JP3922926B2 - Ion beam current intensity measuring device - Google Patents

Ion beam current intensity measuring device Download PDF

Info

Publication number
JP3922926B2
JP3922926B2 JP2001400163A JP2001400163A JP3922926B2 JP 3922926 B2 JP3922926 B2 JP 3922926B2 JP 2001400163 A JP2001400163 A JP 2001400163A JP 2001400163 A JP2001400163 A JP 2001400163A JP 3922926 B2 JP3922926 B2 JP 3922926B2
Authority
JP
Japan
Prior art keywords
magnetic flux
beam current
ion beam
coil
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001400163A
Other languages
Japanese (ja)
Other versions
JP2003194952A (en
Inventor
雄一朗 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001400163A priority Critical patent/JP3922926B2/en
Publication of JP2003194952A publication Critical patent/JP2003194952A/en
Application granted granted Critical
Publication of JP3922926B2 publication Critical patent/JP3922926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Particle Accelerators (AREA)
  • Measurement Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ビームを遮断せずにイオンビーム電流強度を高精度で測定する装置に関する。
【0002】
【従来の技術】
ビームを遮断せずにイオンビーム電流強度を精度良く測定する方法が特開平7-135099号公報に開示されている。しかしこの方法では、イオンビームが流れている空間と磁場を収集する磁場収集手段と収集した磁場に感応する超伝導素子を全て外部磁場から磁気遮蔽する必要があった。これによりイオンビーム電流強度測定装置が非常に大型化してしまうという課題があった。以下に詳しく説明する。例えば1 nAのビーム電流によってつくられる磁場は、ビーム中心から20 cm離れた点で10-15 Tのオーダーである。一方、地磁気を含む環境磁場は少なくとも10-5 Tのオーダーはあるのでバックグラウンドの方が10桁程度も大きい。外部磁場を減衰させる磁気遮蔽手段は、高透磁率材料で囲う方法がある。しかし、一般的に用いられるパーマロイを用いた磁気遮蔽ではせいぜい1桁〜2桁だけ外部磁場を減衰できる程度なので、バックグラウンドを低減して1 nAのビーム電流強度を測定することはできない。大幅に磁場を減衰させる磁気遮蔽手段は超伝導が考えられる。しかし、超伝導磁気遮蔽は完全に遮蔽部分を超伝導体で囲う必要があるので、イオン源やイオンを加速させる装置もイオンビームが流れている空間とともに超伝導体で囲う必要があった。このために装置が非常に大型化するという課題があった。
【0003】
この課題を解決する方法として、日本物理学会誌Vol. 54, No. 1, 1999に数μA以下のイオンビーム電流をnAオーダーの測定精度で測定する方法が開示されている。この方法は、特開平7-135099号公報と比較して、イオンビームが流れている空間と磁場を収集する検知コイルの間に狭いギャップを有する超伝導磁気遮蔽を設けるという特徴がある。日本物理学会誌 Vol. 54, No. 1, 1999に記載された構造の狭いギャップを有する超伝導磁気遮蔽は、外部磁場は大幅に減衰させる一方でイオンビーム電流が発生させる磁場は減衰させずに通過させる特徴がある。この特徴により、超伝導体で囲う部分は検知コイルと超伝導素子およびその周辺の超伝導回路だけでよいので、大幅に装置の小型化を実現できた。
【0004】
しかし、この方法では測定レンジが約3μA以下と狭いという課題があった。3μA以上のビーム電流を測定したいときには測定精度を低下させるか、または、精度を維持して測定したいときには、一般に、ファラデーカップ等のビームを遮断する測定手段を用いるしか方法はなかった。
【0005】
【発明が解決しようとする課題】
数nAから数μAの高い測定精度を維持して、且つ、ビームを遮断せずに数十nAから数十mAの広い測定レンジでビーム電流を測定できる方法の提供が求められていた。
【0006】
上記課題を解決するため本発明のビーム電流強度測定装置は、イオンビーム電流に対応した磁場を検知する検知部と、磁束を測定部に伝達する磁束伝達部と、伝達された磁束に感応する超伝導素子と超伝導素子を貫く磁束の変化を打ち消すように帰還電流を流す帰還コイルを有する測定部と、検知部と磁束伝達部と測定部をイオンビームが流れる空間を含む外部空間から磁気遮蔽する超伝導体からなるギャップを有する磁気遮蔽部と、イオンビーム電流によって誘起された磁束を検知部と磁束伝達部のどちらか一方、或いは両方で打ち消して測定部に伝達される磁束量を制御する回路を少なくとも有し、前記磁束伝達部のトランスは、検知部に接続したトランス入力コイルと、測定部に接続したコイルと、磁束の変化を打ち消すためのコイルから成る事を特徴とする。
【0007】
検知部は超伝導線を軟磁性体のコアに複数ターン巻いた構成とする。磁束伝達部は検知部と測定部を超伝導線で接続しただけでも良いが、トランスを用いて検知部と測定部のインダクタンスの調整を行う構造も可能であり、後者の方が磁束の伝達率が最適化できるので望ましい。測定部は、磁場センサーの働きをする超伝導磁束量子干渉計を備えている。さらに、磁束伝達部にワッシャ―コイルが設けられており、超伝導磁束量子干渉計を貫く磁束の変化をゼロにするように帰還コイルに電流を流して帰還する構造とする。超伝導磁束量子干渉計と、超伝導磁束量子干渉計を貫く磁束の変化をゼロにするように設けられたコイルと帰還コイルは、チップ上に構成されており、SQUIDチップとして生体磁気の測定等に広く使用されている。磁気遮蔽部は、イオンビーム電流を取り囲むように配置した超伝導体からなる超伝導磁気遮蔽であり、ドーナツ型の2枚の超伝導体板に挟まれた狭いギャップを有する形状とした。ドーナツ型の超伝導体板の内径と外径の比やギャップ数によって外部磁場の減衰率を所望に変えることができる。ギャップは、イオンビームがつくる磁場だけを減衰させずに選択的に磁気遮蔽内部に入れる。超伝導磁気遮蔽の材質はニオブや鉛を用いることができる。検知部と磁束伝達部のどちらか一方、或いは両方の磁束を打ち消して測定部に伝達される磁束量を制限する回路は、例えば、磁束伝達部にトランスを設けて、超伝導素子を貫く磁束の変化を打ち消すように磁束伝達部に流された帰還電流が帰還抵抗の両端につくる電圧の変化に対応した電流をトランスに流す回路を構成することで実現できる。或いは、ビーム電流が検知コイルの軟磁性体のコアに誘起する磁束とは逆向きの磁束を誘起するように、軟磁性体のコアに超伝導線を巻いた構成の検知コイルとすることでも実現できる。
【0008】
上記の装置構成とすることで、イオンビームが数μA以上の電流となっても磁束伝達部、もしくは検知部で磁束を打ち消すことができるので、SQUIDチップに大きな電流を流すことはない。また、磁束を打ち消す電流はイオンビーム電流強度に対応している。測定精度は、基本的にSQUIDチップにおける超伝導磁束量子干渉計を貫く磁束の変化をゼロにするように帰還された帰還電流の変化のS/N比で決定される。
【0009】
SQUIDチップに大きな電流を流すことのない構成なので、測定レンジの拡大が可能となる。磁束を打ち消す電流はイオンビーム電流強度に対応しているので、イオンビーム電流強度に比例した出力を得ることができる。測定精度は、出力のビーム電流に対する感度と雑音レベルで決まるが、本発明によると、感度はSQUIDチップにおける超伝導磁束量子干渉計を貫く磁束の変化をゼロにするように帰還された帰還電流のビーム電流に対する感度で決まるので高感度の測定ができる。且つ、雑音レベルは超伝導磁気遮蔽を用いた従来と同等の低い雑音レベルである。以上により、数nAから数μAの高い測定精度を維持して、且つ、ビームを遮断せずに数十nAから数十mAの広い測定レンジでビーム電流を測定できる方法を提供できる。
【0010】
【発明の実施の形態】
本発明による装置の構成を以下で説明する。ただし、これは実施例の一つである。
(本発明による装置の基本構成)
図1を参照して本発明によるイオンビーム電流強度測定装置の構成を説明する。
【0011】
検知部は、軟磁性コアに超伝導線を4ターン巻いたものを検知コイル1として用いた。軟磁性コアの寸法は内径φ250 mm、外径φ320 mm、高さ30 mmである。軟磁性コアは保磁力が小さく透磁率の大きいアモルファス材を用いた。
磁束伝達部は、トランス入力コイル3と測定部に接続したコイル4と磁束の変化を打ち消すためのコイル5が軟磁性コアに巻かれたトランスと、検知部と測定部を接続する超伝導線から構成される。トランス入力コイル3は検知コイル1に接続されている。磁束の変化を打ち消すためのコイル5は、トランス入力コイル3に流れる電流によってトランスの軟磁性コア内部に誘起される磁束を打ち消すためのコイルである。トランスの軟磁性コアは検知コイル1のコアと同じ材質のものを用いた。トランスの軟磁性コアの寸法は内径φ10 mm、外径φ12.5 mm、高さ5 mmとした。トランス入力コイル3は100ターン、測定部に接続したコイル4は15ターン、磁束の変化を打ち消すためのコイル5は10ターンとした。
【0012】
測定部は、超伝導素子にDC SQUIDを用いた超伝導回路とした。超伝導回路のSQUID9とSQUID入力コイル8、帰還コイル6、ワッシャ―コイル7はSQUIDチップ18の上に構成されている。
【0013】
超伝導磁気遮蔽は、検知部と磁束伝達部と測定部を取り囲む。囲まれた部分を超伝導磁気遮蔽で囲まれた範囲19に示した。ただし、完全に取り囲んだ構造ではなく、検知部を取り囲む部分にギャップをもつ構造とした。ギャップの幅は0.5 mmとした。超伝導磁気遮蔽の材質はニオブを用いた。これら検知部と磁束伝達部と測定部と超伝導磁気遮蔽はクライオスタットの内部にいれて液体ヘリウム温度に冷却した。
【0014】
上記の本発明によるイオンビーム電流強度測定装置は、従来と異なりSQUIDチップ18の外の磁束伝達部にトランスを設けて磁束の変化を打ち消すためのコイル5を備えていることを特徴とする。
(本発明による装置の構成例と測定の仕組み)
図2は本発明によるイオンビーム電流測定装置のより具体的な構成例である。図2を参照して測定の仕組みを説明する。
【0015】
ある強度のビーム電流IB2が検知コイル1を貫いている状態を初期状態とする。ビーム電流IB2の初期値はファラデーカップ26で測定され、コンピューター21に送られる。その値に対応して信号出力部23から、電圧υC24が出力されて抵抗RC25に電流を流し、且つ、ビーム電流値表示部に電圧υC24が入力される。さらに、信号出力部23からは可変抵抗RB17の値を設定する信号が可変抵抗RB17の制御部20に出力され、ビーム電流IB2の初期値に対応した値に可変抵抗RB17が切り替わる。電圧υC24が印加されることで帰還電流IF28が流れる。このときの帰還電流IF28は、電圧υC24と抵抗RC25の比であり、IF28=υC/RCである。一方、ビーム電流IB2は、検知コイル1とトランス入力コイル3がつくる超伝導閉回路に検知電流IP27を誘起する。検知電流IP27と帰還電流IF28は、それぞれトランス入力コイル3と磁束の変化を打ち消すためのコイル5に流れて、トランスの軟磁性コアに磁束を誘起する。ここで、帰還電流IF28は電圧υC24により可変なのでトランスの軟磁性コア内部の磁束がゼロとなるように設定できる。電圧υC24の設定は、ビーム電流IB2の様々な初期値に対応する値をあらかじめ実験で決めておいて、コンピューター21で自動設定できるようにしておく。このように、初期状態において検知電流IP27と帰還電流IF28がトランスの軟磁性コアに誘起する磁束の和はゼロで釣り合っており、このとき、測定部に接続したコイル4に電流は誘起されない。よって、SQUIDチップ18にはSQUID入力電流IT29は流れていない。
【0016】
初期状態からビーム電流IB2の強度が変化すると、変化量に比例して検知電流IP27が変化する。ビーム電流IB2の変化をΔIB2とし、検知電流IP27の変化量をΔIP27とする。ΔIP27はΔIB2に比例してΔIP27=α・ΔIB2と表せる。ΔIP27により、トランスの軟磁性コアに誘起された磁束の和は釣り合ったゼロの状態から、ΔIP27に比例した有限の磁束量となる。これにより、測定部に接続したコイル4とワッシャ―コイル7とSQUID入力コイル8がつくる超伝導閉回路にSQUID入力電流IT29が誘起される。SQUID入力電流IT29は、SQUID入力コイル8に流れてSQUID9を貫く磁束量を変化させようとするが、SQUID9を貫く磁束量が変化しないように帰還コイル6に帰還電流If30が流れる。帰還電流If30は帰還抵抗RA13の両端に電圧を発生させる。これを出力電圧υA14とする。出力電圧υA14は電子回路15に入力される。
【0017】
ここで、図3に示すように電子回路15が増幅器31で構成された実施例について説明する。出力電圧υA14は、増幅器31からκ倍に増幅されて出力電圧υB16として出力される。出力電圧υB16の発生により、可変抵抗RB17に電流υB/RBが流れて帰還電流IF28に加えられる。帰還電流IF28の変化量をΔIF28とすると、ΔIF28はυB/RBである。ΔIF28は、出力電圧υB16の代わりに出力電圧υA14を用いて表すとΔIF28=κ・υA/RBである。さらにυA= If30・RAなので、ΔIF28=κ・If30・RA/RBと表せる。
ΔIF28は、磁束の変化を打ち消すためのコイル5に磁束を誘起する。誘起された磁束によって、ΔIP27がトランス入力コイル3に誘起した磁束が打ち消される。ΔIP27がトランスの軟磁性コアに誘起する磁束を打ち消すために必要なΔIF28の電流値は、トランス入力コイル3と磁束の変化を打ち消すためのコイル5の巻き数をそれぞれN3とN5とするとΔIF28=(N3/N5)・ΔIP27である。本実施例では(N3/N5)=10である。ΔIP27がΔIB2に比例していることを思い出すと、ΔIF28=(N3/N5)・α・ΔIB2であり、ΔIF28はΔIB2に比例する。出力電圧υB16はυB=ΔIF28・RBより、υB=(N3/N5)・α・RB・ΔIB2である。よって、出力電圧υB16を測定することでビーム電流IB2の変化ΔIB2に比例した出力を得ることができる。一方、ΔIB2とIf30の関係は、ΔIB2={(κ・RA/RB)/((N3/N5)・α)}・If30である。従来は、測定レンジの上限は、出力電圧υA14が15 Vに達するときであった。例えば、帰還抵抗RA13を4.7 kΩとしたときにはIf30は約3.2μA以下が測定の上限となる。そして、If30が約3.2μA以下で測定できるビーム電流IB2の変化は約2.5μAであった。これに対して本発明では、(κ・RA/RB)/((N3/N5)・α)を大きくとることで、If30が約3.2μA以下で測定できるΔIB2の上限を大きくできる。検知コイルとトランス入力コイル3と磁束の変化を打ち消すためのコイル5の自己インダクタンスと巻き数にも寄るが(N3/N5)・αを約1/100、帰還抵抗RA13を4.7 kΩ、可変抵抗RB17を1.5 MΩ、κを1とした本実施例では、If30が約3.2μA以下で測定できるΔIB2の上限は約1 mAである。つまり、約400倍測定レンジを拡大できる。
【0018】
次に、図4に示すように電子回路15が積分器32で構成された実施例について説明する。積分器32は、入力信号である出力電圧υA14が閾値を超えると、ある時定数をもって出力電圧υB16を上昇させる。出力電圧υA14が閾値内であるときはそのまま一定の出力電圧υB16を出力する。出力電圧υA14が閾値を下回ると、ある時定数をもって出力電圧υB16を降下させる。出力電圧υB16の発生によって、可変抵抗RB17に電流υB/RBが流れて帰還電流IF28に加えられる。前節と同様に、ΔIF28はΔIF28=υB/RBであり、ΔIF28によって磁束の変化を打ち消すためのコイル5に誘起された磁束により、ΔIP27がトランス入力コイル3に誘起した磁束が打ち消される。ΔIF28=(N3/N5)・ΔIP27であり、ΔIP27はΔIB2に比例しているので、ΔIF28=(N3/N5)・α・ΔIB2である。出力電圧υB16は、υB=(N3/N5)・α・RB・ΔIB2である。よって、出力電圧υB16を測定することでビーム電流IB2の変化ΔIB2に比例した出力を得ることができる。ここで、測定精度は閾値の設定で決めることができる。例えば出力電圧υA14の閾値を±500 mVと設定すると、これはビーム電流IB2に換算して約±100 nAであり、ビーム電流IB2の精度を約±100 nAで測定できる。このとき、測定レンジは基本的に制限はなく、(N3/N5)・α・RBを設定することで出力電圧υB16の大きさが決まる。例えば、(N3/N5)・αを約1/100、可変抵抗RB17を150 kΩとしたとき、ΔIB2の10 mAの変化に対して15 Vの出力電圧υB16を得る。つまり、10 mAのビーム電流IB2を約±100 nAの精度で測定できる。さらに、例えば、出力電圧υA14の閾値を±50 mVと設定すると、これはビーム電流IB2に換算して約±10 nAである。(N3/N5)・αを約1/100、可変抵抗RB17を1.5 MΩとすると、ΔIB2の1 mAの変化に対して15 Vの出力電圧υB16を得る。つまり、1 mAのビーム電流IB2を約±10 nAの精度で測定できる。このように、出力電圧υA14の閾値と可変抵抗RB17の設定を変えることで、適切に測定精度と出力電圧υB16を調整することができ、ビーム電流IB2の測定レンジは基本的に制限はなくなる。
【0019】
ビーム電流IB2の強度は、初期状態のビーム電流IB2とその変化ΔIF28を加算することで求める。実際には、ビーム電流値表示部22において、IF28=υC/RCとΔIF28=υB/RBの和IF28+ΔIF28を計算する。そして別途実験で決めておいたIF28とビーム電流IB2の関係からビーム電流IB2を算出する。
【0020】
ところで、磁束の変化を打ち消すためのコイル5は、検知コイル1に巻いた構成でも同様の効果が得られる。
(比較例)
図5は従来のビーム電流測定装置の構成例である。従来は、SQUIDチップ18内に設けた帰還コイル6に帰還電流を流すことでワッシャ―コイル7に磁束を誘起させてビーム電流IB2によって検知コイル1に誘起された磁束を打ち消す構成であった。図2に測定例を示す。測定精度が約2 nAのときは、約3μA以下のビーム電流IB2は線形性良く測定できるが、それ以上は測定できなかった。このように、従来の構成では、プリアンプ11が一定の電圧以上になり、SQUIDチップ18内の回路に一定以上の電流が流れるようになると、出力の線形性が保てなくなるという課題があった。よって、プリアンプ11が一定の電圧以下で対応できるビーム電流強度までしか測定できないという課題があった。それより大きなビーム電流IB2を測定したいときには、ビーム電流IB2に対する出力の感度を低下させる必要があった。しかし、感度の低下により測定精度は低下する。図6に、感度を上記と比較して約1/5にした場合の結果を併せて示した。このとき、約16μA以下のビーム電流IB2までは線形性良く測定できた。一方、測定精度は約10 nAに低下した。
【0021】
【発明の効果】
以上のように、本発明によるイオンビーム電流強度測定装置を用いることで、数nAから数μAの高い測定精度を維持して、且つ、ビームを遮断せずに数十nAから数十mAの広い測定レンジでビーム電流を測定できる。
【図面の簡単な説明】
【図1】本発明によるイオンビーム電流測定装置の構成図
【図2】本発明によるイオンビーム電流測定装置の構成図
【図3】電子回路15の例1を示す図
【図4】電子回路15の例2を示す図
【図5】従来のビーム電流測定装置の構成図
【図6】従来のビーム電流測定装置の測定例を示す図
【符号の説明】
1 検知コイル
2 ビーム電流IB
3 トランス入力コイル
4 測定部に接続したコイル
5 磁束の変化を打ち消すためのコイル
6 帰還コイル
7 ワッシャーコイル
8 SQUID入力コイル
9 SQUID
10 直流電源
11 プリアンプ
12 積分器A
13 帰還抵抗RA
14 出力電圧υA
15 電子回路
16 出力電圧υB
17 可変抵抗RB
18 SQUIDチップ
19 超伝導磁気遮蔽で囲まれた範囲
20 可変抵抗RBの制御部
21 コンピューター
22 ビーム電流値表示部
23 信号出力部
24 電圧υC
25 抵抗RC
26 ファラデーカップ
27 検知電流IP
28 帰還電流IF
29 SQUID入力電流IT
30 帰還電流If
31 増幅器
30 積分器B
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for measuring ion beam current intensity with high accuracy without blocking a beam.
[0002]
[Prior art]
Japanese Laid-Open Patent Publication No. 7-135999 discloses a method for accurately measuring the ion beam current intensity without blocking the beam. However, in this method, the space where the ion beam flows, the magnetic field collecting means for collecting the magnetic field, and the superconducting elements sensitive to the collected magnetic field have to be magnetically shielded from the external magnetic field. As a result, there has been a problem that the ion beam current intensity measuring apparatus becomes very large. This will be described in detail below. For example, the magnetic field produced by a 1 nA beam current is on the order of 10 -15 T at a point 20 cm away from the beam center. On the other hand, the environmental magnetic field including geomagnetism is on the order of at least 10 -5 T, so the background is about 10 orders of magnitude larger. As a magnetic shielding means for attenuating the external magnetic field, there is a method of enclosing with a high permeability material. However, the magnetic shielding using permalloy, which is generally used, can attenuate the external magnetic field by 1 to 2 digits at most, so it is impossible to measure the beam current intensity of 1 nA while reducing the background. Superconductivity can be considered as a magnetic shielding means that significantly attenuates the magnetic field. However, since the superconducting magnetic shield needs to be completely surrounded by the superconductor, the ion source and the device for accelerating the ions must be surrounded by the superconductor together with the space where the ion beam is flowing. Therefore, there is a problem that the apparatus becomes very large.
[0003]
As a method for solving this problem, a method of measuring an ion beam current of several μA or less with nA order measurement accuracy is disclosed in Journal of the Physical Society of Japan Vol. 54, No. 1, 1999. This method is characterized in that a superconducting magnetic shield having a narrow gap is provided between a space in which an ion beam flows and a detection coil that collects a magnetic field, as compared with Japanese Patent Application Laid-Open No. 7-135099. The superconducting magnetic shield with a narrow gap structure described in the Journal of the Physical Society of Japan Vol. 54, No. 1, 1999 greatly attenuates the external magnetic field, but does not attenuate the magnetic field generated by the ion beam current. There is a feature to pass through. Because of this feature, the part surrounded by the superconductor is only the detection coil, the superconducting element, and the superconducting circuit around it, so that the size of the apparatus can be greatly reduced.
[0004]
However, this method has a problem that the measurement range is as narrow as about 3 μA or less. When it is desired to measure a beam current of 3 μA or more, the measurement accuracy is lowered, or when it is desired to perform measurement while maintaining the accuracy, there is generally only a method using a measuring means such as a Faraday cup for blocking the beam.
[0005]
[Problems to be solved by the invention]
There has been a demand for providing a method capable of measuring a beam current in a wide measurement range from several tens of nA to several tens of mA without interrupting the beam while maintaining high measurement accuracy of several nA to several μA.
[0006]
In order to solve the above-described problems, a beam current intensity measuring apparatus according to the present invention includes a detection unit that detects a magnetic field corresponding to an ion beam current, a magnetic flux transmission unit that transmits magnetic flux to the measurement unit, and an ultrasonic sensor that is sensitive to the transmitted magnetic flux. Magnetically shields the measurement unit having a feedback coil that feeds a feedback current so as to cancel the change of magnetic flux passing through the conduction element and the superconducting element, and the detection unit, the magnetic flux transmission unit, and the measurement unit from the external space including the space where the ion beam flows A magnetic shielding unit having a gap made of a superconductor, and a circuit for controlling the amount of magnetic flux transmitted to the measuring unit by canceling the magnetic flux induced by the ion beam current at one or both of the detecting unit and the magnetic flux transmitting unit. at least have a trans of the magnetic flux transmission part includes a transformer input coil connected to the detecting portion, and a coil connected to the measurement section, a coil for canceling the change in magnetic flux Characterized in that it comprises et al.
[0007]
The detection unit has a configuration in which a superconducting wire is wound around a soft magnetic core for a plurality of turns. The magnetic flux transmission unit may be simply connected to the detection unit and the measurement unit with a superconducting wire, but it is also possible to use a transformer to adjust the inductance of the detection unit and the measurement unit. Is desirable because it can be optimized. The measurement unit includes a superconducting magnetic flux quantum interferometer that functions as a magnetic field sensor. Further, a washer coil is provided in the magnetic flux transmission section, and a structure is employed in which a current is fed back to the feedback coil so that the change in magnetic flux passing through the superconducting magnetic flux quantum interferometer is zero. The superconducting magnetic flux quantum interferometer and the coil and feedback coil provided so as to make the change of magnetic flux penetrating the superconducting magnetic flux quantum interferometer zero are configured on the chip, and as a SQUID chip, biomagnetism measurement, etc. Widely used. The magnetic shield part is a superconducting magnetic shield made of a superconductor arranged so as to surround the ion beam current, and has a shape having a narrow gap sandwiched between two doughnut-type superconductor plates. The attenuation factor of the external magnetic field can be changed as desired according to the ratio between the inner diameter and the outer diameter of the donut-type superconductor plate and the number of gaps. The gap selectively enters the magnetic shield without attenuating only the magnetic field generated by the ion beam. Niobium or lead can be used as the material for the superconducting magnetic shield. For example, a circuit that cancels the magnetic flux of one or both of the detection unit and the magnetic flux transmission unit and limits the amount of magnetic flux transmitted to the measurement unit is provided with a transformer in the magnetic flux transmission unit, for example. This can be realized by constructing a circuit in which a current corresponding to a change in the voltage generated at both ends of the feedback resistor is fed to the transformer by the feedback current passed through the magnetic flux transmission unit so as to cancel the change. Alternatively, it can be realized as a detection coil with a structure in which a superconducting wire is wound around the core of the soft magnetic body so that the beam current induces a magnetic flux in the opposite direction to the magnetic flux induced in the core of the soft magnetic body of the detection coil. it can.
[0008]
With the above apparatus configuration, even when the ion beam has a current of several μA or more, the magnetic flux can be canceled by the magnetic flux transmission unit or the detection unit, so that a large current does not flow through the SQUID chip. The current that cancels the magnetic flux corresponds to the ion beam current intensity. The measurement accuracy is basically determined by the S / N ratio of the change in the feedback current fed back so that the change in the magnetic flux passing through the superconducting magnetic flux quantum interferometer in the SQUID chip becomes zero.
[0009]
The configuration does not allow a large current to flow through the SQUID chip, so the measurement range can be expanded. Since the current for canceling the magnetic flux corresponds to the ion beam current intensity, an output proportional to the ion beam current intensity can be obtained. The measurement accuracy is determined by the sensitivity to the output beam current and the noise level, but according to the present invention, the sensitivity is the feedback current fed back to null the flux change through the superconducting flux quantum interferometer in the SQUID chip. Since it is determined by the sensitivity to the beam current, highly sensitive measurement is possible. In addition, the noise level is a low noise level equivalent to the conventional one using superconducting magnetic shielding. As described above, it is possible to provide a method that can maintain a high measurement accuracy of several nA to several μA and can measure the beam current in a wide measurement range of several tens of nA to several tens of mA without blocking the beam.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The configuration of the apparatus according to the present invention will be described below. However, this is one of the embodiments.
(Basic configuration of the apparatus according to the present invention)
The configuration of an ion beam current intensity measuring apparatus according to the present invention will be described with reference to FIG.
[0011]
The detection unit used as the detection coil 1 was a soft magnetic core in which a superconducting wire was wound for 4 turns. The dimensions of the soft magnetic core are an inner diameter of 250 mm, an outer diameter of 320 mm, and a height of 30 mm. The soft magnetic core was made of an amorphous material having a small coercive force and a large magnetic permeability.
The magnetic flux transmission unit is composed of a transformer input coil 3, a coil 4 connected to the measurement unit, a transformer in which a coil 5 for canceling a change in magnetic flux is wound around a soft magnetic core, and a superconducting wire connecting the detection unit and the measurement unit. Composed. The transformer input coil 3 is connected to the detection coil 1. The coil 5 for canceling the change in magnetic flux is a coil for canceling the magnetic flux induced in the soft magnetic core of the transformer by the current flowing through the transformer input coil 3. The soft magnetic core of the transformer was made of the same material as the core of the detection coil 1. The dimensions of the soft magnetic core of the transformer were an inner diameter of φ10 mm, an outer diameter of φ12.5 mm, and a height of 5 mm. The transformer input coil 3 has 100 turns, the coil 4 connected to the measurement section has 15 turns, and the coil 5 for canceling the change in magnetic flux has 10 turns.
[0012]
The measurement unit was a superconducting circuit using DC SQUID as a superconducting element. The superconducting circuit SQUID 9, SQUID input coil 8, feedback coil 6, and washer coil 7 are formed on a SQUID chip 18.
[0013]
The superconducting magnetic shield surrounds the detection unit, the magnetic flux transmission unit, and the measurement unit. The enclosed part is shown in a range 19 surrounded by a superconducting magnetic shield. However, it was not a completely enclosed structure, but a structure having a gap in the part surrounding the detection unit. The gap width was 0.5 mm. Niobium was used as the material for the superconducting magnetic shield. The detection unit, magnetic flux transmission unit, measurement unit, and superconducting magnetic shield were placed inside the cryostat and cooled to liquid helium temperature.
[0014]
The ion beam current intensity measuring device according to the present invention described above is characterized in that, unlike the prior art, a coil is provided for canceling a change in magnetic flux by providing a transformer in a magnetic flux transmission part outside the SQUID chip 18.
(Example of apparatus configuration and measurement mechanism according to the present invention)
FIG. 2 shows a more specific configuration example of the ion beam current measuring apparatus according to the present invention. The measurement mechanism will be described with reference to FIG.
[0015]
A state where a beam current I B 2 having a certain intensity passes through the detection coil 1 is defined as an initial state. The initial value of the beam current I B 2 is measured by the Faraday cup 26 and sent to the computer 21. Corresponding to the value, a voltage υ C 24 is output from the signal output unit 23 to cause a current to flow through the resistor R C 25, and the voltage υ C 24 is input to the beam current value display unit. Further, a signal for setting the value of the variable resistor R B 17 is output from the signal output unit 23 to the control unit 20 of the variable resistor R B 17, and the variable resistor R B has a value corresponding to the initial value of the beam current I B 2. 17 switches. By applying the voltage υ C 24, a feedback current I F 28 flows. The feedback current I F 28 at this time is the ratio of the voltage υ C 24 and the resistance R C 25, and I F 28 = υ C / R C. On the other hand, the beam current I B 2 induces a detection current I P 27 in a superconducting closed circuit formed by the detection coil 1 and the transformer input coil 3. The detection current I P 27 and the feedback current I F 28 flow to the transformer input coil 3 and the coil 5 for canceling the change in magnetic flux, respectively, and induce magnetic flux in the soft magnetic core of the transformer. Here, the feedback current I F 28 can be set so varied by voltage upsilon C 24 as the magnetic flux of the internal transformer soft magnetic core becomes zero. The voltage υ C 24 is set such that values corresponding to various initial values of the beam current I B 2 are determined in advance by experiment and can be automatically set by the computer 21. Thus, in the initial state, the sum of the magnetic fluxes that the detection current I P 27 and the feedback current I F 28 induce in the soft magnetic core of the transformer is balanced with zero, and at this time, the current flows in the coil 4 connected to the measurement unit. Not induced. Therefore, the SQUID input current I T 29 does not flow through the SQUID chip 18.
[0016]
When the intensity of the beam current I B 2 changes from the initial state, the detection current I P 27 changes in proportion to the amount of change. A change in the beam current I B 2 is ΔI B 2, and a change amount of the detection current I P 27 is ΔI P 27. [Delta] I P 27 can be expressed as ΔI P 27 = α · ΔI B 2 in proportion to [Delta] I B 2. Due to ΔI P 27, the sum of magnetic fluxes induced in the soft magnetic core of the transformer changes from a balanced zero state to a finite amount of magnetic flux proportional to ΔI P 27. As a result, a SQUID input current I T 29 is induced in a superconducting closed circuit formed by the coil 4, the washer coil 7 and the SQUID input coil 8 connected to the measurement unit. The SQUID input current I T 29 flows through the SQUID input coil 8 and attempts to change the amount of magnetic flux passing through the SQUID 9, but the feedback current If f 30 flows through the feedback coil 6 so that the amount of magnetic flux passing through the SQUID 9 does not change. The feedback current I f 30 generates a voltage across the feedback resistor R A 13. This is defined as an output voltage υ A 14. The output voltage υ A 14 is input to the electronic circuit 15.
[0017]
Here, an embodiment in which the electronic circuit 15 includes an amplifier 31 as shown in FIG. 3 will be described. The output voltage υ A 14 is amplified κ times from the amplifier 31 and output as the output voltage υ B 16. Due to the generation of the output voltage υ B 16, the current υ B / R B flows through the variable resistor R B 17 and is added to the feedback current I F 28. If the amount of change of the feedback current I F 28 is ΔI F 28, ΔI F 28 is υ B / R B. If ΔI F 28 is expressed using the output voltage υ A 14 instead of the output voltage υ B 16, ΔI F 28 = κ · υ A / R B. Since further υ A = I f 30 · R A, expressed as ΔI F 28 = κ · I f 30 · R A / R B.
ΔI F 28 induces a magnetic flux in the coil 5 for canceling the change of the magnetic flux. The magnetic flux induced by ΔI P 27 in the transformer input coil 3 is canceled by the induced magnetic flux. The current value of ΔI F 28 required to cancel the magnetic flux induced by the soft magnetic core of the transformer by ΔI P 27 is the number of turns of the transformer input coil 3 and the coil 5 for canceling the change of the magnetic flux as N3 and N5, respectively. Then, ΔI F 28 = (N3 / N5) · ΔI P 27. In this embodiment, (N3 / N5) = 10. Recalling that ΔI P 27 is proportional to ΔI B 2, ΔI F 28 = (N3 / N5) · α · ΔI B 2, and ΔI F 28 is proportional to ΔI B 2. The output voltage upsilon B 16 than υ B = ΔI F 28 · R B, is υ B = (N3 / N5) · α · R B · ΔI B 2. Therefore, an output proportional to the change ΔI B 2 of the beam current I B 2 can be obtained by measuring the output voltage υ B 16. On the other hand, the relationship between ΔI B 2 and I f 30 is ΔI B 2 = {(κ · R A / R B ) / ((N3 / N5) · α)} · I f 30. Conventionally, the upper limit of the measurement range was when the output voltage υ A 14 reached 15 V. For example, when the feedback resistance R A 13 is set to 4.7 kΩ, the upper limit of measurement is I f 30 of about 3.2 μA or less. The change in beam current I B 2 that can be measured when I f 30 is about 3.2 μA or less was about 2.5 μA. On the other hand, in the present invention, by increasing (κ · R A / R B ) / ((N3 / N5) · α), the upper limit of ΔI B 2 that can be measured when I f 30 is about 3.2 μA or less is set. Can be big. Although it depends on the self-inductance and the number of turns of the detection coil, transformer input coil 3 and coil 5 for canceling the change of magnetic flux, (N3 / N5) · α is about 1/100, feedback resistance R A 13 is 4.7 kΩ, variable In the present example in which the resistance R B 17 is 1.5 MΩ and κ is 1, the upper limit of ΔI B 2 that can be measured when I f 30 is about 3.2 μA or less is about 1 mA. In other words, the measurement range can be expanded about 400 times.
[0018]
Next, an embodiment in which the electronic circuit 15 includes an integrator 32 as shown in FIG. 4 will be described. The integrator 32 increases the output voltage υ B 16 with a certain time constant when the output voltage υ A 14 as an input signal exceeds a threshold value. When the output voltage υ A 14 is within the threshold value, the constant output voltage υ B 16 is output as it is. When the output voltage υ A 14 falls below the threshold, the output voltage υ B 16 is dropped with a certain time constant. The generation of the output voltage υ B 16 causes the current υ B / R B to flow through the variable resistor R B 17 and be added to the feedback current I F 28. As in the previous section, ΔI F 28 is ΔI F 28 = υ B / R B , and ΔI P 27 is transferred to the transformer input coil 3 by the magnetic flux induced in the coil 5 for canceling the change in magnetic flux by ΔI F 28. The induced magnetic flux is canceled out. ΔI F 28 = (N3 / N5) · ΔI P 27, and since ΔI P 27 is proportional to ΔI B 2, ΔI F 28 = (N3 / N5) · α · ΔI B 2. The output voltage υ B 16 is υ B = (N3 / N5) · α · R B · ΔI B 2. Therefore, an output proportional to the change ΔI B 2 of the beam current I B 2 can be obtained by measuring the output voltage υ B 16. Here, the measurement accuracy can be determined by setting a threshold value. For example, if the threshold value of the output voltage upsilon A 14 is set to ± 500 mV, which is about ± 100 nA in terms of the beam current I B 2, to measure the accuracy of the beam current I B 2 at about ± 100 nA. At this time, the measurement range is basically not limited, and the magnitude of the output voltage υ B 16 is determined by setting (N3 / N5) · α · R B. For example, when (N3 / N5) · α is about 1/100 and the variable resistance R B 17 is 150 kΩ, an output voltage υ B 16 of 15 V is obtained for a change of ΔI B 2 of 10 mA. That is, the 10 mA beam current I B 2 can be measured with an accuracy of about ± 100 nA. Further, for example, if the threshold value of the output voltage υ A 14 is set to ± 50 mV, this is about ± 10 nA in terms of the beam current I B 2. Assuming that (N3 / N5) · α is about 1/100 and the variable resistor R B 17 is 1.5 MΩ, an output voltage υ B 16 of 15 V is obtained for a change of ΔI B 2 of 1 mA. That is, the 1 mA beam current I B 2 can be measured with an accuracy of about ± 10 nA. In this way, by changing the threshold value of the output voltage υ A 14 and the setting of the variable resistor R B 17, the measurement accuracy and the output voltage υ B 16 can be adjusted appropriately, and the measurement range of the beam current I B 2 is Basically there are no restrictions.
[0019]
The intensity of the beam current I B 2 is obtained by adding the beam current I B 2 and the change [Delta] I F 28 in the initial state. In practice, the beam current value display unit 22 calculates the sum I F 28 + ΔI F 28 of I F 28 = υ C / R C and ΔI F 28 = υ B / R B. Then, the beam current I B 2 is calculated from the relationship between I F 28 and the beam current I B 2 determined separately in the experiment.
[0020]
By the way, even if the coil 5 for canceling the change of the magnetic flux is wound around the detection coil 1, the same effect can be obtained.
(Comparative example)
FIG. 5 shows a configuration example of a conventional beam current measuring apparatus. Conventionally, the configuration is such that a magnetic flux is induced in the washer coil 7 by flowing a feedback current through the feedback coil 6 provided in the SQUID chip 18 and the magnetic flux induced in the detection coil 1 by the beam current I B 2 is canceled. . FIG. 2 shows a measurement example. When the measurement accuracy was about 2 nA, a beam current I B 2 of about 3 μA or less could be measured with good linearity, but no more could be measured. As described above, the conventional configuration has a problem that the linearity of the output cannot be maintained when the preamplifier 11 exceeds a certain voltage and a current exceeding a certain value flows through the circuit in the SQUID chip 18. Therefore, there is a problem that the preamplifier 11 can measure only the beam current intensity that can be handled at a certain voltage or less. When it is desired to measure a larger beam current I B 2, it is necessary to reduce the output sensitivity to the beam current I B 2. However, measurement accuracy decreases due to a decrease in sensitivity. FIG. 6 also shows the results when the sensitivity is about 1/5 compared with the above. At this time, the beam current I B 2 of about 16 μA or less could be measured with good linearity. On the other hand, the measurement accuracy decreased to about 10 nA.
[0021]
【The invention's effect】
As described above, by using the ion beam current intensity measuring apparatus according to the present invention, a high measurement accuracy of several nA to several μA is maintained, and a wide range of several tens of nA to several tens of mA without blocking the beam. The beam current can be measured in the measurement range.
[Brief description of the drawings]
1 is a block diagram of an ion beam current measuring apparatus according to the present invention. FIG. 2 is a block diagram of an ion beam current measuring apparatus according to the present invention. FIG. 3 is a diagram showing an example 1 of an electronic circuit 15. FIG. FIG. 5 is a diagram showing a configuration of a conventional beam current measuring apparatus. FIG. 6 is a diagram showing a measurement example of a conventional beam current measuring apparatus.
1 Detection coil 2 Beam current I B
3 Transformer input coil 4 Coil connected to measuring section 5 Coil for canceling magnetic flux change 6 Feedback coil 7 Washer coil 8 SQUID input coil 9 SQUID
10 DC power supply 11 Preamplifier 12 Integrator A
13 Feedback resistor R A
14 Output voltage υ A
15 Electronic circuit 16 Output voltage υ B
17 Variable resistance R B
18 SQUID chip 19 Range surrounded by superconducting magnetic shield 20 Control unit 21 of variable resistance R B Computer 22 Beam current value display unit 23 Signal output unit 24 Voltage υ C
25 Resistance R C
26 Faraday cup 27 Detection current I P
28 Feedback current IF
29 SQUID input current I T
30 Feedback current If
31 Amplifier 30 Integrator B

Claims (10)

イオンビーム電流に対応した磁場を検知する検知部と、磁束を測定部に伝達する磁束伝達部と、伝達された磁束に感応する超伝導素子と超伝導素子を貫く磁束の変化を打ち消すように帰還電流を流す帰還コイルを有する測定部と、検知部と磁束伝達部と測定部をイオンビームが流れる空間を含む外部空間から磁気遮蔽する超伝導体からなるギャップを有する磁気遮蔽部と、イオンビーム電流によって誘起された磁束を検知部と磁束伝達部のどちらか一方、或いは両方で打ち消して測定部に伝達される磁束量を制御する回路を少なくとも有し、
前記磁束伝達部のトランスは、前記検知部に接続したトランス入力コイルと、測定部に接続したコイルと、磁束の変化を打ち消すためのコイルから成るイオンビーム電流強度測定装置。
A detection unit that detects a magnetic field corresponding to the ion beam current, a magnetic flux transmission unit that transmits magnetic flux to the measurement unit, a superconducting element that is sensitive to the transmitted magnetic flux, and feedback so as to cancel changes in the magnetic flux passing through the superconducting element A measurement unit having a feedback coil for passing a current, a magnetic shielding unit having a gap made of a superconductor that magnetically shields the detection unit, the magnetic flux transmission unit, and the measurement unit from an external space including a space through which the ion beam flows, and an ion beam current the induced magnetic flux either one of the detection portion and the magnetic flux transmission part, or at least have a circuit for controlling the magnetic flux amount to be transferred to the measuring unit to cancel both by,
The transformer of the magnetic flux transmission unit is an ion beam current intensity measuring device including a transformer input coil connected to the detection unit, a coil connected to the measurement unit, and a coil for canceling a change in magnetic flux .
前記検知部が超伝導線を軟磁性体のコアに複数ターン巻いた構成であることを特徴とする請求項1記載のイオンビーム電流強度測定装置。 2. The ion beam current intensity measuring apparatus according to claim 1, wherein the detection unit has a configuration in which a superconducting wire is wound around a core of a soft magnetic material for a plurality of turns. 前記磁束伝達部は軟磁性体のコアに超伝導線を巻いたトランスを少なくとも有することを特徴とする請求項1記載のイオンビーム電流強度測定装置。 2. The ion beam current intensity measuring apparatus according to claim 1, wherein the magnetic flux transmission section includes at least a transformer in which a superconducting wire is wound around a soft magnetic core. 前記検知部は、磁束の変化を打ち消すためのコイルに電流を流すことで測定部に伝達される磁束量を制御することを特徴とする請求項2記載のイオンビーム電流強度測定装置。3. The ion beam current intensity measuring apparatus according to claim 2, wherein the detecting unit controls the amount of magnetic flux transmitted to the measuring unit by causing a current to flow through a coil for canceling a change in magnetic flux. 磁束の変化を打ち消すためのコイルに流した電流の変化は、超伝導素子を貫く磁束の変化を打ち消すように流された帰還電流の変化に対応していることを特徴とする請求項4記載のイオンビーム電流強度測定装置。5. The change of the current passed through the coil for canceling the change of magnetic flux corresponds to the change of the feedback current passed so as to cancel the change of the magnetic flux passing through the superconducting element. Ion beam current intensity measuring device. 磁束の変化を打ち消すためのコイルに流した電流の変化を測定することでイオンビーム電流強度の変化を測定することを特徴とする請求項5記載のイオンビーム電流強度測定装置。6. The ion beam current intensity measuring apparatus according to claim 5, wherein a change in the ion beam current intensity is measured by measuring a change in a current passed through a coil for canceling a change in magnetic flux. 超伝導素子が超伝導磁束量子干渉計であることを特徴とする請求項1記載のイオンビーム電流強度測定装置。2. The ion beam current intensity measuring apparatus according to claim 1, wherein the superconducting element is a superconducting magnetic flux quantum interferometer. 請求項Claim 11 記載のイオンビーム電流強度測定装置を備えたイオン注入装置。An ion implantation apparatus comprising the ion beam current intensity measurement apparatus described. 請求項Claim 11 記載のイオンビーム電流強度測定装置を備えた電子ビーム露光装置。An electron beam exposure apparatus comprising the ion beam current intensity measuring device described above. 請求項Claim 11 記載のイオンビーム電流強度測定装置を備えた加速器。An accelerator comprising the described ion beam current intensity measuring device.
JP2001400163A 2001-12-28 2001-12-28 Ion beam current intensity measuring device Expired - Fee Related JP3922926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001400163A JP3922926B2 (en) 2001-12-28 2001-12-28 Ion beam current intensity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400163A JP3922926B2 (en) 2001-12-28 2001-12-28 Ion beam current intensity measuring device

Publications (2)

Publication Number Publication Date
JP2003194952A JP2003194952A (en) 2003-07-09
JP3922926B2 true JP3922926B2 (en) 2007-05-30

Family

ID=27604878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400163A Expired - Fee Related JP3922926B2 (en) 2001-12-28 2001-12-28 Ion beam current intensity measuring device

Country Status (1)

Country Link
JP (1) JP3922926B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797137B (en) * 2017-10-30 2023-11-28 中国工程物理研究院流体物理研究所 Linear induction electron accelerator test platform and double-coil detection structure

Also Published As

Publication number Publication date
JP2003194952A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
EP0147655B1 (en) Miniature squid susceptometer
EP1715362A1 (en) Beam measuring equipment and beam measuring method using the same
US4687987A (en) Beam current sensor
Unser The parametric current transformer, a beam current monitor developed for LEP
JPS60194379A (en) Magnetic field sensor and method of detecting magnetic field
EP1950578B1 (en) Superconductive quantum interference device (squid) system for measuring magnetic susceptibility of materials
Gramm et al. Squid magnetometer for mangetization measurements
US7145321B2 (en) Current sensor with magnetic toroid
US5521572A (en) Unshielded air-coupled current transformer
JP3922926B2 (en) Ion beam current intensity measuring device
JP3205021B2 (en) Pickup coil
US20050110484A1 (en) Beam current measuring device and apparatus using the same
JP2003021670A (en) Noncontact type ion beam current intensity measuring device
WO2004081966A1 (en) Beam current measuring instrument and beam current measuring method using same
Matlashov et al. High sensitive magnetometers and gradiometers based on DC SQUIDs with flux focuser
Bergoz Current monitors for particle beams
Steppke et al. Application of LTS-SQUIDs in nuclear measurement techniques
JP3166987B2 (en) Current sensor
JP2006184116A (en) Device for detecting magnetism
JPH08220201A (en) Superconducting quantum interferometer
JPWO2018025786A1 (en) Current measurement device for charged particle beam
JPH0682150B2 (en) Magnetic field measuring device
JP3156396B2 (en) Differential SQUID magnetometer and biomagnetic field measurement device using the same
JP2003149311A (en) Wide band active magnetic shield method
JPH05218678A (en) Magnetic shielding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051202

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees