が挙げられる。該白金族触媒はSi−H基含有シリコーンと多官能アルケニル化合物の合計量に対し白金族金属の量で好ましくは5〜1000ppmの範囲内で使用されるが、これは反応性、経済性及び所望の硬化速度等に応じて増減させることができる。また、所望により白金族触媒の活性を抑制し、ポットライフを延長させる目的で、各種の有機窒素化合物、有機リン化合物、アセチレン系化合物などの活性抑制剤を添加してもよい。
【0088】
また、本発明の光触媒組成物(C)には、それから形成される光触媒含有表層部の硬度や耐擦傷性、親水性を向上させる目的でシリカ、アルミナ、酸化ジルコニウム、酸化アンチモン、希土類酸化物等の金属酸化物微粒子を粉末あるいはゾルの状態で添加しても良い。ただしこれら金属酸化物微粒子は、本発明におけるバインダー成分(B)の様なバインダーとしての能力はなく、光触媒と同様に表層部の柔軟性(耐屈曲性、耐衝撃性)を低下させる。よって、該金属酸化物の添加量は、光触媒組成物(C)から形成される光触媒含有表層部中において光触媒(A)と金属酸化物の総質量が50質量%以下とすることが好ましい。
【0089】
本発明の光触媒組成物(C)は、無溶媒の状態(液体、固体)であっても溶媒に溶解あるいは分散した状態であっても良く、特に制限はないが、コーティング剤として用いる場合は、溶媒に対し溶解あるいは分散した状態が好ましい。この際、該光触媒組成物(C)中の光触媒(A)とバインダー成分(B)の総量は、好ましくは0.01〜95質量%、より好ましくは0.1〜70質量%である。
本発明の光触媒組成物(C)に用いる溶媒としては、例えば水やエチレングリコール、ブチルセロソルブ、イソプロパノール、n−ブタノール、エタノール、メタノール等のアルコール類、トルエンやキシレン等の芳香族炭化水素類、ヘキサン、シクロヘキサン、ヘプタン等の脂肪族炭化水素類、酢酸エチル、酢酸n−ブチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、ジメチルアセトアミド、ジメチルホルムアミド等のアミド類、クロロホルム、塩化メチレン、四塩化炭素等のハロゲン化合物類、ジメチルスルホキシド、ニトロベンゼン等が挙げられる。これらの溶媒は、単独で又は組み合わせて用いられる。
【0090】
また、本発明の光触媒組成物(C)には、必要により通常、塗料に添加配合される成分、例えば顔料、充填剤、分散剤、光安定剤、湿潤剤、増粘剤、レオロジーコントロール剤、消泡剤、可塑剤、成膜助剤、防錆剤、染料、防腐剤等がそれぞれの目的に応じて選択、組み合わせて配合することができる。
本発明の光触媒組成物(C)において、自己傾斜性が非常に高い場合(即ち、表層部中の光触媒(A)含有量(濃度)100に対し、ブラインドでない側である、露出面と接する表面近傍の相対濃度が好ましくは150以上、より好ましくは200以上である場合)、該光触媒組成物(C)において光触媒(A)とバインダー成分(B)の質量比が好ましくは(A)/(B)=0.1/99.9〜40/60、より好ましくは(A)/(B)=0.1/99.9〜30/70という光触媒(A)の含有量が非常に少ない範囲においてさえ、形成される表層部は、光照射による十分な親水化能力(超親水化能力:20℃における水の接触角が10゜以下)や優れた光触媒活性を有する。また、この様に光触媒含有量が少ない表層部はバインダー成分(B)本来の物性を発現するため、強度や柔軟性(耐屈曲性、耐衝撃性)等に優れたものとなる。
【0091】
本発明における低汚染性ブラインドは、光触媒(A)及びバインダー成分(B)を含む表層部を備え、該表層部中における光触媒(A)の濃度がブラインドの内部から表面に向かって高くなることを特徴とする。ただし、本発明における低汚染性ブラインドは、本発明の効果を妨げない範囲で、表層部以外の部分に光触媒(A)及び/又はバインダー成分(B)を含むことができる。
本発明における低汚染性ブラインドは、該表層部を皮膜状とし、ブラインド基材上に光触媒(A)及びバインダー成分(B)を含む当該皮膜を備えた形態とすることができる。この様な形態とすることにより、ブラインド基材と表層部で機能を分担した構造が可能となり好ましい。
【0092】
また、表層部以外の部分例えばブラインド基材部に光触媒(A)及び/又はバインダー成分(B)を含むものは、成形を一度にすることが可能であり、また表層部の欠陥部を補うことができ好ましい。このような形態は、例えば薄膜状の部材とする場合に好ましい。
本発明における低汚染性ブラインドの製造方法は、ブラインド基材上に本発明の光触媒組成物から皮膜を形成する場合に限定されない。ブラインド基材と本発明の光触媒組成物を同時に成形、たとえば、一体成形、してもよい。また、本発明の光触媒組成物を成形後、基材の成形を行ってもよい。また、本発明の光触媒組成物と基材を個別に成形後、接着、融着等により機能性複合体としてもよい。
【0093】
上記方法で、ブラインド基材と接しない状態で成形する場合は、ブラインド基材としては任意のものを用いることができる。
本発明の成形体または機能性複合体は、所望により、樹脂成形に用いる方法によって、フィルム、シート、ブロック、ペレット、さらに複雑な形状の成形体とすることができる。成形にあたり、本発明の効果を損なわない範囲で、他の樹脂を併用する事も可能である。
【0094】
上記成形や上記併用のための混合を、本発明の成形体または機能性複合体や他の樹脂を粉体あるいは予めペレットとして行うことができる。一部に液状成分を含んでも良い。また、混合後の樹脂を下記方法でペレットに成形し、さらに成形に供する方法も可能である。ペレットは本発明の成形体または機能性複合体を他の樹脂中に高濃度に含有させた所謂マスターバッチとすることもできる。
本発明のための成形方法は、押出し成形法、射出成形法、プレス成形法等が可能である。また、カレンダー成形法も、たとえば、熱可塑性樹脂を併用する等、樹脂の選定により使用可能である。また、天然繊維を含む有機繊維、ガラス等の無機繊維(及びこれらの織物を含む)などを補強材に用いて本発明の成形体または機能性複合体、及びこれらと他の樹脂混合物を含浸し、積層成形する事も可能である。
【0095】
本発明における低汚染性ブラインドは、該表層部を皮膜状とする場合は、例えば上記光触媒組成物(C)をブラインド基材に塗布し、乾燥した後、所望により好ましくは20℃〜500℃、より好ましくは40℃〜250℃の熱処理や紫外線照射等を行い、皮膜を形成することにより得ることができる。上記塗布方法としては、例えばスプレー吹き付け法、フローコーティング法、ロールコート法、刷毛塗り法、ディップコーティング法、スピンコーティング法、キャスティング法、スポンジ塗り法等が挙げられる。
この際、本発明の光触媒組成物(C)から形成される皮膜の膜厚は、好ましくは0.1〜200μm、より好ましくは0.5〜20μm、さらに好ましくは1.5〜10μmである。
なお、本明細書では、皮膜という表現を使用しているが、必ずしも連続膜である必要はなく、不連続膜、島状分散膜等の態様であっても構わない。
また、本発明の低汚染性ブラインドの表面には、Ag、Cu、Znのような金属を添加することができる。前記金属を添加した表面層は、表面に付着した細菌や黴を暗所でも死滅させることができる。
【0096】
本発明の低汚染性ブラインドは、表層部に含まれる光触媒(A)のバンドギャップエネルギーよりも高いエネルギーの光(励起光)を照射することにより光触媒活性及び/又は親水性を示し、優れた防汚性能を発現する。
この際、光触媒(A)が、上述した式(1)で表されるトリオルガノシラン単位、式(2)で表されるモノオキシジオルガノシラン単位、式(3)で表されるジオキシオルガノシラン単位よりなる群から選ばれる少なくとも1種の構造単位を有する化合物類よりなる群から選ばれる少なくとも1種の変性剤化合物(b)で変性処理された変性光触媒(A1)である場合、励起光照射により光触媒(A)粒子の近傍に存在する該変性剤化合物(b)の珪素原子に結合した有機基(R)の少なくとも一部は、光触媒の分解作用により水酸基に置換される。その結果、本発明の表層部表面の親水性が高まると共に、生成した水酸基同士が脱水縮合反応してシロキサン結合が生成した場合には、該表層部の硬度が非常に高くなる。この様な状態は、本発明の様態において好ましい。
【0097】
また、バインダー成分(B)として上述したシリコーンを用いたときも同様に、励起光照射により光触媒(A)粒子の近傍に存在するシリコーンの珪素原子に結合した有機基の少なくとも一部は、光触媒の分解作用により水酸基に置換され、本発明の表層部表面の親水性が高まると共に、生成した水酸基同士の脱水縮合反応が進行しシロキサン結合が生成した場合には、該表層部の硬度が非常に高くなる。この様な状態は、本発明の様態において好ましい。
本発明において、光触媒(A)のバンドギャップエネルギーよりも高いエネルギーの光の光源としては、太陽光;街灯、常夜灯等の環境にある光源;や一般照明が利用できる。一般照明としては蛍光灯、白熱電灯、メタルハライドランプ、ブラックライトランプ、キセノンランプ、水 銀灯などが好適に利用できる。光触媒の光励起により、基材表面が高度に親水化されるためには、励起光の照度は、0.001mW/cm以上あれのが好ましいが、0.01mW/cm以上だとより好ましく、0.1mW/cm以上だとさらに好ましい。
【0098】
すなわち、本発明は、生活環境下の光により、ブラインドを劣化すること無しに強い光触媒活性及び/または親水性(水の接触角が好ましくは20゜以下、より好ましくは10゜以下)を発現する表層部を有し、降雨や簡単な水洗浄で長期にわたりブラインドの美観を保つことができる低汚染性ブラインドを、煩雑な工程を必用とせずに提供することができる。
【0099】
【実施例】
以下の実施例、参考例及び比較例により本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
実施例、参考例及び比較例中において、各種の物性は下記の方法で測定した。1.粒径分布及び数平均粒子径
試料中の光触媒含有量が1−20質量%となるよう適宜溶媒を加えて希釈し、湿式粒度分析計(日機装製マイクロトラックUPA−9230)を用いて測定した。
2.重量平均分子量
ポリスチレン標品を用いて作成した検量線を用い、ゲルパーミエーションクロマトグラフィー(GPC)によって求めた。
GPCの条件は以下の通りである。
・装置:東ソー製HLC−8020 LC−3A型クロマトグラフ
・カラム:TSKgel G1000HXL、TSKgel G2000HXLおよびTSKgel G4000HXL(いずれも東ソー製)を直列に接続して用いた。
・データ処理装置:島津製作所製CR−4A型データ処理装置
・移動相:
テトラヒドロフラン(フェニル基含有シリコーンの分析に使用)
クロロホルム(フェニル基を含有しないシリコーンの分析に使用)
・流速:1.0ml/min.
・サンプル調製法
移動相に使用する溶媒で希釈(濃度は0.5〜2質量%の範囲で適宜調節した)して分析に供した。
【0100】
3.赤外線吸収スペクトル
日本分光製FT/IR−5300型赤外分光計を用いて測定した。
4.29Si核磁気共鳴の測定
日本電子製JNM−LA400を用いて測定した。
5.皮膜硬度
JIS−K5400に準じ、鉛筆硬度(皮膜のすり傷)として求めた。
6.紫外線照射後の皮膜硬度
皮膜表面に、東芝ライテック製FL20S BLB型ブラックライトの光を7日間照射後、上記の方法(5)にて測定した。
なおこのとき、日本国トプコン製UVR−2型紫外線強度計{受光部として、日本国トプコン製UD−36型受光部(波長310〜400nmの光に対応)を使用}を用いて測定した紫外線強度が1mW/cmとなるよう調整した。
7.皮膜表面に対する水の接触角
皮膜の表面に脱イオン水の滴を乗せ、20℃で1分間放置した後、協和界面科学製CA−X150型接触角計を用いて測定した。
皮膜に対する水の接触角が小さいほど、皮膜表面は親水性が高い。
8.紫外線照射前後の、皮膜表面の親水性(疎水性)の変化
皮膜の表面に、上記6の方法で紫外線を7日間照射した後、上記7の方法にて水の接触角を測定した。
【0101】
9.皮膜の光触媒活性
皮膜表面にメチレンブルーの5質量%エタノール溶液を塗布した後、上記6の方法にて紫外線を5日間照射した。
その後、光触媒の作用によるメチレンブルーの分解の程度(皮膜表面の退色の程度に基づき、目視で評価)に基づき、光触媒の活性を以下の3段階で評価した。
◎:メチレンブルーが完全に分解。
△:メチレンブルーの青色がわずかに残る。
×:メチレンブルーの分解はほとんど観測されず。
10.皮膜の耐候性(光沢保持率)
スガ試験器製DPWL−5R型デューパネル光コントロールウェザーメーターを使用して曝露試験(照射:60℃4時間、暗黒・湿潤:40℃4時間)を行った。曝露1000時間後の60°−60°鏡面反射率を最終的な光沢値として測定し、これを初期光沢値で割り、この値を光沢保持率として算出した。
【0102】
11.光触媒の傾斜構造の評価
試料をエポキシ樹脂(Quetol812)に包埋後、独国Reichert社製ULTRACUT−N型ミクロトームにより50〜60nmの厚さの超薄切片を作成し、支持膜を張ったメッシュに積載した。続いて5分程度のRuO4蒸気染色を施した後、カーボン蒸着を行い検鏡用試料とし、TEMにより皮膜断面の観察を実施した。
TEM観察の条件は以下の通りである。
・装置:日立製HF2000型
・加速電圧:125kV
また、光触媒酸化チタンの存在場所は、Ti元素のEDX分析により解析した。
【0103】
また、アクリルウレタン系のベースコート層を有するアルミ板上に形成させた皮膜の観察は、試料をDISCOエンジニアリングサービス製DAD321型ダイシングソーで粗切断した後、FIB(Focused Ion Beam)加工を行い、TEMによる皮膜断面の観察を実施した。
FIB加工条件は以下の通りである。
使用機器:日立製FB2000型
加工条件:加速電圧(30kV)
イオン源:Ga
また、TEM観察の条件は以下の通りである。
・装置:日立製HF2000型
・加速電圧:200kV
【0104】
12.耐衝撃性
JIS−K5400に準じ、デュポン式(500g×50cm)で評価した。
13.耐汚染性
試料を、一般道路(トラック通行量500〜1000台/日程度)に面したフェンスに張りつけ、3ケ月後に試料を水洗した後、試料表面の汚染の度合いを冷暗所に保管した比較対照試料を基準として分光色差計により評価した。
3ケ月後の変色の度合(ΔE変化率)評価
A:10%以下
B:10〜30%
C:30〜50%
D:50〜80%
E:80%以上
【0105】
[参考例1]
フェニル基含有シリコーン(BP1−1)の合成。
還流冷却器、温度計および撹拌装置を有する反応器にいれたジオキサン78gにフェニルトリクロロシラン26.0gを添加した後、室温にて約10分間撹拌した。これに水3.2gとジオキサン12.9gからなる混合液を、反応液を10〜15℃に保ちながら約30分かけて滴下した後、さらに10〜15℃で約30分撹拌し、続いて反応液を60℃に昇温させ3時間撹拌した。得られた反応液を25〜30℃に降温させ、392gのトルエンを約30分かけて滴下した後、再度反応液を60℃に昇温させ2時間撹拌した。
【0106】
得られた反応液を10〜15℃に降温させ、メタノール19.2gを約30分かけて添加した。その後さらに25〜30℃にて約2時間撹拌を続行し、続いて反応液を60℃に昇温させ2時間撹拌した。得られた反応液から60℃で減圧下に溶媒を溜去することにより重量平均分子量3600のラダ−骨格を有するフェニル基含有シリコーン(BP1−1)を得た。(得られたフェニル基含有シリコーン(BP1−1)には、IRスペクトルにおけるラダ−骨格の伸縮振動に由来する吸収(1130cm−1及び1037cm−1)が観測された。)
また、29Si核磁気共鳴の測定結果より求めた上記フェニル基含有シリコーン(BP1−1)の式は、(Ph)(OCH0.58SiO1.21であった。(ここでPhはフェニル基を表す。)
【0107】
[参考例2]
アルキル基含有シリコーン(BA−1)の合成。
還流冷却器、温度計および撹拌装置を有する反応器に入れたメタノール300gにメチルトリメトキシシラン136g(1モル)、及びジメチルジメトキシシラン120g(1モル)を添加した後、室温にて約10分間撹拌した。これに氷冷下で、0.05Nの塩酸水溶液12.6g(0.7モル)とメタノール63gからなる混合液を、約40分かけて滴下し、加水分解を行った。滴下終了後、さらに10℃以下で約20分、室温で6時間それぞれ撹拌した。
その後、得られた反応液から60℃で減圧下に溶媒を溜去することにより重量平均分子量3600のアルキル基含有シリコーン(BA−1)を得た。得られたアルキル基含有シリコーン(BA−1)の構造を29Si核磁気共鳴によって測定したところ、T構造とD構造を示すシグナルが確認され、その比率はT構造:D構造=1:1であった。
また、29Si核磁気共鳴の測定結果より求めた上記アルキル基含有シリコーン(BA−1)の平均組成式は、(CH1.5(OCH0.27SiO1.12であった。
【0108】
[参考例3]
シリコーン組成物(B−1)の調整。
参考例1で合成したフェニル基含有シリコーン(BP1−1)6gと参考例2で合成したアルキル基含有シリコーン(BA−1)3gを混合したものに、トルエン14.7g、イソプロパノール29.8g、ブチルセロソルブ15.1gを添加し、室温で撹拌する事によりバインダー成分(B−1)の溶液を得た。
また、各々の組成物の平均組成式より、上記バインダー成分(B−1)の平均組成式は、(Ph)0.67(CH0.5(OCH0.47SiO1.18と計算できる。(ここでPhはフェニル基を表す。)
【0109】
[参考例4]
還流冷却器、温度計および撹拌装置を有する反応器にいれたTKS−251{酸化チタンオルガノゾルの商品名(テイカ製)、分散媒:トルエンとイソプロパノールの混合溶媒、TiO2濃度20質量%、平均結晶子径6nm(カタログ値)}40gにビス(トリメチルシロキシ)メチルシランの20質量%トルエン溶液40gを50℃にて約5分かけて添加し、さらに50℃で12時間撹拌を続けることにより、非常に分散性の良好な変性光触媒オルガノゾル(A−1)を得た。この時、ビス(トリメチルシロキシ)メチルシランの反応に伴い生成した水素ガス量は23℃において718mlであった。また、得られた変性酸化チタンオルガノゾルをKBr板上にコーティングしIRスペクトルを測定したところ、Ti−OH基の吸収(3630〜3640cm−1)の消失が観測された。
【0110】
また、図1、図2にそれぞれ変性処理前のTKS−251及び得られた変性光触媒オルガノゾル(A−1)の粒径分布を示す。得られた変性光触媒オルガノゾル(A−1)の粒径分布は単一分散(数平均粒子径は25nm)であり、さらに変性処理前のTKS−251の単一分散(数平均粒子径は12nm)の粒径分布が完全に消失していることが分かる。
続いて、参考例3で調整したシリコーン成分(B−1)の溶液68gに上記変性光触媒オルガノゾル(A−1)20gを室温にて撹拌下において添加し、さらに硬化触媒(ジラウリル酸ジブチル錫)0.5gを攪拌下に添加して光触媒組成物(C−1)を得た。
【0111】
50mm×60mmに裁断した厚さ1mmのアルミ板(JIS,H,4000(A1050P))にマイティラック白{アクリルウレタン樹脂塗料(2液混合型)の商品名(日本ペイント製)}をスプレー塗布し、室温にて3日間乾燥した。得られたアクリルウレタン塗装を行ったアルミ板に上記光触媒組成物(C−1)を膜厚が2μmとなるようにスプレー塗布した後、室温で1時間乾燥し、150℃で30分加熱する事により、光触媒皮膜を有する試験板(D−1)を得た。
【0112】
得られた光触媒皮膜を有する試験板(D−1)をFIB加工し、TEMによる皮膜断面の観察を行った結果を図3(a)の写真に示す。また、図3(a)の写真のイラストレーションが図3(b)である。変性光触媒粒子(図3(b)中の参照番号1で示す)を含む光触媒皮膜(図3(b)中の参照番号2で示す)と、基材である、顔料酸化チタン(図3(b)中の参照番号4で示す)を含むアクリルウレタン皮膜(図3(b)中の参照番号3で示す)との界面には変性光触媒粒子は存在せず、光触媒皮膜表面は全て変性光触媒粒子で覆われていることが観察された。
【0113】
得られた光触媒皮膜を有する試験板(D−1)の鉛筆硬度はHであり、水との接触角は105゜であった。また、耐衝撃性試験は合格した。
また、得られた光触媒皮膜を有する試験板(D−1)の紫外線(ブラックライト)照射後の鉛筆硬度は5H以上であり、水の接触角は0゜であった。さらに光触媒活性評価の結果も非常に良好(◎)であった。
さらに、デューパネル光コントロールウェザーメーターによる曝露試験(1000時間後)による光沢保持率は98%であり、非常に良好な耐候性を示した。
【0114】
続いて、光触媒組成物(C−1)をエポキシ樹脂(Quetol812)上にスプレー塗布した後、室温で2日間乾燥し、続いて50℃にて3日間加熱することにより平滑な光触媒皮膜を有するエポキシ樹脂(D−2)を得た。
得られた光触媒皮膜を有するエポキシ樹脂(D−2)をエポキシ樹脂(Quetol812)に包埋後、ミクロトームにより50〜60nmの厚さの超薄切片を作成し、RuOでフェニル基含有シリコーン(BP1−1)を染色した後、TEMによる皮膜断面の観察を行った結果を図4(a)の写真に示す。また、図4(a)の写真のイラストレーションが図4(b)である。
【0115】
変性光触媒粒子(図4(b)中の参照番号1で示す)を含む光触媒皮膜(図4(b)中の参照番号2で示す)と基材であるエポキシ樹脂(図4(b)中の参照番号5で示す)との界面には変性光触媒粒子はほとんど存在せず、光触媒皮膜表面は全て変性光触媒粒子で覆われていることが観察された。
また、図4(b)中の参照番号5(b)で示す部分が、変性光触媒粒子相1と変性光触媒粒子を含まないバインダー相7との境界部分で、その部分を拡大した写真が図5(a)である。また、図5(a)の写真のイラストレーションが図5(b)である。
【0116】
図5(a)には、変性光触媒粒子(図5(b)中の参照番号1で示す)を含むバインダー相と変性光触媒粒子を含まないバインダー相(図5(b)中の参照番号7で示す)が存在することが観察できる。また、変性光触媒粒子を含まないバインダー相(図5(b)中の参照番号7で示す)では、RuOで染色されたフェニル基含有シリコーンと染色されていないアルキル基含有シリコーンがミクロ相分離構造を有して存在していることが観察できる。
【0117】
[参考例5]
変性光触媒オルガノゾル(A−1)20gの代わりに変性処理をしていないTKS−251の10gを用いた以外は、実施例1と同様の操作を行い光触媒組成物(C−2)を得た。
得られた光触媒組成物(C−2)を用い、参考例4と同様の操作を行って光触媒皮膜(酸化チタン含量は参考例4と同量)を有する試験板(D−3)を得た。
得られた光触媒皮膜を有する試験板(D−3)の鉛筆硬度はHであり、水との接触角は97゜であった。
また、得られた光触媒皮膜を有する試験板(D−3)の紫外線(ブラックライト)照射後の鉛筆硬度は3Hであり、水の接触角は94゜であった。さらに光触媒活性評価は悪い結果(×)であった。
さらに、デューパネル光コントロールウェザーメーターによる200時間の曝露試験で、光沢保持率は10%以下となり、チョーキング現象が観察された。
【0118】
続いて、上記光触媒組成物(C−2)をエポキシ樹脂(Quetol812)上にスプレー塗布した後、室温で2日間乾燥し、続いて50℃にて3日間加熱することにより平滑な光触媒皮膜を有するエポキシ樹脂(D−4)を得た。
得られた光触媒皮膜を有するエポキシ樹脂(D−4)をエポキシ樹脂(Quetol812)に包埋後、ミクロトームにより50〜60nmの厚さの超薄切片を作成し、RuOでフェニル基含有シリコーン(BP1−1)を染色した後、TEMによる皮膜断面の観察を行った結果を図6(a)の写真に示す。また図6(a)の写真のイラストレーションが図6(b)である。
【0119】
変性光触媒粒子(図6(b)中の参照番号1で示す)を含む光触媒皮膜(図6(b)中の参照番号2で示す)と、基材であるエポキシ樹脂(図6(b)中の参照番号5で示す)との界面には変性光触媒粒子が多く存在し、光触媒皮膜の露出表面は全て変性光触媒粒子の存在しないアルキル基含有シリコーン(図6(b)中参照番号8で示す)で覆われており、光触媒活性の発現が期待できないことが観察された。
【0120】
[実施例1]
A4サイズのアルミ板にマイティラック白{アクリルウレタン樹脂塗料(2液混合型)の商品名(日本ペイント製)}をスプレー塗布し、室温にて3日間乾燥した。
得られたアクリルウレタン塗装を行ったアルミ板に参考例4で調整した光触媒組成物(C−1)を、膜厚が約3μmとなるようにスプレーコーティング法にて塗布した後、150℃で30分乾燥して試料(E−1)を作成した。
この試料(E−1)の紫外線(ブラックライト)照射後の鉛筆硬度は4Hであり、水の接触角は0゜であった。また、この試料(E−1)の耐汚染性は非常に良好(評価:A)であった。
【0121】
[比較例1]
実施例1で得られたアクリルウレタン塗装を行ったA4サイズのアルミ板の水接触角は76゜であり、耐汚染性を測定したところ、悪い結果(評価:D)であった。
【0122】
[比較例2]
実施例1で得られたアクリルウレタン塗装を行ったA4サイズのアルミ板に参考例5で調整した光触媒組成物(C−2)を、膜厚が約3μmとなるようにスプレーコーティング法にて塗布した後、150℃で30分乾燥して試料(E−2)を作成した。
この試料(E−2)の紫外線(ブラックライト)照射後の鉛筆硬度は2Hであり、水の接触角は97゜であった。また、この試料(E−2)の耐汚染性は非常に悪い結果(評価:E)であった。
【0123】
[比較例3]
実施例1で得られたアクリルウレタン塗装を行ったA4サイズのアルミ板にST−K03(光触媒コーティング剤、石原産業(株)製)を、膜厚が約0.5μmとなるようにスプレーコーティング法にて塗布した後、150℃で30分乾燥して試料(E−3)を作成した。
この試料(E−3)の耐汚染性は、悪い結果(評価:C)であり、光触媒トップコート層の剥がれや、下地のアクリル塗膜の劣化が観察された。
【0124】
【発明の効果】
本発明は、生活環境下の光により、ブラインド基材を劣化すること無しに、光触媒活性及び/または親水性を発現する表層部を有するブラインドを、煩雑な工程を必用とせずに提供することができる。本発明のブラインドは、降雨や簡単な水洗浄で長期にわたりブラインドの美観を保つことができる
【図面の簡単な説明】
【図1】図1は、変性処理前のTKS−251(市販の酸化チタンオルガノゾル)の粒径分布を、湿式粒度分析計を使用して測定した結果を示す図である。
【図2】図2は、参考例4で上記TKS−251を変性処理して得られた変性光触媒オルガノゾル(A−1)の粒径分布を、湿式粒度分析計を使用して測定した結果を示す図である。
【図3】図3(a)は、参考例4で得られた光触媒含有皮膜を有する試験板(D−1)の断面のTEM写真である。図3(b)は、図3(a)のイラストレーションである。
【図4】図4(a)は、参考例4で得られた光触媒含有皮膜を有するエポキシ樹脂(D−2)の断面のTEM写真である。図4(b)は、図4(a)のイラストレーションである。
【図5】図5(a)は、図4(a)のTEM写真の一部を拡大した写真である。図5(b)は、図5(a)のイラストレーションである。
【図6】図6(a)は、参考例5で得られた光触媒含有皮膜を有するエポキシ樹脂(D−3)の断面のTEM写真である。図6(b)は、図6(a)のイラストレーションである。
【符号の説明】
1 変性光触媒粒子
2 光触媒含有皮膜
3 アクリルウレタン皮膜
4 顔料である酸化チタン
5 エポキシ樹脂
5(b) 変性光触媒粒子相1と変性光触媒粒子を含まないバインダー相7との境界部分で、その拡大図を図5(b)に示す
6 包埋用エポキシ樹脂
7 変性光触媒粒子を含まないバインダー相
8 アルキル基含有シリコーン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a blind having antifouling performance and / or antistatic performance. Specifically, the blind surface has a photocatalytic activity and / or a highly hydrophilic property over a long period of time, has a characteristic that dust does not easily adhere to the surface, and provides a blind that can easily clean dirt adhering to the surface. To do.
[0002]
[Prior art]
Conventional blinds, particularly horizontal blinds, tend to adhere dust and tobacco dust on the slats due to their shape, and when the blinds are attached to the kitchen, dirt such as scattered oil tends to adhere. The blind has a large number of slats, and it is troublesome to remove such dirt, and it has been a big problem to be able to clean it easily and in a short time.
For this reason, it has been proposed to apply a fluororesin or a ceramic resin to the surface of the slat in order to make it difficult to adhere dirt and to easily remove it.
However, when such a fluororesin or ceramic resin is applied, the dirt can be easily cleaned, but on the other hand, the slats are very easy to be charged. There is a problem that it tends to adhere.
[0003]
In view of the above problem, Japanese Patent Application Laid-Open No. 9-228765 proposes an easy-cleaning blind provided with a surface layer containing photocatalyst particles on the surface of a blind substrate.
This method utilizes the effect of removing dirt substances by the organic substance decomposition action of the photocatalyst by light irradiation and the hydrophilization phenomenon by photoirradiation of the photocatalyst itself to make the blind surface hydrophilic. It can be easily washed by spraying water, rinsing water, lightly wiping or raining. Further, the surface of the blind exhibits hydrophilicity by exhibiting hydrophilicity, and dust is less likely to adhere to the surface of the blind.
[0004]
However, when the photocatalyst-containing topcoat layer is directly formed on the slats, there are problems such as peeling of the topcoat layer, discoloration of the slats, and corrosion due to the organic substance decomposing action of the photocatalyst in the topcoat layer. There was a big problem that activity could not be obtained.
For the purpose of preventing the deterioration due to the photocatalyst described above, Japanese Patent Application Laid-Open No. 11-207871 proposes a method of interposing a hardly decomposable adhesive layer between the photocatalyst-containing topcoat layer and the slat. The coating process is complicated, workability is poor, the production loss increases, the cost is high, it is very difficult to obtain a uniform film, and it is difficult to completely prevent the deterioration of the blind base material. There are drawbacks. Further, in this method, since a clear film interface exists between the photocatalyst layer and the layer made of the hardly decomposed substance, problems such as peeling of the photocatalyst layer also occur.
For the reasons described above, a blind provided with a photocatalyst-containing surface layer that does not require a protective layer has long been desired.
[0005]
[Patent Document 1]
JP-A-9-228765
[Patent Document 2]
JP-A-11-207871
[0006]
[Problems to be solved by the invention]
An object of this invention is to provide the blind to which the outstanding antifouling effect by the photocatalyst was provided, without requiring a complicated process.
Specifically, it is to provide a blind having excellent antifouling property in which the surface of the blind substrate does not deteriorate due to the photocatalyst and the surface thereof exhibits photocatalytic activity and / or hydrophilicity due to light irradiation.
[0007]
[Means for Solving the Problems]
  As a result of intensive studies aimed at solving the above problems, the present inventors have reached the present invention. That is, the present invention is as follows.
  1. A blind having a surface layer portion containing a photocatalyst (A) and a binder component (B),The photocatalyst (A) is a triorganosilane unit represented by formula (1), a monooxydiorganosilane unit represented by formula (2), a dioxyorganosilane unit represented by formula (3), and Methylene fluoride (-CF 2 -) A modified photocatalyst (A1) modified with at least one modifier compound (b) selected from the group consisting of compounds having at least one structural unit selected from the group consisting of units;
    R 3 Si- (1)
(In the formula, each R is independently a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched carbon group having 1 to 30 carbon atoms. A fluoroalkyl group, a linear or branched alkenyl group having 2 to 30 carbon atoms, a phenyl group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group)
    -(R 2 SiO)-(2)
(In the formula, R is as defined in formula (1).)
[0008]
[Chemical formula 5]
Figure 0003922991
(In the formula, R is as defined in formula (1).)
A low-contamination blind, characterized in that the concentration of the photocatalyst (A) in the surface layer increases from the inner side of the blind toward the surface.
[0009]
  2. A blind having a surface layer portion containing a photocatalyst (A) and a binder component (B), wherein the binder component (B) contains a phenyl group-containing silicone (BP) represented by the following formula (4),
R 1 p R 2 q X r SiO (4-pqr) / 2 (4)
(In the formula, each R 1 Represents a phenyl group and R 2 Each independently represents a linear or branched carbon number of 1 to
30 represents an alkyl group, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched alkenyl group having 2 to 30 carbon atoms. X represents a hydrogen atom, a hydroxyl group, a C1-C20 alkoxy group, a C1-C20 acyloxy group, an aminoxy group, a C1-C20 oxime group, and a halogen atom each independently. And p, q and r are 0 <p <4, 0 ≦ q <4, 0 ≦ r <4, and 0 <(p + q + r) <4, and 0.05 ≦ p / (p + q) ≦ 1 is there. )
A low-contamination blind, characterized in that the concentration of the photocatalyst (A) in the surface layer increases from the inner side of the blind toward the surface.
[0010]
  3. A blind having a surface layer portion containing a photocatalyst (A) and a binder component (B), wherein the photocatalyst (A) is represented by a triorganosilane unit represented by the formula (1), a formula (2) Monooxydiorganosilane unit, dioxyorganosilane unit represented by formula (3), and methylene fluoride (—CF 2 -) A modified photocatalyst (A1) modified with at least one modifier compound (b) selected from the group consisting of compounds having at least one structural unit selected from the group consisting of units;
R 3 Si- (1)
(In the formula, each R is independently a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched carbon group having 1 to 30 carbon atoms. A fluoroalkyl group, a linear or branched alkenyl group having 2 to 30 carbon atoms, a phenyl group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group)
-(R 2 SiO)-(2)
(In the formula, R is as defined in formula (1).)
[0011]
[Chemical 6]
Figure 0003922991
(In the formula, R is as defined in formula (1).)
The binder component (B) contains a phenyl group-containing silicone (BP) represented by the following formula (4),
[0012]
    R 1 p R 2 q X r SiO (4-pqr) / 2 (4)
(In the formula, each R 1 Represents a phenyl group and R 2 Each independently represents a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched alkenyl group having 2 to 30 carbon atoms. X represents a hydrogen atom, a hydroxyl group, a C1-C20 alkoxy group, a C1-C20 acyloxy group, an aminoxy group, a C1-C20 oxime group, and a halogen atom each independently. And p, q and r are 0 <p <4, 0 ≦ q <4, 0 ≦ r <4, and 0 <(p + q + r) <4, and 0.05 ≦ p / (p + q) ≦ 1 is there. )
A low-contamination blind, characterized in that the concentration of the photocatalyst (A) in the surface layer increases from the inner side of the blind toward the surface.
[0013]
  4). The phenyl group-containing silicone (BP) is a phenyl group-containing silicone (BP1) which is represented by the following formula (5) and does not contain an alkyl group. Low pollution blinds.
R 1 s X t SiO (4-st) / 2 (5)
(Wherein R 1 Represents a phenyl group, and each X independently represents a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 20 carbon atoms, an aminoxy group, an oxime group having 1 to 20 carbon atoms, or a halogen atom. . s and t are 0 <s <4, 0 ≦ t <4, and 0 <(s + t) <4. )
[0014]
  5. The low-contamination blind according to any one of Inventions 1 to 4, wherein the binder component (B) further contains an alkyl group-containing silicone (BA) represented by the following formula (6).
R 2 u X v SiO (4-uv) / 2 (6)
(Wherein R 2 Each independently represents a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched alkenyl group having 2 to 30 carbon atoms. X represents a hydrogen atom, a hydroxyl group, a C1-C20 alkoxy group, a C1-C20 acyloxy group, an aminoxy group, a C1-C20 oxime group, and a halogen atom each independently. U and v are 0 <u <4, 0 ≦ v <4, and 0 <(u + v) <4. )
[0015]
  6). The binder component (B) contains a phenyl group-containing silicone (BP1) represented by the formula (5) and not containing an alkyl group and an alkyl group-containing silicone (BA) represented by the formula (6). The low-contamination blind according to any one of inventions 1 to 5, which is characterized by the following.
R 1 s X t SiO (4-st) / 2 (5)
(Wherein R 1 Represents a phenyl group, and each X independently represents a hydrogen atom, a hydroxyl group, or a carbon number of 1 to 20.
An alkoxy group, a C1-C20 acyloxy group, an aminoxy group, a C1-C20 oxime group, and a halogen atom are represented. s and t are 0 <s <4, 0 ≦ t <4, and 0 <(s + t) <4. )
[0016]
    R 2 u X v SiO (4-uv) / 2 (6)
(Wherein R 2 Each independently represents a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched alkenyl group having 2 to 30 carbon atoms. X represents a hydrogen atom, a hydroxyl group, a C1-C20 alkoxy group, a C1-C20 acyloxy group, an aminoxy group, a C1-C20 oxime group, and a halogen atom each independently. u and v are 0 <u <4, 0 ≦ v <4, and 0 <(u + v) <4. )
[0017]
  7). The alkyl group-containing silicone (BA) has a monooxydiorganosilane unit (D) represented by the formula (7) and a dioxyorganosilane unit (T) represented by the formula (8). The low-contamination blind according to any one of Inventions 1 to 6.
-(R 2 2 SiO)-(7)
(Wherein R 2 Each independently represents a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched alkenyl group having 2 to 30 carbon atoms. )
[0018]
[Chemical 7]
Figure 0003922991
(Wherein R 2 Is as defined in equation (7). )
[0019]
  8). The phenyl group-containing silicone (BP) and the alkyl group-containing silicone (BA)
The low-contamination blind according to any one of inventions 1 to 7, which is a surface layer part having a phase separation structure.
  9. The low-contamination blind according to any one of Inventions 1 to 8, wherein the photocatalyst (A) is present in the alkyl group-containing silicone (BA) phase.
  10. The low-contamination blind according to any one of Inventions 1 to 9, wherein the photocatalyst (A) has a number average particle diameter of 400 nm or less.
  11. The low-contamination blind according to any one of inventions 1 to 10, wherein the modifier compound (b) is a Si-H group-containing silicon compound (b1) represented by the formula (9). .
H x R y SiO (4-xy) / 2 (9)
(In the formula, each R is independently a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched carbon group having 1 to 30 carbon atoms. A fluoroalkyl group, a linear or branched alkenyl group having 2 to 30 carbon atoms, a phenyl group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group, where x and y are 0 <x <4, 0 <Y <4 and (x + y) ≦ 4.)
  12 The Si-H group-containing silicon compound (b1) is a mono-Si-H group-containing compound represented by the formula (10), a Si-H group-containing compound represented by the formula (11), a formula (12) The low-contamination blind according to any one of Inventions 1 to 11, wherein the blind is at least one compound selected from the group consisting of H silicone represented by the formula:
[0020]
[Chemical 8]
Figure 0003922991
(Wherein R 3 Are each independently a linear or branched alkyl group having 1 to 30 carbon atoms, a linear or branched alkenyl group having 2 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, A chain or branched C1-C30 fluoroalkyl group, a phenyl group, or a siloxy group represented by the formula (13) is represented.
[0021]
-O- (R 4 2 SiO) m -SiR 4 3 (13)
(Wherein R 4 Are each independently a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched fluoroalkyl group having 1 to 30 carbon atoms. Represents a linear or branched alkenyl group having 2 to 30 carbon atoms, or a phenyl group. M is an integer, and 0 ≦ m ≦ 1000. ))
H- (R 3 2 SiO) n -SiR 3 2 -H (11)
(Wherein R 3 Is as defined in equation (10). n is an integer, and 0 ≦ n ≦ 1000. )
(R 3 HSiO) a (R 3 2 SiO) b (R 3 3 SiO 1/2 ) c (12)
(Wherein R 3 Is as defined in equation (10). a is an integer of 1 or more, b is an integer of 0 or more, (a + b) ≦ 10000, and c is 0 or 2. However, when (a + b) is an integer of 2 or more and c = 0, the H silicone of formula (12) is a cyclic silicone, and when c = 2, the H silicone of formula (12) is chain-like. Silicone. )
[0022]
  13. The low-contamination blind according to any one of Inventions 1 to 12, wherein the binder component (B) in the surface layer part forms a phase separation structure.
  14 The photocatalytic activity and / or hydrophilicity is exhibited by irradiating light with energy higher than the band gap energy of the photocatalyst (A) contained in the surface layer part. Low pollution blinds.
  15. By irradiating light with energy higher than the band gap energy of the photocatalyst (A) contained in the surface layer part, at least a part of the organic groups bonded to the silicon atoms existing in the vicinity of the photocatalyst (A) particles are hydroxyl groups. The low-contamination blind according to any one of inventions 1 to 14, wherein the blind is substituted with a siloxane bond.
[0023]
  16. The low-contamination blind according to any one of Inventions 1 to 15, wherein the surface energy of the binder component (B) is higher than the surface energy of the photocatalyst (A).
  17. Any one of Inventions 1 to 16, wherein the surface layer portion is in the form of a film, and the concentration of the photocatalyst (A) in the film increases from the surface in contact with the blind substrate toward the other exposed surface. Low pollution blinds as described in
  18. A photocatalyst composition (C) comprising a photocatalyst (A) and a binder component (B), wherein the photocatalyst coating composition for blinds forms the surface layer part according to any one of inventions 1 to 17. .
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Examples of the blind base material used in the low-contamination blind of the present invention include plastic base materials such as polypropylene and urethane, plastic base materials having a base coat layer (hard coat plate, painted plate), and metal base materials such as aluminum and base coat layers. A metal base material (hard coat plate, painted plate) having a surface can be suitably used.
Here, the base coat layer refers to a paint film applied to the surface of a blind substrate. Specific examples include paint films formed from various primer paints such as silicon primers, acrylic paint films (melamine curing) Type acryl, urethane curable acryl, acid-epoxy curable acryl, etc.), fluorine-based coatings, and the like. These base coat layers preferably contain additives such as pigments for the purpose of improving design properties.
[0025]
The low-contamination blind of the present invention is a blind having a surface layer portion containing a photocatalyst (A) and a binder component (B), and the concentration of the photocatalyst (A) in the surface layer portion is different from the inside of the blind. It is characterized by becoming higher toward the exposed surface.
At this time, the photocatalyst content (concentration) 100 in the entire surface layer portion has a relative concentration in the vicinity of the surface side in contact with the exposed surface of 120 or more, so that the effect of improving the photocatalytic ability and the hydrophilization ability is exhibited. It is preferable because the effect is increased. The relative concentration in the vicinity of the surface side is more preferably 150 or more, and further preferably 200 or more. Moreover, it is preferable at the point of the interface deterioration prevention effect that the relative density | concentration of the surface vicinity which contacts a blind base material is 50 or less. The relative concentration in the vicinity of the surface of the blind contacting the substrate is more preferably 10 or less, and even more preferably 0.
[0026]
Further, the concentration of the photocatalyst (A) in the surface layer portion in the present invention may gradually increase from the surface in contact with the blind substrate toward the other exposed surface, or simply on the surface in contact with the blind substrate. The photocatalyst concentration may be low, the photocatalyst concentration on the other exposed surface may be high, and the change therebetween may be discontinuous.
Furthermore, in the surface layer portion of the present invention, it is preferable that there is no clear film interface that occurs when a photocatalyst layer is applied on the protective layer. That is, when there is no clear film interface that occurs when a photocatalyst layer is applied on the protective layer, the photocatalyst is firmly fixed in the surface layer portion, and problems such as separation of the photocatalyst do not occur.
[0027]
In the present invention, the photocatalyst (A) means an electron in the valence band when irradiated with light (excitation light) having energy (ie, short wavelength) larger than the energy gap between the conduction band and the valence band. Refers to a substance capable of generating conduction electrons and holes by the excitation (photoexcitation) of. At this time, various chemical reactions can be performed using the reducing power of electrons generated in the conduction band and / or the oxidizing power of holes generated in the valence band.
Examples of chemical reactions promoted by this photocatalyst include oxidative decomposition reactions of various organic substances. Therefore, if this photocatalyst is immobilized on the surface of the blind, various organic substances (contaminants) adhering to the blind can be oxidatively decomposed using light energy, and the surface of the blind is kept hydrophilic. It becomes possible.
[0028]
In the present invention, the photocatalytic activity means that an oxidation or reduction reaction is caused by light irradiation. It is possible to determine whether or not the surface is photocatalytically active by measuring the decomposability of the organic material such as a dye during light irradiation on the surface of the material. A surface having photocatalytic activity exhibits excellent decomposition activity and contamination resistance of contaminating organic substances.
In the present invention, hydrophilicity preferably means a case where the contact angle of water at 20 ° C. is 30 ° or less, and oil stains adhering to the hydrophilic surface can be easily washed with a light wipe. The surface exhibits antistatic properties, and the surface is less likely to adhere to dust. In particular, when the contact angle of water is 10 ° or less, more preferably 5 ° or less, the above effect becomes remarkable.
[0029]
In the present invention, as the photocatalyst (A) useful for making the surface of the blind photocatalytic activity and / or hydrophilic, for example, TiO2, ZnO, SrTiO3, CdS, GaP, InP, GaAs, BaTiO3, BaTiO4, BaTi4O9, K2NbO3, Nb2O5, Fe2O3, Ta2O5, K3Ta3Si2O3, WO3, SnO2, Bi2O3, BiVO4, NiO, Cu2O, SiC, MoS2, InPb, RuO2, CeO2, Ta3N5Further, a layered oxide having at least one element selected from Ti, Nb, Ta, and V (Japanese Patent Laid-Open Nos. 62-74452, 2-172535, and 7-24329) JP-A-8-89799, JP-A-8-89800, JP-A-8-89804, JP-A-8-198061, JP-A-9-248465, JP-A-10-99694, No. 10-244165, etc.) and nitrogen-doped titanium oxide (Japanese Patent Laid-Open Nos. 13-278625, 13-278627, 13-335321, 14-029750, and Japanese Patent Laid-Open No. 14-029750) 13-207082 and the like, and oxygen-deficient titanium oxide (see Japanese Patent Laid-Open No. 13-212457). Emissions photocatalyst can also be suitably used. TaON, LaTiO2N, CaNbO2N, LaTaON2, CaTaO2Oxynitride compounds such as N and Sm2Ti2S2O7Such oxysulfide compounds such as those having high photocatalytic activity by visible light can be suitably used.
[0030]
Further, a photocatalyst coated with a metal such as Pt, Rh, Ru, Nb, Cu, Sn, Ni, Fe and / or an oxide thereof, or a porous calcium phosphate coated with these photocatalysts. (Refer to Unexamined-Japanese-Patent No. 10-244166) etc. can also be used.
The crystal particle size (primary particle size) of the photocatalyst (A) is preferably 1 to 400 nm, and more preferably a photocatalyst of 1 to 50 nm is suitably selected.
Of these photocatalysts, titanium oxide is preferred because it is non-toxic and excellent in chemical stability, and the hydrophilicity of titanium oxide itself is greatly enhanced by light irradiation.
As the titanium oxide, any crystal form of anatase type, rutile type and brookite type may be used. Further, the above nitrogen-doped titanium oxide and oxygen-deficient titanium oxide that are responsive to visible light can be suitably used as the titanium oxide.
As the photocatalyst (A) of the present invention, a modified photocatalyst (A1) obtained by modifying the photocatalyst (A) with at least one modifier compound (b) described later is preferably used.
[0031]
In the present invention, the modification of the photocatalyst (A) means that at least one modifier compound (b) described later is immobilized on the surface of the photocatalyst (A) particles. The immobilization of the above modifier compound on the surface of the photocatalyst particles is considered to be due to van der Waals force (physical adsorption), Coulomb force, or chemical bonding. In particular, modification using a chemical bond is preferable because the interaction between the modifier compound and the photocatalyst is strong, and the modifier compound is firmly immobilized on the surface of the photocatalyst particles.
By using the photocatalyst (A) of the present invention as the modified photocatalyst (A1), when the surface layer portion containing the photocatalyst (A) is formed on the blind of the present invention, the photocatalyst (A) in the surface layer portion is formed. Since the formation of a structure in which the concentration increases from the inner side of the blind of the surface layer portion toward the other exposed surface is facilitated particularly when combined with the binder component (B) described later, it is very preferable.
[0032]
In the present invention, the properties of the photocatalyst (A) used for modification are important factors for the dispersion stability of the modified photocatalyst (A1), film-forming properties, and expression of various functions. That is, as the photocatalyst (A) used in the modification of the present invention, the photocatalyst having a number average dispersed particle size of a mixture of primary particles and secondary particles of 400 nm or less effectively utilizes the surface characteristics of the modified photocatalyst. It is preferable because it is possible. In particular, when a photocatalyst having a number average dispersed particle size of 100 nm or less is used, in the surface layer portion of the present invention formed from a photocatalyst composition (C) containing a modified photocatalyst (A1) to be produced and a binder component (B) described later, The modified photocatalyst (A1) can be efficiently present on the surface (exposed surface) of the surface layer portion, which is very preferable. More preferably, the photocatalyst (A) of 80 nm or less and 3 nm or more, and more preferably 50 nm or less and 3 nm or more is selected.
[0033]
As these photocatalysts (A), it is preferable to use a photocatalyst sol instead of a photocatalyst powder for the following reasons. In general, powders composed of fine particles form secondary particles in which single crystal particles (primary particles) are strongly agglomerated, so there are many surface properties that are wasted, but it is very difficult to disperse to primary particles. It is. On the other hand, in the case of a photocatalyst sol, the photocatalyst particles do not dissolve but exist in a form close to primary particles, so that the surface characteristics can be used effectively. It can be preferably used because it effectively exhibits various functions. Here, the photocatalyst sol used in the present invention means that the photocatalyst particles are 0.01 to 70% by mass in water and / or an organic solvent, preferably 0.1 to 50% by mass as primary particles and / or secondary particles. It is distributed.
[0034]
Here, examples of the organic solvent used in the photocatalyst sol include alcohols such as ethylene glycol, butyl cellosolve, n-propanol, isopropanol, n-butanol, ethanol and methanol, and aromatic hydrocarbons such as toluene and xylene. , Aliphatic hydrocarbons such as hexane, cyclohexane and heptane, esters such as ethyl acetate and n-butyl acetate, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethers such as tetrahydrofuran and dioxane, dimethylacetamide, dimethyl Examples include amides such as formamide, halogen compounds such as chloroform, methylene chloride, and carbon tetrachloride, dimethyl sulfoxide, nitrobenzene, and a mixture of two or more of these.
[0035]
Taking a titanium oxide sol as an example of the photocatalyst sol, for example, a titanium oxide hydrosol in which water is substantially used as a dispersion medium and titanium oxide particles are peptized therein can be exemplified. (Here, substantially using water as a dispersion medium means that water is contained in the dispersion medium in an amount of about 80% by mass or more.) Adjustment of such a sol is known and can be easily produced ( (See JP-A-63-17221, JP-A-7-819, JP-A-9-165218, JP-A-11-43327, etc.). For example, metatitanic acid produced by heating and hydrolyzing an aqueous solution of titanium sulfate or titanium tetrachloride is neutralized with aqueous ammonia, and the precipitated hydrous titanium oxide is filtered, washed, and dehydrated to obtain aggregates of titanium oxide particles. It is done. Titanium oxide hydrosol can be obtained by peptizing the agglomerates under the action of nitric acid, hydrochloric acid, ammonia or the like and performing hydrothermal treatment. In addition, as titanium oxide hydrosol, titanium oxide particles are peptized under the action of acid or alkali, or dispersion stabilizer such as sodium polyacrylate is used as required without using acid or alkali. Sols that are used and dispersed in water under strong shear forces can also be used. Further, an anatase-type titanium oxide sol having excellent dispersion stability even in an aqueous solution having a pH near neutral and having a particle surface modified with a peroxo group can be easily obtained by the method proposed in JP-A-10-67516. it can.
[0036]
The titanium oxide hydrosol described above is commercially available as a titania sol. (For example, “STS-02” manufactured by Ishihara Sangyo Co., Ltd., “TO-240” manufactured by Tanaka Transcript Co., Ltd., etc.)
The titanium oxide in the titanium oxide hydrosol is preferably 50% by mass or less, and preferably 30% by mass or less. More preferably, it is 30 mass% or less and 0.1 mass% or more.
Such hydrosols have a relatively low viscosity (20 ° C.). In the present invention, the viscosity of the hydrosol is preferably in the range of about 0.5 mPa · s to 2000 mPa · s. More preferably, it is 1 mPa * s-1000 mPa * s, More preferably, it is 1 mPa * s-500 mPa * s.
Further, for example, a cerium oxide sol (see JP-A-8-59235) or a layered oxide sol having at least one element selected from the group consisting of Ti, Nb, Ta, and V (JP-A-9-25123). The manufacturing method of various photocatalytic sols such as JP-A-9-67124, JP-A-9-227122, JP-A-9-227123, JP-A-10-259023, etc.) is the same as that of titanium oxide sol. Known to.
[0037]
In addition, a photocatalyst organosol in which an organic solvent is substantially used as a dispersion medium and in which photocatalyst particles are dispersed is a compound having a phase transfer activity such as polyethylene glycol (for example, different first phase and second phase). A third phase is formed at the interface with the phase, the first phase, the second phase, the third phase are mutually dissolved and / or solubilized compounds) and diluted with an organic solvent (special (Kaihei 10-167727), a method of preparing a sol by dispersing and transferring it in an organic solvent insoluble in water using an anionic surfactant such as sodium dodecylbenzenesulfonate (Japanese Patent Laid-Open No. 58-29863) or butyl cellosolve After adding alcohols having a boiling point higher than water, such as water, to the photocatalyst hydrosol, the water can be obtained by a method of removing the water by (vacuum) distillation or the like. In addition, a titanium oxide organosol in which an organic solvent is substantially used as a dispersion medium and titanium oxide particles are dispersed therein is commercially available (for example, “TKS-251” manufactured by Teika Co., Ltd.). Here, substantially using an organic solvent as a dispersion medium means that the dispersion medium contains about 80% by mass or more of the organic solvent.
[0038]
In the present invention, at least one modifier compound (b) used to obtain the modified photocatalyst (A1) is a triorganosilane unit represented by the formula (1), a monooxy represented by the formula (2). Diorganosilane unit, dioxyorganosilane unit represented by formula (3), and methylene fluoride (—CF2-) Selected from the group consisting of compounds having at least one structural unit selected from the group consisting of units.
R3Si- (1)
(In the formula, each R is independently a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched carbon group having 1 to 30 carbon atoms. A fluoroalkyl group, a linear or branched alkenyl group having 2 to 30 carbon atoms, a phenyl group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group)
-(R2SiO)-(2)
(In the formula, R is as defined in formula (1).)
[0039]
[Chemical 7]
Figure 0003922991
[0040]
(In the formula, R is as defined in formula (1).)
In the modified photocatalyst (A1) in which the surface of the photocatalyst particle is modified with the modifier compound (b) having the structural unit described above, the surface energy of the particle surface becomes very small.
[0041]
In the present invention, the modification treatment of the photocatalyst (A) with the modifier compound (b) is carried out in the presence or absence of water and / or an organic solvent in the same manner as the above-described photocatalyst (A) and the modifier compound ( b) is preferably mixed at a mass ratio (A) / (b) = 1/99 to 99.9 / 0.1, more preferably (A) / (b) = 10/90 to 99/1. It can be obtained by heating at 0 to 200 ° C., more preferably at 10 to 80 ° C., or by changing the solvent composition of the mixture by (reduced pressure) distillation or the like.
[0042]
Here, when performing the above modification treatment, examples of organic solvents that can be used include aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane, cyclohexane, and heptane, ethyl acetate, and n-butyl acetate. Esters, alcohols such as ethylene glycol, butyl cellosolve, isopropanol, n-butanol, ethanol and methanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethers such as tetrahydrofuran and dioxane, amides such as dimethylacetamide and dimethylformamide , Halogen compounds such as chloroform, methylene chloride, carbon tetrachloride, dimethyl sulfoxide, nitrobenzene, and a mixture of two or more thereof.
[0043]
Examples of the modifier compound (b) used for obtaining the modified photocatalyst (A1) of the present invention include a Si—H group, a hydrolyzable silyl group (alkoxysilyl group, hydroxysilyl group, halogenated silyl group, Acetoxysilyl group, aminoxysilyl group, etc.), epoxy compounds, acetoacetyl groups, thiol groups, acid anhydride groups and other photocatalyst particles (a) reactive with silicon compounds, fluoroalkyl compounds, fluoroolefin polymers, etc. Can be mentioned.
Other examples of the modifier compound (b) include a silicon compound having a structure that interacts with photocatalyst particles (a) such as a polyoxyalkylene group by van der Waals force, Coulomb force, etc. Examples thereof include a fluoroalkyl compound and a fluoroolefin polymer.
In the present invention, when the Si-H group-containing silicon compound (b1) represented by the composition formula (9) is used as the modifier compound (b), the surface of the photocatalyst particles can be modified very efficiently. preferable.
HxRySiO(4-xy) / 2  (9)
(In the formula, each R is independently a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched carbon group having 1 to 30 carbon atoms. A fluoroalkyl group, a linear or branched alkenyl group having 2 to 30 carbon atoms, a phenyl group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group, where x and y are 0 <x <4, 0 <Y <4 and (x + y) ≦ 4.)
[0044]
In the present invention, the modification of the photocatalyst (A) with the Si-H group-containing silicon compound (b1) represented by the composition formula (9) is carried out in the presence or absence of water and / or an organic solvent. The mass ratio (A) / (b1) = 1/99 to 99.9 / 0.1, more preferably (A) / (b1), between (a) and the Si—H group-containing silicon compound (b1). = 10/90 to 99/1, preferably by mixing at 0 to 200 ° C. By this modification operation, hydrogen gas is generated from the mixed solution, and when the photocatalyst sol is used as the photocatalyst (A), an increase in the average dispersed particle size is observed. Further, for example, when titanium oxide is used as the photocatalyst (A), the reduction of Ti—OH groups is caused by 3630 to 3640 cm in the IR spectrum by the above modification operation.-1Observed as a decrease in absorption.
[0045]
From these, when the Si-H group-containing silicon compound (b1) represented by the above formula (9) is selected as the modifier compound (b), the modified photocatalyst (A1) of the present invention is Si-H. This is very preferable because it is not a mere mixture of the group-containing silicon compound (b1) and the photocatalyst (A), but it can be predicted that some kind of interaction accompanying a chemical reaction occurs between the two. In fact, the modified photocatalyst (A1) obtained in this way is very excellent in dispersion stability, chemical stability, durability and the like in an organic solvent.
[0046]
In the present invention, the modification of the photocatalyst (A) with the Si—H group-containing silicon compound (b1) represented by the above formula (9) is preferably performed using a dehydrogenative condensation catalyst for Si—H groups. It can also be carried out at 150 ° C.
In this case, the dehydrogenative condensation catalyst may be fixed to the photocatalyst (A) in advance by a method such as a photoreduction method and may be modified with the Si-H group-containing silicon compound (b1), or the presence of the dehydrogenative condensation catalyst. The photocatalyst (A) may be modified with the Si—H group-containing compound silicon (b1) below.
Here, the dehydrogenative condensation catalyst for the Si-H group is an active hydrogen group such as a Si-H group and a hydroxyl group (Ti-OH group in the case of titanium oxide) existing on the photocatalyst surface, a thiol group, an amino group, or a carboxyl group. Furthermore, it means a substance that accelerates the dehydrogenation condensation reaction with water or the like, and the use of the dehydrogenation condensation catalyst makes it possible to modify the surface of the photocatalyst under mild conditions.
[0047]
Examples of the dehydrogenative condensation catalyst include platinum group catalysts, that is, ruthenium, rhodium, palladium, osmium, iridium, platinum simple substance and compounds thereof, and simple substances such as silver, iron, copper, cobalt, nickel, tin and compounds thereof. Can be mentioned. Of these, platinum group catalysts are preferred, and platinum alone and its compounds are particularly preferred.
Here, examples of the platinum compound include platinum chloride (II), tetrachloroplatinic acid (II), platinum chloride (IV), hexachloroplatinic acid (IV), hexachloroplatinum (IV) ammonium, hexachloroplatinum (IV). Potassium, platinum hydroxide (II), platinum dioxide (IV), dichloro-dicyclopentadienyl-platinum (II), platinum-vinylsiloxane complex, platinum-phosphine complex, platinum-olefin complex, etc. can be used. .
[0048]
In the Si—H group-containing silicon compound represented by the above formula (9) of the present invention, the Si—H group is a preferred functional group for modifying the photocatalyst with good selectivity under mild conditions. On the other hand, the hydrolyzable group can also be used for the modification of the photocatalyst, but in order to suppress side reactions and improve the stability of the resulting modified photocatalyst, the content thereof should be smaller. preferable.
Examples of the Si-H group-containing silicon compound (b1) represented by the above formula (9) that can be suitably used in the present invention include a mono-Si-H group-containing compound represented by the formula (10), a formula (11) An at least one S—H group-containing compound having no hydrolyzable silyl group selected from the group consisting of Si-H group-containing compounds represented by formula (12) and H silicone represented by formula (12): Can be mentioned.
[0049]
[Chemical 8]
Figure 0003922991
[0050]
(Wherein R3Are each independently a linear or branched alkyl group having 1 to 30 carbon atoms, a linear or branched alkenyl group having 2 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, A chain or branched C1-C30 fluoroalkyl group, a phenyl group, or a siloxy group represented by the formula (13) is represented.
-O- (R4 2SiO)m-SiR4 3        ... (13)
(Wherein R4Are each independently a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched fluoroalkyl group having 1 to 30 carbon atoms. Represents a linear or branched alkenyl group having 2 to 30 carbon atoms, or a phenyl group. M is an integer, and 0 ≦ m ≦ 1000. ))
H- (R3 2SiO)n-SiR3 2-H (11)
(Wherein R3Is as defined in equation (10). n is an integer, and 0 ≦ n ≦ 1000. )
(R3HSiO)a(R3 2SiO)b(R3 3SiO1/2)c  (12)
(Wherein R3Is as defined in equation (10). a is an integer of 1 or more, b is an integer of 0 or more, (a + b) ≦ 10000, and c is 0 or 2. However, when (a + b) is an integer of 2 or more and c = 0, the H silicone of formula (12) is a cyclic silicone, and when c = 2, the H silicone of formula (12) is chain-like. Silicone. )
[0051]
In the present invention, specific examples of the mono-Si—H group-containing compound represented by the formula (10) include, for example, bis (trimethylsiloxy) methylsilane, bis (trimethylsiloxy) ethylsilane, bis (trimethylsiloxy) n-propylsilane. Bis (trimethylsiloxy) i-propylsilane, bis (trimethylsiloxy) n-butylsilane, bis (trimethylsiloxy) n-hexylsilane, bis (trimethylsiloxy) cyclohexylsilane, bis (trimethylsiloxy) phenylsilane, bis (triethylsiloxy) ) Methylsilane, bis (triethylsiloxy) ethylsilane, tris (trimethylsiloxy) silane, tris (triethylsiloxy) silane, pentamethyldisiloxane, 1,1,1,3,3,5,5-heptamethyltrisilo Sun, 1,1,1,3,3,5,5,6,6-nonamethyltetrasiloxane, trimethylsilane, ethyldimethylsilane, methyldiethylsilane, triethylsilane, phenyldimethylsilane, diphenylmethylsilane, cyclohexyldimethylsilane , T-butyldimethylsilane, di-t-butylmethylsilane, n-octadecyldimethylsilane, tri-n-propylsilane, tri-i-propylsilane, tri-i-butylsilane, tri-n-hexylsilane, triphenyl Examples include silane, allyldimethylsilane, 1-allyl-1,1,3,3-tetramethyldisiloxane, chloromethyldimethylsilane, and 7-octenyldimethylsilane.
[0052]
Among these mono-Si-H group-containing compounds, bis (trimethylsiloxy) methylsilane, tris due to the good reactivity (dehydrogenation condensation reaction) of Si-H groups during photocatalytic modification treatment and low surface energy. Those represented by the following formula (14) having a siloxy group in the molecule, such as (trimethylsiloxy) silane, pentamethyldisiloxane and the like and having no phenyl group are preferable.
[0053]
[Chemical 9]
Figure 0003922991
[0054]
(Wherein R5Are each independently a linear or branched alkyl group having 1 to 30 carbon atoms, a linear or branched alkenyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, A linear or branched fluoroalkyl group having 1 to 30 carbon atoms, or a group consisting of one or more selected from a siloxy group represented by formula (13b), and R5At least one of is a siloxy group represented by the formula (13b).
-O- (R42SiO)m-SiR43  ... (13b)
(Wherein R4'Is independently a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched fluoro group having 1 to 30 carbon atoms. Represents an alkyl group. M is an integer, and 0 ≦ m ≦ 1000. ))
[0055]
In the present invention, specific examples of the both-terminal Si—H group-containing compound represented by the above formula (11) include 1,1,3,3-tetramethyldisiloxane, 1,1,3,3,5, and the like. , 5-hexamethyltrisiloxane, 1,1,3,3,5,5,7,7-octamethyltetrasiloxane and the like H-terminal polydimethylsiloxanes having a number average molecular weight of 50000 or less, Number average molecular weight of 50,000 or less such as 3-tetraethyldisiloxane, 1,1,3,3,5,5-hexaethyltrisiloxane, 1,1,3,3,5,5,7,7-octaethyltetrasiloxane H-terminal polydiethylsiloxanes, 1,1,3,3-tetraphenyldisiloxane, 1,1,3,3,5,5-hexaphenyltrisiloxane, 1,1,3,3,5,5 , 7,7-octa H-terminal polydiphenylsiloxanes having a number average molecular weight of 50,000 or less, 1,3-diphenyl-1,3-dimethyl-disiloxane, 1,3,5-trimethyl-1,3,5-triphenyl -H-terminal polyphenylmethylsiloxanes having a number average molecular weight of 50000 or less, such as trisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetraphenyl-tetrasiloxane, dimethylsilane, ethylmethyl Examples thereof include silane, diethylsilane, phenylmethylsilane, diphenylsilane, cyclohexylmethylsilane, t-butylmethylsilane, di-t-butylsilane, n-octadecylmethylsilane, and allylmethylsilane.
[0056]
Among these, the number average molecular weight is preferably 10000 or less, more preferably 2000 or less, more preferably due to the good reactivity of the Si—H group (dehydrogenation condensation reaction) and low surface energy during the modification treatment of the photocatalyst. Preferably, 1000 or less H-terminated polydialkylsiloxane (formula (15)) can be suitably used as the Si-H group-containing compound at both ends.
H- (R6 2SiO)d-SiR6 2-H (15)
(Wherein R6Each independently represents a linear or branched alkyl group having 1 to 30 carbon atoms, or a linear or branched fluoroalkyl group having 1 to 30 carbon atoms. d is an integer, and 0 ≦ d ≦ 1000. )
The H silicone represented by the above formula (12) used in the present invention has a number average molecular weight of preferably 5000 or less, more preferably from the viewpoint of dispersion stability (preventing aggregation of photocatalyst particles) during photocatalytic modification treatment. H silicone of 2000 or less, more preferably 1000 or less can be suitably used.
[0057]
Further, in a preferred form of the modified photocatalyst (A1) of the present invention, the number average dispersed particle size of the mixture of primary particles and secondary particles of the modified photocatalyst is 400 nm or less, more preferably 1 nm or more and 100 nm or less, particularly preferably 5 nm or more. 80 nm or less. A sol state is preferable.
In particular, when a modified photocatalyst sol having a number average dispersed particle size of 100 nm or less is used in the photocatalyst composition (C) of the present invention, the concentration of the modified photocatalyst particles is small near the interface in contact with the blind and large near the surface of the surface layer portion. It is advantageous for forming a surface layer portion anisotropically distributed in the surface direction as distributed, and is very preferable because a surface layer portion having a large photocatalytic activity is formed without deterioration of the interface with the blind due to photocatalytic action. Such a modified photocatalyst sol can be obtained by using the above-mentioned photocatalyst sol as a photocatalyst to be modified with the above modifier compound (b).
[0058]
Conventionally, a numerical value simply displayed as a particle size in titanium dioxide or the like is a primary particle diameter (crystallite diameter) in many cases, and is not a numerical value considering a secondary particle diameter due to aggregation.
The photocatalyst composition (C) forming the surface layer part of the present invention comprises a photocatalyst (A) (preferably a modified photocatalyst (A1)) and a binder component (B), and its mass ratio (A1) / ( B) is preferably 0.1 / 99.9 to 90/10, more preferably (A1) / (B) is included at 1/99 to 50/50.
[0059]
Since the modified photocatalyst (A1) of the present invention is modified with the modifier compound (b) having a structure (formulas (1) to (3)) having a very small surface energy, when forming the surface layer portion, It has the property of easily moving to the surface layer surface on the side in contact with air.
Here, as the binder component (B) of the present invention, by using the photocatalyst (A), particularly the binder resin (B ′) having a surface energy higher than that of the modified photocatalyst (A1), the above properties of the modified photocatalyst (A1) can be obtained. In order to promote, the photocatalyst composition (C) of the present invention can have a large self-gradient with respect to the distribution of the photocatalyst (A), particularly the modified photocatalyst (A1). Here, the self-gradient property means that when the surface layer portion is formed from the photocatalyst composition (C), the photocatalyst (A), particularly the modified photocatalyst (A1) in the formation process, is the property of the interface (particularly hydrophilic / Corresponding to (hydrophobic), it means that a structure having a concentration gradient of the photocatalyst (A), particularly the modified photocatalyst (A1) is autonomously formed.
[0060]
As the binder component (B) of the present invention, when a resin having a surface energy of 2 mN / m or more, preferably 5 mN / m or more larger than the photocatalyst (A) (preferably the modified photocatalyst (A1)) is selected, the self-gradient Is very preferable.
Here, the surface energy and the relative difference between the surface energies can be determined by referring to, for example, Polymer Handbook (published by A Wiley-interscience publication in the United States) or by the following method.
That is, the base material which has each surface layer part from the photocatalyst (A) which comprises the said photocatalyst composition (C), especially modified photocatalyst (A1), and a binder component (B) is adjusted, and deionized water is dripped. The contact angle (θ) at 20 ° C. is measured, and the surface energy of each can be determined by the following empirical formulas for Sell and Neumann.
[0061]
[Expression 1]
Figure 0003922991
[0062]
[Wherein γs represents the surface energy (mN / m) of the surface layer portion where the contact angle of deionized water was measured, and γl represents the surface energy of water {72.8 mN / m (20 ° C.)}. ]
[0063]
In the photocatalyst composition (C) of the present invention, the compound that can be used for the binder component (B) is not particularly limited as long as it has a surface energy that satisfies the above conditions. Various monomers, synthetic resins, natural resins, and the like In addition, it is also possible to include those that are cured by drying, heating, moisture absorption, light irradiation, or the like after the formation of the film. Further, the form thereof may be in a solvent-free state (pellet, powder, liquid, etc.) or may be dissolved or dispersed in a solvent, and is not particularly limited.
[0064]
As the synthetic resin, a thermoplastic resin and a curable resin (thermosetting resin, photocurable resin, moisture curable resin, etc.) can be used. For example, silicone resin, acrylic resin, methacrylic resin, fluororesin, Alkyd resin, amino alkyd resin, vinyl resin, polyester resin, styrene-butadiene resin, polyolefin resin, polystyrene resin, polyketone resin, polyamide resin, polycarbonate resin, polyacetal resin, polyether ether ketone resin, polyphenylene oxide resin, polysulfone resin, Examples thereof include polyphenylene sulfone resin, polyether resin, polyvinyl chloride resin, polyvinylidene chloride resin, urea resin, phenol resin, melamine resin, epoxy resin, urethane resin, and silicone-acrylic resin.
Examples of the natural polymer include cellulose resins such as nitrocellulose, isoprene resins such as natural rubber, protein resins such as casein, and starch.
[0065]
In the present invention, as the binder component (B) used in the photocatalyst composition (C), the phenyl group-containing silicone (BP) represented by the following formula (4) is more surface energy than the modified photocatalyst (A1) of the present invention. Since the siloxane bond (—O—Si—) constituting the skeleton does not undergo oxidative decomposition due to photocatalysis, it can be most preferably used.
R1 pR2 qXrSiO(4-pqr) / 2          (4)
(In the formula, each R1Represents a phenyl group and R2Each independently represents a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched alkenyl group having 2 to 30 carbon atoms. X represents a hydrogen atom, a hydroxyl group, a C1-C20 alkoxy group, a C1-C20 acyloxy group, an aminoxy group, a C1-C20 oxime group, and a halogen atom each independently. And p, q and r are 0 <p <4, 0 ≦ q <4, 0 ≦ r <4, and 0 <(p + q + r) <4, and 0.05 ≦ p / (p + q) ≦ 1 is there. )
Examples of the phenyl group-containing silicone (BP) represented by the above formula (4) include at least one structure of a siloxane bond represented by the general formulas (16), (17), (18), and (19). Mention may be made of silicone.
[0066]
[Chemical Formula 10]
Figure 0003922991
[0067]
-(R7 2SiO) -... (17)
[0068]
Embedded image
Figure 0003922991
[0069]
(Wherein R7Each independently represents a phenyl group, a linear or branched alkyl group having 1 to 30 carbon atoms, or a cycloalkyl group having 5 to 20 carbon atoms. )
[0070]
Embedded image
Figure 0003922991
[0071]
Silicone containing the structure described above is, for example, the general formula R7SiXThree(Wherein R7Represents a phenyl group, a linear or branched alkyl group having 1 to 30 carbon atoms, and a cycloalkyl group having 5 to 20 carbon atoms. Each X is independently selected from the group consisting of a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 20 carbon atoms, an aminoxy group, an oxime group having 1 to 20 carbon atoms, and a halogen atom. Represents one reactive group. The same applies below. ) And / or the general formula R7 2SiX2A bifunctional silane derivative represented by the general formula SiXFourThe tetrafunctional silane derivative represented by the formula is partially hydrolyzed / condensed and, if necessary, represented by the general formula R7 3It can be prepared by terminating with a monofunctional silane derivative represented by SiX and / or an alcohol. The polystyrene-converted weight average molecular weight of the partial condensate of the silane derivative monomer thus obtained is preferably 100 to 100,000, more preferably 400 to 50,000.
[0072]
Among these, when a phenyl group-containing silicone represented by the above formula (4) is selected to contain a ladder structure represented by the above formula (16) of 10 mol% or more, preferably 40 mol% or more, the present invention The photocatalyst-containing surface layer portion formed from the photocatalyst composition (C) is preferable because it is extremely excellent in terms of hardness, heat resistance, weather resistance, stain resistance, chemical resistance, and the like. In particular, as the ladder structure, a phenyl ladder structure [R in the formula (16)7Are all having a phenyl group], since the physical properties of the above-described photocatalyst-containing surface layer are greatly improved. Such a ladder structure is, for example, 1040 cm in the infrared absorption spectrum.-1And 1160cm-1It can be identified by the presence of absorption from two nearby siloxane bonds.
(See J.F.Brown.Jr., Etal .: J. Am. Chem. Soc., 82, 6194 (1960).)
The phenyl group-containing silicone (BP) represented by the above formula (4) used in the present invention preferably has a Ph—Si bond (Ph: phenyl group).
[0073]
That is, in the photocatalyst composition (C) of the present invention, the modified photocatalyst (A1) modified with the modifier compound (b) having a structure (formulas (1) to (3)) having a very small surface energy. By using a binder component (B) containing a phenyl group-containing silicone (BP) having a surface energy higher than that of the modified photocatalyst (A1) as a binder, the photocatalyst composition (C) of the present invention is a modified photocatalyst (A1). It becomes possible to have a high self-tilting property for the distribution.
Such a self-gradient expression effect by the phenyl group-containing silicone (BP) having a high surface energy is the phenyl group (R1) With a phenyl group (R1) And R2(R2Represents a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or an alkenyl group having 2 to 20 carbon atoms. ) Total {below (R1+ R2). }, A phenyl group-containing silicone (BP) represented by the above formula (4) having 5 mol% or more of Is preferred.
[0074]
In addition, the self-tilt expression effect described above has a phenyl group (R1) (R1+ R2) Increases as the ratio to) increases. Therefore, more preferable as the phenyl group-containing silicone of the binder component (B) used in the photocatalyst composition of the present invention is (R1+ R2) Phenyl group (R1) Is 10 mol% or more, more preferably 20 mol% or more, more preferably 50 mol% or more.
In addition, the phenyl group-containing silicone (BP) has good adhesion to an organic substrate such as an organic resin, and the siloxane bond (—O—Si—) constituting the skeleton does not undergo oxidative decomposition due to photocatalysis, The photocatalyst-containing surface layer part obtained by blindly coating the photocatalyst composition (C) of the present invention has very excellent weather resistance.
[0075]
In the photocatalyst composition (C) of the present invention, the phenyl group-containing silicone (BP) used for the binder component (B) is more preferably an alkyl group represented by the following formula (5), which exhibits the above-described effects. It is a phenyl group-containing silicone (BP1) that does not contain.
R1 sXtSiO(4-st) / 2          (5)
(Wherein R1Represents a phenyl group, and each X independently represents a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 20 carbon atoms, an aminoxy group, an oxime group having 1 to 20 carbon atoms, or a halogen atom. , S and t are 0 <s <4, 0 ≦ t <4, and 0 <(s + t) <4. )
[0076]
In addition, when the binder component (B) further contains an alkyl group-containing silicone (BA) represented by the following formula (6), the surface layer portion formed from the photocatalyst composition of the present invention has a film forming property, hardness, This is preferable because of excellent heat resistance, contamination resistance, chemical resistance, and the like.
R2 uXvSiO(4-uv) / 2          (6)
(Wherein R2Each independently represents a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched alkenyl group having 2 to 30 carbon atoms. X represents a hydrogen atom, a hydroxyl group, a C1-C20 alkoxy group, a C1-C20 acyloxy group, an aminoxy group, a C1-C20 oxime group, and a halogen atom each independently. u and v are 0 <u <4, 0 ≦ v <4, and 0 <(u + v) <4. )
[0077]
Further, as the alkyl group-containing silicone (BA) mixed with the phenyl group-containing silicone (BP1), the monooxydiorganosilane unit (D) represented by the formula (7) and the diester represented by the formula (8) are used. When the oxyorganosilane unit (T) has a structure having a molar ratio of preferably (D) / (T) = 100/0 to 5/95, more preferably 90/10 to 10/90. As a result, the stress relaxation action of the alkyl group-containing silicone (BA) is increased, and the crack resistance of the photocatalyst-containing surface layer portion produced from the photocatalyst composition (C) of the present invention is improved. As a result, the weather resistance is extremely excellent. Become.
-(R2 2SiO)-(7)
(Wherein R2Each independently represents a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched alkenyl group having 2 to 30 carbon atoms. )
[0078]
Embedded image
Figure 0003922991
[0079]
(Wherein R2Is as defined in equation (7). )
[0080]
In the present invention, in order to improve long-term weather resistance, the binder component (B) preferably forms a phase separation structure, and particularly preferably forms a microphase separation structure.
For example, as the binder component (B), the above-mentioned photocatalyst (A), particularly the binder resin (B ′) having a higher surface energy than the modified photocatalyst (A1) and the alkyl group-containing silicone (BA) represented by the above formula (6) ), Preferably in a mass ratio (B ′) / (BA) = 5/95 to 95/5, more preferably (B ′) / (BA) = 30/70 to 90/10 And the photocatalyst-containing surface layer portion formed from the photocatalyst composition (C) of the present invention has a photocatalyst (A) in a binder in which the binder resin (B ′) having a high surface energy and the alkyl group-containing silicone (BA) are phase-separated. Is preferable because it has a dispersed structure and excellent long-term weather resistance.
[0081]
Here, the phase separation between the binder component (B ′) having a high surface energy and the alkyl group-containing silicone (BA) is preferably a phase that is not a continuous layer of 1 nm.3~ 1μm3, More preferably 10 nm3~ 0.1μm3More preferably 10 nm3~ 0.001μm3This is more effective when a micro-sized domain is formed and a microphase separation is performed.
In addition, the state in which the photocatalyst (A) is present in the alkyl group-containing silicone (BA) phase that is in a phase-separated state with the binder resin (B ′) having a high surface energy is more on the surface of the surface layer part. Preferred because it can be present.
[0082]
As the binder resin (B ′) having a high surface energy that is phase-separated from the alkyl group-containing silicone (BA) in the present invention, the above-described phenyl group-containing silicone (BP) is a siloxane bond (—O—Si—) constituting the skeleton. ) Is preferable because it does not undergo oxidative degradation due to photocatalysis, and phenyl group-containing silicone (BP1) not containing an alkyl group is particularly preferable.
At this time, the polystyrene-converted weight average molecular weight of each of the phenyl group-containing silicone (BP1) and the alkyl group-containing silicone (BA) measured by GPC is preferably 100 to 10,000, more preferably 500 to 6, 000, more preferably 700 to 4,000 is preferable because the above-described binder component (B) easily forms a microphase separation structure.
[0083]
The binder component (B) used in the photocatalyst composition (C) of the present invention is any of a type dissolved in a solvent, a type dispersed in a solvent, and a type not mixed with a solvent (liquid or solid). Also good.
In the photocatalyst composition (C) of the present invention, the phenyl group-containing silicone (BP) represented by the above formula (4) does not have a reactive group (X in the formula (4)). The photocatalyst-containing surface layer obtained from the photocatalyst composition (C) of the present invention having a reactive group (X in the formula (4) (that is, 0 <r in the formula (4)). The part is preferable because it has excellent hardness, heat resistance, chemical resistance, durability, and the like. For the same reason, 0 <t in formula (5) and 0 <v in formula (6) are preferable.
[0084]
In the photocatalyst composition (C) of the present invention, the phenyl group-containing silicone (BP) represented by the above formula (4) has a reactive group (X in the formula (4)) as a hydroxyl group and / or a hydrolyzable group. In the case where it has, a conventionally known hydrolysis catalyst or curing catalyst is preferably added in an amount of 0.01 to 20% by mass, more preferably 0.1 to 5% by mass with respect to the phenyl group-containing silicone (BP). be able to.
The hydrolysis catalyst is preferably an acidic hydrogen halide, a carboxylic acid, a sulfonic acid, an acidic or weakly acidic inorganic salt, or a solid acid such as an ion exchange resin. The amount of the hydrolysis catalyst is preferably in the range of 0.001 to 5 mol with respect to 1 mol of the hydrolyzable group on the silicon atom.
[0085]
Examples of the curing catalyst include basic compounds such as sodium hydroxide, potassium hydroxide, sodium methylate, sodium acetate, tetramethylammonium chloride, tetramethylammonium hydroxide; tributylamine, diazabicycloundecene, ethylenediamine. Amine compounds such as diethylenetriamine, ethanolamines, γ-aminopropyltrimethoxysilane, γ- (2-aminoethyl) -aminopropyltrimethoxysilane; titanium compounds such as tetraisopropyl titanate, tetrabutyl titanate; Aluminum compounds such as propoxide, aluminum acetylacetonate, aluminum perchlorate, aluminum chloride; tin acetylacetonate, dibutyltin octoate Tin compounds such as tyrates and dibutyltin dilaurate; metal-containing compounds such as cobalt octylate, cobalt acetylacetonate and iron acetylacetonate; acidic such as phosphoric acid, nitric acid, phthalic acid, p-toluenesulfonic acid and trichloroacetic acid Examples thereof include compounds.
[0086]
In the photocatalyst composition (C) of the present invention, when the phenyl group-containing silicone (BP) represented by the above formula (4) has a Si—H group, a crosslinking agent such as a polyfunctional alkenyl compound is used for the Si—H group. The alkenyl group is preferably added so that the amount is preferably 0.01 to 2 equivalents, more preferably 0.1 to 1 equivalents. The polyfunctional alkenyl compound may be anything as long as it has an alkenyl group and reacts with the Si—H group to accelerate curing, but has 2 to 30 carbon atoms such as a vinyl group, an allyl group, or a hexenyl group. Alkenyl group-containing silicones having monounsaturated hydrocarbon groups are generally used.
[0087]
Further, for the purpose of promoting the reaction between the Si—H group and the polyfunctional alkenyl compound, the catalyst is preferably from 1 to 10,000 ppm, more preferably from 1 to 10,000 ppm, based on the total amount of the phenyl group-containing silicone (BP) and the polyfunctional alkenyl compound. You may add in the ratio of 1000 ppm. As the catalyst, a platinum group catalyst, that is, a ruthenium, rhodium, palladium, osmium, iridium, or platinum compound is suitable, and a platinum compound and a palladium compound are particularly suitable. Examples of platinum compounds include platinum chloride (II), tetrachloroplatinic acid (II), platinum chloride (IV), hexachloroplatinic acid (IV), hexachloroplatinum (IV) ammonium, hexachloroplatinum (IV) potassium, hydroxide Platinum (II), platinum dioxide (IV), dichloro-dicyclopentadienyl-platinum (II), platinum-vinylsiloxane complex, platinum-phosphine complex, platinum-olefin complex, platinum simple substance, alumina, silica and activated carbon The thing which carry | supported solid platinum is mentioned. Examples of the palladium compound include palladium (II) chloride, ammonium tetraamminepalladium (II) chloride, palladium (II) oxide and the like. The platinum group catalyst is preferably used in an amount of 5 to 1000 ppm in terms of platinum group metal based on the total amount of Si-H group-containing silicone and polyfunctional alkenyl compound. It can be increased / decreased according to the curing rate and the like. Moreover, you may add activity inhibitors, such as various organic nitrogen compounds, an organic phosphorus compound, and an acetylene type compound, for the purpose of suppressing the activity of a platinum group catalyst and extending pot life if desired.
[0088]
Further, the photocatalyst composition (C) of the present invention includes silica, alumina, zirconium oxide, antimony oxide, rare earth oxide, etc. for the purpose of improving the hardness, scratch resistance and hydrophilicity of the photocatalyst-containing surface layer portion formed therefrom. The metal oxide fine particles may be added in the form of powder or sol. However, these metal oxide fine particles do not have the ability as a binder like the binder component (B) in the present invention, and reduce the flexibility (flexibility, impact resistance) of the surface layer portion in the same manner as the photocatalyst. Therefore, the addition amount of the metal oxide is preferably such that the total mass of the photocatalyst (A) and the metal oxide is 50% by mass or less in the photocatalyst-containing surface layer portion formed from the photocatalyst composition (C).
[0089]
The photocatalyst composition (C) of the present invention may be in a solvent-free state (liquid, solid) or dissolved or dispersed in a solvent, and is not particularly limited, but when used as a coating agent, A dissolved or dispersed state in a solvent is preferred. At this time, the total amount of the photocatalyst (A) and the binder component (B) in the photocatalyst composition (C) is preferably 0.01 to 95% by mass, more preferably 0.1 to 70% by mass.
Examples of the solvent used in the photocatalyst composition (C) of the present invention include water, alcohols such as ethylene glycol, butyl cellosolve, isopropanol, n-butanol, ethanol and methanol, aromatic hydrocarbons such as toluene and xylene, hexane, Aliphatic hydrocarbons such as cyclohexane and heptane, esters such as ethyl acetate and n-butyl acetate, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethers such as tetrahydrofuran and dioxane, dimethylacetamide, dimethylformamide and the like Examples include amides, halogen compounds such as chloroform, methylene chloride, and carbon tetrachloride, dimethyl sulfoxide, nitrobenzene, and the like. These solvents are used alone or in combination.
[0090]
In addition, the photocatalyst composition (C) of the present invention usually contains components that are usually added and blended with a paint, for example, pigments, fillers, dispersants, light stabilizers, wetting agents, thickeners, rheology control agents, An antifoaming agent, a plasticizer, a film forming aid, a rust preventive agent, a dye, a preservative, and the like can be selected, combined and blended depending on the purpose.
In the photocatalyst composition (C) of the present invention, when the self-gradient is very high (that is, the surface that is not blind with respect to the photocatalyst (A) content (concentration) 100 in the surface layer portion, the surface is in contact with the exposed surface. When the relative concentration in the vicinity is preferably 150 or more, more preferably 200 or more), the mass ratio of the photocatalyst (A) to the binder component (B) in the photocatalyst composition (C) is preferably (A) / (B ) = 0.1 / 99.9 to 40/60, more preferably (A) / (B) = 0.1 / 99.9 to 30/70 in a range where the content of the photocatalyst (A) is very small. Even the surface layer portion to be formed has a sufficient hydrophilizing ability (superhydrophilicizing ability: water contact angle at 20 ° C. of 10 ° or less) by light irradiation and an excellent photocatalytic activity. Further, the surface layer portion having a small photocatalyst content as described above exhibits the original physical properties of the binder component (B), and thus has excellent strength and flexibility (flexibility, impact resistance) and the like.
[0091]
The low-contamination blind according to the present invention includes a surface layer portion containing a photocatalyst (A) and a binder component (B), and the concentration of the photocatalyst (A) in the surface layer portion increases from the inside of the blind toward the surface. Features. However, the low-contamination blind according to the present invention can contain the photocatalyst (A) and / or the binder component (B) in a portion other than the surface layer within a range not impeding the effects of the present invention.
The low-contamination blind according to the present invention may have a form in which the surface layer is formed into a film, and the film including the photocatalyst (A) and the binder component (B) is provided on the blind substrate. By adopting such a form, a structure in which functions are shared by the blind base material and the surface layer portion becomes possible, which is preferable.
[0092]
In addition, a part other than the surface layer part, for example, the one containing the photocatalyst (A) and / or the binder component (B) in the blind base material part, can be molded at once, and compensate for the defective part of the surface layer part. This is preferable. Such a form is preferable when, for example, a thin film member is used.
The manufacturing method of the low pollution blind in this invention is not limited to when forming a film | membrane from the photocatalyst composition of this invention on a blind base material. The blind substrate and the photocatalyst composition of the present invention may be simultaneously molded, for example, integrally molded. Moreover, you may shape | mold a base material after shape | molding the photocatalyst composition of this invention. Moreover, it is good also as a functional composite body by adhesion | attachment, melt | fusion, etc., after shape | molding the photocatalyst composition and base material of this invention separately.
[0093]
In the above method, when molding is performed in a state where it is not in contact with the blind substrate, any blind substrate can be used.
If desired, the molded product or functional composite of the present invention can be formed into a film, sheet, block, pellet, or a molded product having a more complicated shape by a method used for resin molding. In molding, other resins can be used in combination as long as the effects of the present invention are not impaired.
[0094]
The above molding or mixing for the above combination can be carried out by using the molded body or functional composite of the present invention or other resin as a powder or a pellet in advance. Some of them may contain a liquid component. Moreover, the method of shape | molding resin after mixing into a pellet with the following method, and also using for shaping | molding is also possible. The pellet may be a so-called master batch in which the molded product or the functional composite of the present invention is contained in a high concentration in another resin.
The molding method for the present invention can be an extrusion molding method, an injection molding method, a press molding method, or the like. The calendar molding method can also be used by selecting a resin, for example, using a thermoplastic resin in combination. Further, organic fibers including natural fibers, inorganic fibers such as glass (and these woven fabrics), etc. are used as a reinforcing material to impregnate the molded product or functional composite of the present invention and these and other resin mixtures. It is also possible to laminate and form.
[0095]
The low-contamination blind in the present invention, when the surface layer portion is formed into a film, for example, after applying the photocatalyst composition (C) to a blind substrate and drying, preferably 20 ° C to 500 ° C, if desired, More preferably, it can be obtained by forming a film by performing heat treatment at 40 ° C. to 250 ° C. or ultraviolet irradiation. Examples of the coating method include spray spraying, flow coating, roll coating, brush coating, dip coating, spin coating, casting, and sponge coating.
Under the present circumstances, the film thickness of the film | membrane formed from the photocatalyst composition (C) of this invention becomes like this. Preferably it is 0.1-200 micrometers, More preferably, it is 0.5-20 micrometers, More preferably, it is 1.5-10 micrometers.
In the present specification, the expression “film” is used. However, the film is not necessarily a continuous film, and may be a discontinuous film, an island-shaped dispersion film, or the like.
Moreover, metals such as Ag, Cu, and Zn can be added to the surface of the low pollution blind of the present invention. The surface layer to which the metal is added can kill bacteria and sputum attached to the surface even in the dark.
[0096]
The low-contamination blind according to the present invention exhibits photocatalytic activity and / or hydrophilicity by irradiating light (excitation light) with energy higher than the band gap energy of the photocatalyst (A) contained in the surface layer portion, and is excellent in prevention. Expresses dirt performance.
At this time, the photocatalyst (A) is a triorganosilane unit represented by the above formula (1), a monooxydiorganosilane unit represented by the formula (2), or a dioxyorgano represented by the formula (3). In the case of the modified photocatalyst (A1) modified with at least one modifier compound (b) selected from the group consisting of compounds having at least one structural unit selected from the group consisting of silane units, excitation light At least a part of the organic group (R) bonded to the silicon atom of the modifier compound (b) present in the vicinity of the photocatalyst (A) particles by irradiation is substituted with a hydroxyl group by the decomposition action of the photocatalyst. As a result, the hydrophilicity of the surface of the surface layer portion of the present invention is increased, and when the generated hydroxyl groups are subjected to a dehydration condensation reaction to form a siloxane bond, the hardness of the surface layer portion becomes very high. Such a state is preferable in the aspect of the present invention.
[0097]
Similarly, when the above-described silicone is used as the binder component (B), at least a part of the organic group bonded to the silicon atom of the silicone present in the vicinity of the photocatalyst (A) particles by excitation light irradiation is the photocatalyst. When the hydroxyl group is substituted by the decomposition action, the hydrophilicity of the surface of the surface layer portion of the present invention is increased, and the dehydration condensation reaction between the generated hydroxyl groups proceeds to form a siloxane bond, the hardness of the surface layer portion is very high. Become. Such a state is preferable in the aspect of the present invention.
In the present invention, as a light source having a higher energy than the band gap energy of the photocatalyst (A), sunlight; a light source in an environment such as a street light or a nightlight; and general illumination can be used. As general illumination, fluorescent lamps, incandescent lamps, metal halide lamps, black light lamps, xenon lamps, mercury lamps, and the like can be suitably used. In order for the substrate surface to be highly hydrophilic by photoexcitation of the photocatalyst, the illuminance of the excitation light is 0.001 mW / cm.2This is preferable, but 0.01 mW / cm2More preferably, 0.1 mW / cm2More preferably.
[0098]
That is, the present invention develops strong photocatalytic activity and / or hydrophilicity (water contact angle is preferably 20 ° or less, more preferably 10 ° or less) without deterioration of the blinds due to light in the living environment. A low-contamination blind having a surface layer portion and capable of maintaining the aesthetics of the blind for a long period of time by rainfall or simple water washing can be provided without requiring a complicated process.
[0099]
【Example】
The following examples, reference examples and comparative examples will specifically explain the present invention, but these do not limit the scope of the present invention.
In Examples, Reference Examples and Comparative Examples, various physical properties were measured by the following methods. 1. Particle size distribution and number average particle size
The sample was appropriately diluted by adding a solvent so that the photocatalyst content in the sample was 1 to 20% by mass, and measured using a wet particle size analyzer (Microtrack UPA-9230 manufactured by Nikkiso).
2. Weight average molecular weight
It calculated | required by the gel permeation chromatography (GPC) using the analytical curve created using the polystyrene sample.
The conditions for GPC are as follows.
・ Device: Tosoh HLC-8020 LC-3A type chromatograph
・ Column: TSKgel G1000HXL, TSKgel G2000HXLAnd TSKgel G4000HXL(Both manufactured by Tosoh Corporation) were used in series.
-Data processor: CR-4A data processor manufactured by Shimadzu Corporation
・ Mobile phase:
Tetrahydrofuran (used for analysis of phenyl group-containing silicone)
Chloroform (used for analysis of silicones that do not contain phenyl groups)
-Flow rate: 1.0 ml / min.
・ Sample preparation method
It diluted with the solvent used for a mobile phase (concentration was adjusted suitably in the range of 0.5-2 mass%), and used for the analysis.
[0100]
3. Infrared absorption spectrum
Measurement was performed using a FT / IR-5300 type infrared spectrometer manufactured by JASCO Corporation.
4).29Measurement of Si nuclear magnetic resonance
It measured using JEOL JNM-LA400.
5. Film hardness
According to JIS-K5400, it calculated | required as pencil hardness (scratch of a film | membrane).
6). Film hardness after UV irradiation
The surface of the film was irradiated with light of a FL20S BLB type black light manufactured by Toshiba Lighting & Technology for 7 days, and then measured by the above method (5).
At this time, UV intensity measured using a UVR-2 type UV intensity meter manufactured by Topcon, Japan (using a UD-36 type light receiving unit manufactured by Topcon, Japan (corresponding to light having a wavelength of 310 to 400 nm) as the light receiving unit). 1mW / cm2It adjusted so that it might become.
7). Contact angle of water with the coating surface
A drop of deionized water was placed on the surface of the film, allowed to stand at 20 ° C. for 1 minute, and then measured using a CA-X150 contact angle meter manufactured by Kyowa Interface Science.
The smaller the contact angle of water with the film, the higher the hydrophilicity of the film surface.
8). Changes in hydrophilicity (hydrophobicity) of the coating surface before and after UV irradiation
The surface of the film was irradiated with ultraviolet rays for 7 days by the method 6 above, and then the contact angle of water was measured by the method 7 above.
[0101]
9. Photocatalytic activity of the film
After applying a 5 mass% ethanol solution of methylene blue to the surface of the film, ultraviolet rays were irradiated for 5 days by the method 6 described above.
Thereafter, the activity of the photocatalyst was evaluated in the following three steps based on the degree of decomposition of methylene blue by the action of the photocatalyst (evaluated visually based on the degree of fading of the coating surface).
A: Methylene blue is completely decomposed.
Δ: Slightly methylene blue blue remains.
X: Methylene blue was hardly decomposed.
10. Weather resistance of film (gloss retention)
An exposure test (irradiation: 60 ° C. for 4 hours, dark / wet: 40 ° C. for 4 hours) was performed using a DPWL-5R type dew panel light control weather meter manufactured by Suga Test Instruments. The 60 ° -60 ° specular reflectance after 1000 hours of exposure was measured as the final gloss value, divided by the initial gloss value, and this value was calculated as the gloss retention.
[0102]
11. Evaluation of inclined structure of photocatalyst
After embedding the sample in an epoxy resin (Quetol 812), an ultrathin section having a thickness of 50 to 60 nm was prepared with an ULTRACUT-N type microtome manufactured by Reichert, Germany, and loaded on a mesh with a support film. Subsequently, RuO4 vapor staining was performed for about 5 minutes, and then carbon deposition was performed to make a sample for speculum, and the cross section of the film was observed by TEM.
The conditions for TEM observation are as follows.
・ Device: Hitachi HF2000
・ Acceleration voltage: 125 kV
The location of photocatalytic titanium oxide was analyzed by EDX analysis of Ti element.
[0103]
The observation of the film formed on the aluminum plate having the acrylic urethane base coat layer was performed by roughly cutting the sample with a DAD321 type dicing saw manufactured by DISCO Engineering Service, performing FIB (Focused Ion Beam) processing, and using TEM. Observation of the cross section of the film was performed.
The FIB processing conditions are as follows.
Equipment used: Hitachi FB2000
Processing conditions: acceleration voltage (30 kV)
Ion source: Ga
The conditions for TEM observation are as follows.
・ Device: Hitachi HF2000
・ Acceleration voltage: 200kV
[0104]
12 Shock resistance
In accordance with JIS-K5400, the DuPont type (500 g × 50 cm) was used for evaluation.
13. Stain resistance
The sample was attached to a fence facing a general road (traffic volume of about 500 to 1000 vehicles / day), the sample was washed with water three months later, and the degree of contamination of the sample surface was stored in a cool and dark place as a reference. Evaluation was carried out using a spectral color difference meter.
Evaluation of degree of color change (ΔE change rate) after 3 months
A: 10% or less
B: 10-30%
C: 30-50%
D: 50-80%
E: 80% or more
[0105]
[Reference Example 1]
Synthesis of phenyl group-containing silicone (BP1-1).
After adding 26.0 g of phenyltrichlorosilane to 78 g of dioxane in a reactor having a reflux condenser, a thermometer and a stirrer, the mixture was stirred at room temperature for about 10 minutes. A mixture of 3.2 g of water and 12.9 g of dioxane was added dropwise thereto over about 30 minutes while maintaining the reaction solution at 10 to 15 ° C., followed by further stirring at 10 to 15 ° C. for about 30 minutes, The reaction solution was heated to 60 ° C. and stirred for 3 hours. The resulting reaction solution was cooled to 25-30 ° C., 392 g of toluene was added dropwise over about 30 minutes, and then the reaction solution was again heated to 60 ° C. and stirred for 2 hours.
[0106]
The resulting reaction solution was cooled to 10 to 15 ° C., and 19.2 g of methanol was added over about 30 minutes. Thereafter, stirring was further continued at 25-30 ° C. for about 2 hours, and then the reaction solution was heated to 60 ° C. and stirred for 2 hours. The solvent was distilled off from the resulting reaction solution at 60 ° C. under reduced pressure to obtain a phenyl group-containing silicone (BP1-1) having a ladder skeleton having a weight average molecular weight of 3600. (The obtained phenyl group-containing silicone (BP1-1) has absorption (1130 cm) derived from stretching vibration of the ladder skeleton in the IR spectrum.-1And 1037 cm-1) Was observed. )
Also,29The phenyl group-containing silicone (BP1-1) obtained from the Si nuclear magnetic resonance measurement results is expressed as (Ph)1(OCH3)0.58SiO1.21Met. (Here, Ph represents a phenyl group.)
[0107]
[Reference Example 2]
Synthesis of alkyl group-containing silicone (BA-1).
After adding 136 g (1 mol) of methyltrimethoxysilane and 120 g (1 mol) of dimethyldimethoxysilane to 300 g of methanol in a reactor equipped with a reflux condenser, a thermometer and a stirrer, the mixture was stirred at room temperature for about 10 minutes. did. A mixture of 12.6 g (0.7 mol) of 0.05N aqueous hydrochloric acid and 63 g of methanol was added dropwise thereto over about 40 minutes under ice-cooling to carry out hydrolysis. After completion of the dropwise addition, the mixture was further stirred at 10 ° C. or lower for about 20 minutes and at room temperature for 6 hours.
Then, the alkyl group containing silicone (BA-1) of the weight average molecular weight 3600 was obtained by distilling a solvent off under reduced pressure at 60 degreeC from the obtained reaction liquid. The structure of the resulting alkyl group-containing silicone (BA-1)29When measured by Si nuclear magnetic resonance, a signal indicating a T structure and a D structure was confirmed, and the ratio was T structure: D structure = 1: 1.
Also,29The average composition formula of the alkyl group-containing silicone (BA-1) determined from the measurement result of Si nuclear magnetic resonance is (CH3)1.5(OCH3)0.27SiO1.12Met.
[0108]
[Reference Example 3]
Adjustment of silicone composition (B-1).
A mixture of 6 g of the phenyl group-containing silicone (BP1-1) synthesized in Reference Example 1 and 3 g of the alkyl group-containing silicone (BA-1) synthesized in Reference Example 2 was mixed with 14.7 g of toluene, 29.8 g of isopropanol, and butyl cellosolve. 15.1g was added and the solution of the binder component (B-1) was obtained by stirring at room temperature.
From the average composition formula of each composition, the average composition formula of the binder component (B-1) is (Ph)0.67(CH3)0.5(OCH3)0.47SiO1.18Can be calculated. (Here, Ph represents a phenyl group.)
[0109]
[Reference Example 4]
TKS-251 {trade name of titanium oxide organosol (manufactured by TEIKA), dispersion medium: mixed solvent of toluene and isopropanol, TiO 2 in a reactor having a reflux condenser, a thermometer and a stirrer240 g of a 20 wt% toluene solution of bis (trimethylsiloxy) methylsilane was added to 40 g of a 20 wt% concentration and an average crystallite diameter of 6 nm (catalog value)} at 50 ° C. over about 5 minutes, and further stirred at 50 ° C. for 12 hours. The modified photocatalyst organosol (A-1) having very good dispersibility was obtained. At this time, the amount of hydrogen gas generated by the reaction of bis (trimethylsiloxy) methylsilane was 718 ml at 23 ° C. Further, when the obtained modified titanium oxide organosol was coated on a KBr plate and the IR spectrum was measured, absorption of Ti—OH group (3630-3640 cm).-1) Was observed.
[0110]
1 and 2 show the particle size distributions of TKS-251 before the modification treatment and the obtained modified photocatalyst organosol (A-1), respectively. The resulting modified photocatalyst organosol (A-1) has a single particle size distribution (number average particle size is 25 nm), and further a single dispersion of TKS-251 before the modification treatment (number average particle size is 12 nm). As can be seen from FIG.
Subsequently, 20 g of the modified photocatalyst organosol (A-1) was added to 68 g of the solution of the silicone component (B-1) prepared in Reference Example 3 at room temperature with stirring, and a curing catalyst (dibutyltin dilaurate) 0 .5 g was added with stirring to obtain a photocatalyst composition (C-1).
[0111]
Spray a 1mm thick aluminum plate (JIS, H, 4000 (A1050P)) cut to 50mm x 60mm with Mighty Rack White {trade name of acrylic urethane resin paint (two-component mixed type)} (manufactured by Nippon Paint)} And dried at room temperature for 3 days. After spray-coating the photocatalyst composition (C-1) on the obtained aluminum plate coated with acrylic urethane so as to have a film thickness of 2 μm, it is dried at room temperature for 1 hour and heated at 150 ° C. for 30 minutes. Thus, a test plate (D-1) having a photocatalytic film was obtained.
[0112]
The test plate (D-1) having the obtained photocatalyst film was subjected to FIB processing, and the result of observation of the film cross section by TEM is shown in the photograph of FIG. Moreover, the illustration of the photograph of Fig.3 (a) is FIG.3 (b). A photocatalytic film (indicated by reference numeral 2 in FIG. 3B) containing modified photocatalyst particles (indicated by reference numeral 1 in FIG. 3B), and pigment titanium oxide (FIG. 3B in FIG. 3B). ), The modified photocatalyst particles are not present at the interface with the acrylic urethane film (indicated by reference numeral 3 in FIG. 3 (b)) including the modified photocatalyst particles. It was observed that it was covered.
[0113]
The test plate (D-1) having the photocatalyst film thus obtained had a pencil hardness of H and a contact angle with water of 105 °. Moreover, the impact resistance test passed.
Moreover, the pencil hardness after the ultraviolet-ray (black light) irradiation of the test plate (D-1) which has the obtained photocatalyst membrane | film | coat was 5H or more, and the contact angle of water was 0 degree. Furthermore, the photocatalytic activity evaluation result was also very good (良好).
Further, the gloss retention by an exposure test (after 1000 hours) using a dew panel light control weather meter was 98%, indicating a very good weather resistance.
[0114]
Subsequently, the photocatalyst composition (C-1) was spray-coated on an epoxy resin (Quetol 812), dried at room temperature for 2 days, and then heated at 50 ° C. for 3 days to provide an epoxy having a smooth photocatalyst film. Resin (D-2) was obtained.
After embedding the obtained epoxy resin (D-2) having a photocatalytic film in an epoxy resin (Quetol 812), an ultrathin section having a thickness of 50 to 60 nm was prepared by a microtome, and RuO4FIG. 4 (a) shows the result of observation of the cross section of the film by TEM after dyeing the phenyl group-containing silicone (BP1-1) with TEM. Moreover, the illustration of the photograph of Fig.4 (a) is FIG.4 (b).
[0115]
A photocatalyst film (indicated by reference numeral 2 in FIG. 4 (b)) containing modified photocatalyst particles (indicated by reference numeral 1 in FIG. 4 (b)) and an epoxy resin (in FIG. 4 (b)). It was observed that almost no modified photocatalyst particles were present at the interface with the reference numeral 5), and the entire surface of the photocatalyst film was covered with the modified photocatalyst particles.
4B is a boundary portion between the modified photocatalyst particle phase 1 and the binder phase 7 not containing the modified photocatalyst particles, and an enlarged photograph of the portion is shown in FIG. (A). Moreover, the illustration of the photograph of Fig.5 (a) is FIG.5 (b).
[0116]
FIG. 5A shows a binder phase containing modified photocatalyst particles (indicated by reference numeral 1 in FIG. 5B) and a binder phase not containing modified photocatalyst particles (reference numeral 7 in FIG. 5B). Can be observed. In the binder phase not containing the modified photocatalyst particles (indicated by reference numeral 7 in FIG. 5B), RuO4It can be observed that the phenyl group-containing silicone dyed in (1) and the alkyl group-containing silicone not dyed have a microphase-separated structure.
[0117]
[Reference Example 5]
A photocatalyst composition (C-2) was obtained in the same manner as in Example 1 except that 10 g of unmodified TKS-251 was used instead of 20 g of the modified photocatalyst organosol (A-1).
Using the obtained photocatalyst composition (C-2), the same operation as in Reference Example 4 was performed to obtain a test plate (D-3) having a photocatalyst film (titanium oxide content is the same as in Reference Example 4). .
The test plate (D-3) having the obtained photocatalyst film had a pencil hardness of H and a contact angle with water of 97 °.
Further, the test plate (D-3) having the photocatalyst film obtained had a pencil hardness of 3H after irradiation with ultraviolet light (black light) and a contact angle of water of 94 °. Furthermore, the photocatalytic activity evaluation was a bad result (x).
Further, in a 200-hour exposure test using a dew panel light control weather meter, the gloss retention was 10% or less, and a choking phenomenon was observed.
[0118]
Subsequently, the photocatalyst composition (C-2) is spray-coated on an epoxy resin (Quetol 812), dried at room temperature for 2 days, and then heated at 50 ° C. for 3 days to have a smooth photocatalyst film. An epoxy resin (D-4) was obtained.
After embedding the obtained epoxy resin (D-4) having a photocatalytic film in an epoxy resin (Quetol 812), an ultrathin section having a thickness of 50 to 60 nm was prepared by a microtome, and RuO4FIG. 6A shows the result of observation of the cross section of the film by TEM after dyeing the phenyl group-containing silicone (BP1-1) with TEM. FIG. 6B is an illustration of the photograph of FIG.
[0119]
A photocatalyst film (indicated by reference numeral 2 in FIG. 6B) containing modified photocatalyst particles (indicated by reference numeral 1 in FIG. 6B), and an epoxy resin (in FIG. 6B). The photocatalyst film has a large amount of modified photocatalyst particles at the interface with the alkyl group-containing silicone in which all the exposed surface of the photocatalyst film is not present (indicated by reference numeral 8 in FIG. 6B). It was observed that the photocatalytic activity could not be expected.
[0120]
[Example 1]
Mighty rack white {trade name of acrylic urethane resin paint (two-component mixed type) (manufactured by Nippon Paint)} was spray-coated on an A4 size aluminum plate and dried at room temperature for 3 days.
The photocatalyst composition (C-1) prepared in Reference Example 4 was applied to the obtained aluminum plate coated with acrylic urethane by a spray coating method so as to have a film thickness of about 3 μm. A sample (E-1) was prepared by partial drying.
The pencil hardness of this sample (E-1) after irradiation with ultraviolet light (black light) was 4H, and the contact angle of water was 0 °. Moreover, the contamination resistance of this sample (E-1) was very good (evaluation: A).
[0121]
[Comparative Example 1]
The water contact angle of the A4 size aluminum plate coated with acrylic urethane obtained in Example 1 was 76 °, and the contamination resistance was measured. As a result, the result was bad (evaluation: D).
[0122]
[Comparative Example 2]
The photocatalyst composition (C-2) prepared in Reference Example 5 was applied to the A4 size aluminum plate subjected to acrylic urethane coating obtained in Example 1 by a spray coating method so that the film thickness was about 3 μm. Then, it was dried at 150 ° C. for 30 minutes to prepare a sample (E-2).
The pencil hardness of this sample (E-2) after irradiation with ultraviolet rays (black light) was 2H, and the contact angle of water was 97 °. Moreover, the contamination resistance of this sample (E-2) was very bad (evaluation: E).
[0123]
[Comparative Example 3]
Spray coating method using ST-K03 (photocatalyst coating agent, manufactured by Ishihara Sangyo Co., Ltd.) on the A4 size aluminum plate subjected to acrylic urethane coating obtained in Example 1 so that the film thickness is about 0.5 μm. Then, the sample was dried at 150 ° C. for 30 minutes to prepare a sample (E-3).
The contamination resistance of this sample (E-3) was a bad result (evaluation: C), and peeling of the photocatalyst topcoat layer and deterioration of the underlying acrylic coating film were observed.
[0124]
【The invention's effect】
The present invention provides a blind having a surface layer portion that exhibits photocatalytic activity and / or hydrophilicity without deteriorating the blind base material due to light in a living environment without requiring a complicated process. it can. The blinds of the present invention can maintain the aesthetics of the blinds for a long time by rain or simple water washing.
[Brief description of the drawings]
FIG. 1 is a graph showing the results of measuring the particle size distribution of TKS-251 (commercially available titanium oxide organosol) before modification using a wet particle size analyzer.
FIG. 2 shows the results of measuring the particle size distribution of the modified photocatalyst organosol (A-1) obtained by modifying TKS-251 in Reference Example 4 using a wet particle size analyzer. FIG.
3A is a TEM photograph of a cross section of a test plate (D-1) having a photocatalyst-containing coating obtained in Reference Example 4. FIG. FIG. 3B is an illustration of FIG.
4A is a TEM photograph of a cross section of an epoxy resin (D-2) having a photocatalyst-containing film obtained in Reference Example 4. FIG. FIG. 4B is an illustration of FIG.
FIG. 5 (a) is an enlarged photograph of a part of the TEM photograph of FIG. 4 (a). FIG. 5B is an illustration of FIG.
6A is a TEM photograph of a cross section of an epoxy resin (D-3) having a photocatalyst-containing film obtained in Reference Example 5. FIG. FIG. 6B is an illustration of FIG.
[Explanation of symbols]
1 Modified photocatalyst particles
2 Photocatalyst-containing coating
3 Acrylic urethane film
4 Titanium oxide as a pigment
5 Epoxy resin
5 (b) An enlarged view of the boundary portion between the modified photocatalyst particle phase 1 and the binder phase 7 containing no modified photocatalyst particles is shown in FIG. 5 (b).
6 Epoxy resin for embedding
7 Binder phase not containing modified photocatalyst particles
8 Alkyl group-containing silicone

Claims (18)

光触媒(A)及びバインダー成分(B)を含む表層部を備えたブラインドであって、該光触媒(A)が、式(1)で表されるトリオルガノシラン単位、式(2)で表されるモノオキシジオルガノシラン単位、式(3)で表されるジオキシオルガノシラン単位、及びフッ化メチレン(―CF −)単位よりなる群から選ばれる少なくとも1種の構造単位を有する化合物類よりなる群から選ばれる少なくとも1種の変性剤化合物(b)で変性処理された変性光触媒(A1)であり、
Si− (1)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す)
−(R SiO)− (2)
(式中、Rは式(1)で定義した通りである。)
Figure 0003922991
(式中、Rは式(1)で定義した通りである。)
該表層部中における光触媒(A)の濃度がブラインドの内部側から表面に向かって高くなることを特徴とする低汚染性ブラインド。
A blind having a surface layer portion containing a photocatalyst (A) and a binder component (B), wherein the photocatalyst (A) is represented by a triorganosilane unit represented by the formula (1), a formula (2) It consists of compounds having at least one structural unit selected from the group consisting of a monooxydiorganosilane unit, a dioxyorganosilane unit represented by the formula (3), and a methylene fluoride (—CF 2 —) unit. A modified photocatalyst (A1) modified with at least one modifier compound (b) selected from the group;
R 3 Si- (1)
(In the formula, each R is independently a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched carbon group having 1 to 30 carbon atoms. A fluoroalkyl group, a linear or branched alkenyl group having 2 to 30 carbon atoms, a phenyl group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group)
- (R 2 SiO) - ( 2)
(In the formula, R is as defined in formula (1).)
Figure 0003922991
(In the formula, R is as defined in formula (1).)
A low-contamination blind, characterized in that the concentration of the photocatalyst (A) in the surface layer increases from the inner side of the blind toward the surface.
光触媒(A)及びバインダー成分(B)を含む表層部を備えたブラインドであって、該バインダー成分(B)が、下記式(4)で表されるフェニル基含有シリコーン(BP)を含有し、A blind having a surface layer portion containing a photocatalyst (A) and a binder component (B), the binder component (B) containing a phenyl group-containing silicone (BP) represented by the following formula (4),
R 1 p R 2 q X r SiOSiO (4−p−q−r)/2(4-pqr) / 2 (4)        (4)
(式中、各R(In the formula, each R 1 はフェニル基を表し、RRepresents a phenyl group and R 2 は各々独立に直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数2〜30個のアルケニル基を表す。Xは、各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオEach independently represents a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched alkenyl group having 2 to 30 carbon atoms. X is independently a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 20 carbon atoms, an aminoxy group, or an oxygen group having 1 to 20 carbon atoms.
キシム基、ハロゲン原子を表す。そしてp、q及びrは、0<p<4、0≦q<4、0≦r<4、及び0<(p+q+r)<4であり、そして0.05≦p/(p+q)≦1である。)Represents a oxime group and a halogen atom. And p, q and r are 0 <p <4, 0 ≦ q <4, 0 ≦ r <4, and 0 <(p + q + r) <4, and 0.05 ≦ p / (p + q) ≦ 1 is there. )
該表層部中における光触媒(A)の濃度がブラインドの内部側から表面に向かって高くなることを特徴とする低汚染性ブラインド。A low-contamination blind, wherein the concentration of the photocatalyst (A) in the surface layer portion increases from the inside of the blind toward the surface.
光触媒(A)及びバインダー成分(B)を含む表層部を備えたブラインドであって、該光触媒(A)が、式(1)で表されるトリオルガノシラン単位、式(2)で表されるモノオキシジオルガノシラン単位、式(3)で表されるジオキシオルガノシラン単位、及びフッ化メチレン(―CF −)単位よりなる群から選ばれる少なくとも1種の構造単位を有する化合物類よりなる群から選ばれる少なくとも1種の変性剤化合物(b)で変性処理された変性光触媒(A1)であり、
Si− (1)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す)
−(R SiO)− (2)
(式中、Rは式(1)で定義した通りである。)
Figure 0003922991
(式中、Rは式(1)で定義した通りである。)
該バインダー成分(B)が、下記式(4)で表されるフェニル基含有シリコーン(BP)を含有し、
SiO (4−p−q−r)/2 (4)
(式中、各R はフェニル基を表し、R は各々独立に直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数2〜30個のアルケニル基を表す。Xは、各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。そしてp、q及びrは、0<p<4、0≦q<4、0≦r<4、及び0<(p+q+r)<4であり、そして0.05≦p/(p+q)≦1である。)
該表層部中における光触媒(A)の濃度がブラインドの内部側から表面に向かって高くなることを特徴とする低汚染性ブラインド。
A blind having a surface layer portion containing a photocatalyst (A) and a binder component (B), wherein the photocatalyst (A) is represented by a triorganosilane unit represented by the formula (1), a formula (2) It consists of compounds having at least one structural unit selected from the group consisting of a monooxydiorganosilane unit, a dioxyorganosilane unit represented by the formula (3), and a methylene fluoride (—CF 2 —) unit. A modified photocatalyst (A1) modified with at least one modifier compound (b) selected from the group;
R 3 Si- (1)
(In the formula, each R is independently a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched carbon group having 1 to 30 carbon atoms. A fluoroalkyl group, a linear or branched alkenyl group having 2 to 30 carbon atoms, a phenyl group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group)
- (R 2 SiO) - ( 2)
(In the formula, R is as defined in formula (1).)
Figure 0003922991
(In the formula, R is as defined in formula (1).)
The binder component (B) contains a phenyl group-containing silicone (BP) represented by the following formula (4),
R 1 p R 2 q X r SiO (4-p-q-r) / 2 (4)
(In the formula, each R 1 represents a phenyl group, and each R 2 independently represents a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or Represents a branched alkenyl group having 2 to 30 carbon atoms, each X independently represents a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 20 carbon atoms, an aminoxy group, or 1 carbon atom; Represents an oxime group of ˜20, a halogen atom, and p, q and r are 0 <p <4, 0 ≦ q <4, 0 ≦ r <4, and 0 <(p + q + r) <4, and 0 .05 ≦ p / (p + q) ≦ 1.)
A low-contamination blind, characterized in that the concentration of the photocatalyst (A) in the surface layer increases from the inner side of the blind toward the surface.
該フェニル基含有シリコーン(BP)が、下記式(5)で表される、アルキル基を含有しないフェニル基含有シリコーン(BP1)であることを特徴とする請求項1〜3のいずれか一項に記載の低汚染性ブラインド。
SiO(4−s−t)/2 (5)
(式中、Rはフェニル基を表し、Xは各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。s及びtは、0<s<4、0≦t<4、そして0<(s+t)<4である。)
The phenyl group-containing silicone (BP) is expressed by the following formula (5), in any one of claims 1 to 3, wherein the phenyl group-containing silicone containing no alkyl group (BP1) Low contamination blind as described.
R 1 s X t SiO (4 -s-t) / 2 (5)
(Wherein, R 1 represents a phenyl group, and each X independently represents a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 20 carbon atoms, an aminoxy group, or an oxime having 1 to 20 carbon atoms. Group represents a halogen atom, and s and t are 0 <s <4, 0 ≦ t <4, and 0 <(s + t) <4.)
該バインダー成分(B)が、下記式(6)で表されるアルキル基含有シリコーン(BA)を更に含有することを特徴とする請求項1〜のいずれか一項に記載の低汚染性ブラインド。
SiO(4−u−v)/2 (6)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数2〜30個のアルケニル基を表す。Xは、各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。そしてu及びvは、0<u<4、0≦v<4、そして0<(u+v)<4である。)
The binder component (B) is low contamination blind according to any one of claims 1-4, characterized in that it further comprises an alkyl group-containing silicone (BA) of the following formula (6) .
R 2 u X v SiO (4-uv) / 2 (6)
(In the formula, each R 2 independently represents a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched carbon group having 2 to 30 carbon atoms. Each independently represents a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 20 carbon atoms, an aminoxy group, an oxime group having 1 to 20 carbon atoms, or a halogen atom. And u and v are 0 <u <4, 0 ≦ v <4, and 0 <(u + v) <4.)
該バインダー成分(B)が、式(5)で表される、アルキル基を含有しないフェニル基含有シリコーン(BP1)と式(6)で表されるアルキル基含有シリコーン(BA)を含有することを特徴とする請求項1〜のいずれか一項に記載の低汚染性ブラインド。
SiO(4−s−t)/2 (5)
(式中、Rはフェニル基を表し、Xは各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。s及びtは、0<s<4、0≦t<4、そして0<(s+t)<4である。)
SiO(4−u−v)/2 (6)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数2〜30個のアルケニル基を表す。Xは、各々独立に水素原子、水酸基、炭素数1〜20のアルコキシ基、炭素数1〜20のアシロキシ基、アミノキシ基、炭素数1〜20のオキシム基、ハロゲン原子を表す。u及びvは、0<u<4、0≦v<4、そして0<(u+v)<4である。)
The binder component (B) contains a phenyl group-containing silicone (BP1) represented by the formula (5) and not containing an alkyl group and an alkyl group-containing silicone (BA) represented by the formula (6). The low-contamination blind according to any one of claims 1 to 5 , characterized in.
R 1 s X t SiO (4 -s-t) / 2 (5)
(Wherein, R 1 represents a phenyl group, and each X independently represents a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 20 carbon atoms, an aminoxy group, or an oxime having 1 to 20 carbon atoms. Group represents a halogen atom, and s and t are 0 <s <4, 0 ≦ t <4, and 0 <(s + t) <4.)
R 2 u X v SiO (4-uv) / 2 (6)
(In the formula, each R 2 independently represents a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched carbon group having 2 to 30 carbon atoms. Each independently represents a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 1 to 20 carbon atoms, an aminoxy group, an oxime group having 1 to 20 carbon atoms, or a halogen atom. U and v are 0 <u <4, 0 ≦ v <4, and 0 <(u + v) <4.)
該アルキル基含有シリコーン(BA)が、式(7)で表されるモノオキシジオルガノシラン単位(D)と式(8)で表されるジオキシオルガノシラン単位(T)を有することを特徴とする請求項1〜6のいずれか一項に記載の低汚染性ブラインド。
−(R SiO)− (7)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、又は直鎖状または分岐状の炭素数2〜30個のアルケニル基を表す。)
Figure 0003922991
(式中、Rは式(7)で定義した通りである。)
The alkyl group-containing silicone (BA) has a monooxydiorganosilane unit (D) represented by the formula (7) and a dioxyorganosilane unit (T) represented by the formula (8). The low-contamination blind according to any one of claims 1 to 6 .
— (R 2 2 SiO) — (7)
(In the formula, each R 2 independently represents a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched carbon group having 2 to 30 carbon atoms. Represents an alkenyl group of
Figure 0003922991
(Wherein R 2 is as defined in formula (7).)
該フェニル基含有シリコーン(BP)と該アルキル基含有シリコーン(BA)について相分離構造を有する表層部であることを特徴とする請求項1〜7のいずれか一項に記載の低汚染性ブラインド。The low-contamination blind according to any one of claims 1 to 7 , which is a surface layer portion having a phase separation structure for the phenyl group-containing silicone (BP) and the alkyl group-containing silicone (BA). 該光触媒(A)が該アルキル基含有シリコーン(BA)相に存在することを特徴とする請求項1〜8のいずれか一項に記載の低汚染性ブラインド。The low-contamination blind according to any one of claims 1 to 8, wherein the photocatalyst (A) is present in the alkyl group-containing silicone (BA) phase. 該光触媒(A)の数平均粒子径が400nm以下であることを特徴とする請求項1〜9のいずれか一項に記載の低汚染性ブラインド。The low-contamination blind according to any one of claims 1 to 9, wherein the photocatalyst (A) has a number average particle diameter of 400 nm or less. 該変性剤化合物(b)が、式(9)で表されるSi−H基含有ケイ素化合物(b1)であることを特徴とする請求項1〜10のいずれか一項に記載の低汚染性ブラインド。
SiO(4−x−y)/2 (9)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル
基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す。x及びyは、0<x<4、0<y<4であり、そして(x+y)≦4である。)
The low-pollution property according to any one of claims 1 to 10, wherein the modifier compound (b) is a Si-H group-containing silicon compound (b1) represented by the formula (9). blind.
H x R y SiO (4-xy) / 2 (9)
(In the formula, each R is independently a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched carbon group having 1 to 30 carbon atoms. A fluoroalkyl group, a linear or branched alkenyl group having 2 to 30 carbon atoms, a phenyl group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group, where x and y are 0 <x <4, 0 <Y <4 and (x + y) ≦ 4.)
該Si−H基含有ケイ素化合物(b1)が、式(10)で表されるモノSi−H基含有化合物、式(11)で表される両末端Si−H基含有化合物、式(12)で表されるHシリコーンよりなる群から選ばれる少なくとも1種の化合物であることを特徴とする請求項1〜11のいずれか一項に記載の低汚染性ブラインド。
Figure 0003922991
(式中、Rは各々独立に直鎖状または分岐状の炭素数が1〜30個のアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、フェニル基、又は式(13)で表されるシロキシ基を表す。
−O−(R SiO)−SiR ・・・(13)
(式中、Rはそれぞれ独立に直鎖状または分岐状の炭素数が1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数が1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、又はフェニル基を表す。また、mは整数であり、0≦m≦1000である。))
H−(R SiO)−SiR −H ・・・(11)
(式中、Rは式(10)で定義した通りである。nは整数であり、0≦n≦1000である。)
(RHSiO)(R SiO)(R SiO1/2 ・・・(12)
(式中、Rは式(10)で定義した通りである。aは1以上の整数であり、bは0以上の整数であり、(a+b)≦10000であり、そしてcは0又は2である。但し、(a+b)が2以上の整数であり且つc=0の場合、式(12)の該Hシリコーンは環状シリコーンであり、c=2の場合、式(12)の該Hシリコーンは鎖状シリコーンである。)
The Si-H group-containing silicon compound (b1) is a mono-Si-H group-containing compound represented by the formula (10), a Si-H group-containing compound represented by the formula (11), a formula (12) The low-contamination blind according to any one of claims 1 to 11, which is at least one compound selected from the group consisting of H silicones represented by the formula:
Figure 0003922991
(In the formula, each R 3 independently represents a linear or branched alkyl group having 1 to 30 carbon atoms, a linear or branched alkenyl group having 2 to 30 carbon atoms, or a carbon number of 5 to 20). A cycloalkyl group, a linear or branched fluoroalkyl group having 1 to 30 carbon atoms, a phenyl group, or a siloxy group represented by the formula (13).
—O— (R 4 2 SiO) m —SiR 4 3 (13)
(In the formula, each R 4 is independently a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched carbon number of 1 to 1. 30 represents a fluoroalkyl group, a linear or branched alkenyl group having 2 to 30 carbon atoms, or a phenyl group, and m is an integer, and 0 ≦ m ≦ 1000.)
H— (R 3 2 SiO) n —SiR 3 2 —H (11)
(In the formula, R 3 is as defined in Formula (10). N is an integer, and 0 ≦ n ≦ 1000.)
(R 3 HSiO) a (R 3 2 SiO) b (R 3 3 SiO 1/2 ) c (12)
(Wherein R 3 is as defined in formula (10), a is an integer of 1 or more, b is an integer of 0 or more, (a + b) ≦ 10000, and c is 0 or 2) Provided that when (a + b) is an integer of 2 or more and c = 0, the H silicone of the formula (12) is a cyclic silicone, and when c = 2, the H silicone of the formula (12) Is a chain silicone.)
該表層部中のバインダー成分(B)が、相分離構造を形成していることを特徴とする請求項1〜12のいずれか一項に記載の低汚染性ブラインド。The low-contamination blind according to any one of claims 1 to 12 , wherein the binder component (B) in the surface layer part forms a phase separation structure. 該表層部に含まれる光触媒(A)のバンドギャップエネルギーよりも高いエネルギーの光を照射することにより光触媒活性及び/又は親水性を示すことを特徴とする請求項1〜13のいずれか一項に記載の低汚染性ブラインド。To any one of claims 1 to 13, characterized in that indicating the photocatalytic activity and / or hydrophilic by irradiation with high energy light than the band gap energy of the photocatalyst contained in the surface layer portion (A) Low contamination blind as described. 該表層部に含まれる光触媒(A)のバンドギャップエネルギーよりも高いエネルギーの光を照射することにより、該光触媒(A)粒子の近傍に存在する珪素原子に結合した有機基の少なくとも一部が水酸基及び/又はシロキサン結合に置換されてなることを特徴とする請求項1〜14のいずれか一項に記載の低汚染性ブラインド。By irradiating light with energy higher than the band gap energy of the photocatalyst (A) contained in the surface layer part, at least a part of the organic groups bonded to the silicon atoms existing in the vicinity of the photocatalyst (A) particles are hydroxyl groups. The low-contamination blind according to claim 1 , wherein the blind is substituted with a siloxane bond. 光触媒(A)の表面エネルギーよりもバインダー成分(B)の表面エネルギーが高いことを特徴とする請求項1〜15のいずれか一項に記載の低汚染性ブラインド。The low pollution blind according to any one of claims 1 to 15, wherein the surface energy of the binder component (B) is higher than the surface energy of the photocatalyst (A). 該表層部が皮膜状であり、該皮膜中における光触媒(A)の濃度がブラインド基材に接する面から他方の露出面に向かって高くなることを特徴とする請求項1〜16のいずれか一項に記載の低汚染性ブラインド。A surface layer portion is film-shaped, either the concentration of the photocatalyst (A) according to claim 1-16, characterized in that the higher toward the surface in contact with the blind base to the other exposed surface in the said coating one The low-contamination blind according to the item . 光触媒(A)とバインダー成分(B)を含む光触媒組成物(C)であって、請求項1〜17のいずれか一項に記載の表層部を形成することを特徴とするブラインド用光触媒被覆組成物。A photocatalyst composition (C) comprising a photocatalyst (A) and a binder component (B), wherein the photocatalyst coating composition for blinds forms the surface layer part according to any one of claims 1 to 17. object.
JP2002270803A 2002-09-17 2002-09-17 Low pollution blinds Expired - Fee Related JP3922991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270803A JP3922991B2 (en) 2002-09-17 2002-09-17 Low pollution blinds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270803A JP3922991B2 (en) 2002-09-17 2002-09-17 Low pollution blinds

Publications (2)

Publication Number Publication Date
JP2004107967A JP2004107967A (en) 2004-04-08
JP3922991B2 true JP3922991B2 (en) 2007-05-30

Family

ID=32268303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270803A Expired - Fee Related JP3922991B2 (en) 2002-09-17 2002-09-17 Low pollution blinds

Country Status (1)

Country Link
JP (1) JP3922991B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107841A (en) * 2002-09-20 2004-04-08 Asahi Kasei Chemicals Corp Functional fiber

Also Published As

Publication number Publication date
JP2004107967A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP4282597B2 (en) Photocatalyst composition
JP4169557B2 (en) Photocatalyst
JP4102625B2 (en) Resin plate having photocatalyst surface layer
JP4169558B2 (en) Photocatalyst carrying structure
JP2004100110A (en) Photocatalyst supporting paper
JP3922991B2 (en) Low pollution blinds
JP4203288B2 (en) Photocatalyst film and member to which the photocatalyst film is attached
JP4052909B2 (en) Road marking with antifouling performance
JP4102622B2 (en) Antifouling tent canvas
JP4148835B2 (en) Functional wood
JP4111788B2 (en) Functional sunshade
JP2004105391A (en) Gliding implement
JP2004111577A (en) Solar cell cover having stainproof performance
JP2005058941A (en) Antifouling plasma display panel
JP2004099838A (en) Building material for stainproof outer wall
JP2004107917A (en) Sound-proof wall with antifouling performance
JP2004107952A (en) Stool having stainproof performance
JP2005060794A (en) Functional aluminum building material
JP2004209345A (en) Photocatalyst composition and photocatalyst body formed from the same
JP2004106303A (en) Decorative sheet having stainproofing function
JP2004107841A (en) Functional fiber
JP2004105317A (en) Stainproof bathtub
JP2004107965A (en) Delineator having stain-proof performance
JP2004109388A (en) Plastic lens having defogging performance
JP2004109268A (en) Outdoor display board having stainproof performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees